A Unified Strategy for the Synthesis of Highly Oxygenated Diaryl Ethers

Total Page:16

File Type:pdf, Size:1020Kb

A Unified Strategy for the Synthesis of Highly Oxygenated Diaryl Ethers ARTICLE Received 20 Sep 2013 | Accepted 20 Feb 2014 | Published 24 Mar 2014 DOI: 10.1038/ncomms4478 A unified strategy for the synthesis of highly oxygenated diaryl ethers featured in ellagitannins Tsukasa Hirokane1, Yasuaki Hirata1, Takayuki Ishimoto1, Kentaro Nishii1 & Hidetoshi Yamada1 Ellagitannins are a family of polyphenols containing more than 1,000 natural products. Nearly 40% of these compounds contain a highly oxygenated diaryl ether that is one of the most critical elements to their structural diversity. Here, we report a unified strategy for the synthesis of highly oxygenated diaryl ethers featured in ellagitannins. The strategy involves oxa-Michael addition of phenols to an orthoquinone building block, with subsequent elimination and reductive aromatization. The design of the building block—a halogenated orthoquinone monoketal of gallal—reduces the usual instability of orthoquinone and controls addition/elimination. Reductive aromatization is achieved with perfect chemo- selectivity in the presence of other reducible functional groups. This strategy enables the synthesis of different diaryl ethers. The first total synthesis of a natural ellagitannin bearing a diaryl ethers is performed to demonstrate that the strategy increases the number of synthetically available ellagitannins. 1 School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan. Correspondence and requests for materials should be addressed to H.Y. (email: [email protected]). NATURE COMMUNICATIONS | 5:3478 | DOI: 10.1038/ncomms4478 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4478 he structural diversity of natural products often derives hexahydroxydiphenoyl (HHDP) groups (Fig. 1); however, the from the oligomerization of monomers that are specific to simple combination of these basic constituents is insufficient to Teach family of compounds. Snyder and co-workers have generate structural diversity. Despite Snyder’s classification of divided a large number of oligomeric natural products into two ellagitannins as serially produced oligomers1, the reality is not categories1: serially and non-serially produced oligomers. In that simple. The HHDP groups on the glucose cores do not serially produced oligomers, monomers unite regiospecifically appear at fixed positions. Furthermore, disorders of the routine with definite bonding patterns; examples include DNA patterns in uniting the component parts frequently appear in (Supplementary Note) and proteins. In contrast, in non-serially higher ellagitannins. In addition, the family includes numerous produced cases, oligomerization apparently unites monomers in a component parts, including overoxidation8,9, modifications of the random manner, with no fixed position. This division can also be HHDP group10, conjugation with other natural constituents11–13 applied to polyphenols, although their structural diversity is and production of the highly oxygenated diaryl ethers. Among sufficiently large to classify them into several structural families2. these factors conferring structural diversity, the production of Polyphenols have potential applications in medicine and health highly oxygenated diaryl ethers, C–O digallates, is the most enhancement. However, their structure-activity/affinity relation- significant. C–O digallates are structures that contain dimerized ships are not well understood due to the difficulty in obtaining a galloyl group(s) connected by a C–O bond, such as the complete collection of systematically related analogues from dehydrodigalloyl (DHDG), tergalloyl and valoneoyl groups. nature. This difficulty might be resolved through chemical These motifs allow oligomerization of basic ellagitannins, which synthesis if all compounds of a polyphenol family could be expands diversity14. Nearly 40% of characterized natural synthesized. The methodologies required to achieve this exhaus- ellagitannins contain C–O digallates. tive synthesis would differ from those used for a one-off total For the exhaustive synthesis of ellagitannins, one of the most synthesis of a single compound. For the exhaustive synthesis of fundamental tasks is the formation of the chiral HHDP group, serially produced oligomers, the procurement of all component a C–C digallate, which has been achieved through several parts and the development of effective methods for assembling procedures15–18. The second and most impactful task would be the parts are the most important tasks. For exhaustive synthesis of the establishment of a methodology for synthesizing C–O non-serially produced oligomers, the discovery of latent systems digallates because their structure is the primary cause of that exhibit structural diversity and the development of structural diversity in this family. Therefore, establishment of methodologies to address multipoint random oligomerizations this methodology should increase the number of synthetically are required. Attempts to satisfy these requirements for both available ellagitannins in an innovative manner. However, few serially and non-serially produced polyphenols have already reports of the synthesis of C–O digallates have appeared in the begun, as evidenced by the work of Ohmori et al.3 and Snyder literature. One of the rare examples is Feldman’s synthesis of et al.4, who have developed methods for synthesizing higher DHDG derivative 3 (Fig. 2a)19–21. This synthesis is a four-step catechin oligomers and programmable resveratrol oligomers, sequence that starts from orthoquinone 4 through (1) the respectively. self-hetero Diels-Alder cycloaddition of 4 to produce a mixture The family of ellagitannins, which consists of bioactivity- and of regioisomers 5a and 5b, (2) b-elimination, as indicated by structure-rich polyphenols5,6, has been found to contain more the curved arrows, (3) reduction of the orthoquinone, and than 1,000 natural products to date7. The most basic ellagitannins (4) benzylation accompanying the Smiles rearrangement22, which consist of a glucose core with esterified galloyl and converges the mixture into 3. Utilizing the DHDG derivative of 3, HO HO OH Hexahydroxydiphenoyl (HHDP) group HO S HO HO OH HO OH = GG Dehydrodigalloyl (DHDG) group O O O OH HO O O O G HO O O O O S OG O O O Galloyl group GO O G O HO OG Coriariin A (1) OH = G HO HO OH OH OH OH Valoneoyl group HO OH HO OH O OH HO HO O HO O O OH HO HO O OH S S O S HO HO O HO O O O O O O OH O O O G G O O O O S HO HO OH Tergalloyl group O O O O HO GO OG O Platycaryanin C OG O OH Rugosin A (2) G S G Figure 1 | Natural ellagitannins possessing highly oxygenated diaryl ethers. The parts indicated with bold lines are the highly oxygenated diaryl ethers, C–O digallates. Each common name is also indicated. The C–O digallates allow oligomerization of basic ellagitannins, which is a major factor in conferring structural diversity. However, the methods for synthesizing C–O digallates have been quite limited to date. 2 NATURE COMMUNICATIONS | 5:3478 | DOI: 10.1038/ncomms4478 | www.nature.com/naturecommunications & 2014 Macmillan Publishers Limited. All rights reserved. NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4478 ARTICLE Previous work BnO OBn BnO O BnO O OBn O O BnO2C H BnO2C H BnO C 2 O O O OO OO BnO (2) NaOAc (3) Na S O (1) B(OAc)3 2 2 4 OBn OBn + BnO BnO (4) K2CO3, BnBr CO Bn CO Bn BnO C 2 2 2 BnO2C 45a5b 3 This work BnO OH OBn O OBn O R1O R1O OR1 OR1 BnO BnO Oxa-Michael addition/ Oxidation elimination BnO X BnO X + HO Aryl BnO O OR1 2 2 6 O 7 O 12 O R O2C CO2R H H H R3OOR3 R1O R1O OR1 OR1 HO R1O OR1 OR1 Protecting groups HO HO OR1 R1O OR1 H, alkyl, or sugar derivative(s) 2 2 2 2 2 R O2C R O2CCO2R R O2CCO2R 8: R3 = PhCH 10 11 9: R3 = Bn (for valoneoyl group) (for tergalloyl group) (for DHDG group) The C–O digallate-containing motifs BnO BnO R1O R1O OR1 OR1 HO HO HO HO OH OH Reductive aromatization BnO O OR1 HO O OH 2 2 4 4 4 13 O R O2CCO2R 14 R O2CRO2CCO2R H H or cabohydrate(s) Figure 2 | Outlines of previous and present methods for the synthesis of C–O digallates. (a) Feldman’s synthesis of the DHDG group, which was formerly the sole method for synthesizing a C–O digallate, the DHDG group, as applied to the total synthesis of ellagitannins. (b) The unified strategy of C–O digallates (this work). Oxa-Michael addition of phenols 8–11 to key building block 7 and subsequent elimination formed the C–O bond of the digallates. The design of building block 7 was critical. The monoketal and halogen X stabilized the structure. Halogen X made the oxa-Michael addition irreversible because leaving group X caused smooth elimination after the oxa-Michael addition. In addition, X limited the electrophilic position in oxa- Michael addition to the b-carbon of the aldehyde but not to that of the ketone. The reductive aromatization of 12 required selective reduction of the orthoquinone monoketal in the presence of an aldehyde, an ester in the ‘Aryl’ part, and a benzylidene acetal when 8 was employed. The (S)-axial chiralities of 10 and 11 are drawn tentatively; thus, usage of the corresponding (R)-isomers and the racemates is also possible. Ac, acetyl; Bn, benzyl; Ph, phenyl. they achieved the total synthesis of coriariin A (1)20, which is the tergalloyl and valoneoyl groups, which is a significant step toward sole ellagitannin containing the C–O digallate synthesized to date. the exhaustive synthesis of ellagitannins. To demonstrate the However, the application of this method to HHDP-containing effectiveness of this strategy, we performed the first total synthesis C–O digallates is quite difficult because the first step, the C–O of the valoneoyl-group-containing ellagitannin rugosin A (2). bond-forming reaction, relies on the self-dimerization of 4. Alternatively, Ullmann coupling can be used to prepare C–O digallates.
Recommended publications
  • Punicalin Alleviates OGD/R-Triggered Cell Injury Via TGF-Β-Mediated Oxidative Stress and Cell Cycle in Neuroblastoma Cells SH-SY5Y
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 6671282, 11 pages https://doi.org/10.1155/2021/6671282 Research Article Punicalin Alleviates OGD/R-Triggered Cell Injury via TGF-β-Mediated Oxidative Stress and Cell Cycle in Neuroblastoma Cells SH-SY5Y Tiansong Yang,1 Qingyong Wang,2 Yuanyuan Qu,2 Yan Liu,1 Chuwen Feng,1 Yulin Wang,2 Weibo Sun,3 Zhongren Sun ,2 and Yulan Zhu4 1First affiliated hospital, Heilongjiang University of Chinese Medicine, Harbin, China 2Heilongjiang University of Chinese Medicine, Harbin, China 3Harbin Medical University, Harbin, China 4Department of Neurology, %e Second Affiliated Hospital of Harbin Medical University, Harbin, China Correspondence should be addressed to Zhongren Sun; [email protected] Received 21 October 2020; Revised 21 October 2020; Accepted 7 January 2021; Published 12 February 2021 Academic Editor: Muhammad Farrukh Nisar Copyright © 2021 Tiansong Yang et al. /is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Purpose. /e research aimed to identify the active component from Punica granatum L. to alleviate ischemia/reperfusion injury and clarify the underlying mechanism of the active component alleviating ischemia/reperfusion injury. Materials and Methods. /e SH-SY5Y cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) was established to simulate the ischemia/ reperfusion injury. According to the strategy of bioassay-guided isolation, the active component of punicalin from Punica granatum L. was identified. Flow cytometry and Western blotting were employed to evaluate the effects of OGD/R and/or punicalin on cell cycle arrest.
    [Show full text]
  • Antioxidant Rich Extracts of Terminalia Ferdinandiana Inhibit the Growth of Foodborne Bacteria
    foods Article Antioxidant Rich Extracts of Terminalia ferdinandiana Inhibit the Growth of Foodborne Bacteria Saleha Akter 1 , Michael E. Netzel 1, Ujang Tinggi 2, Simone A. Osborne 3, Mary T. Fletcher 1 and Yasmina Sultanbawa 1,* 1 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia 2 Queensland Health Forensic and Scientific Services, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia 3 CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia * Correspondence: [email protected]; Tel.: +617-344-32471 Received: 26 June 2019; Accepted: 20 July 2019; Published: 24 July 2019 Abstract: Terminalia ferdinandiana (Kakadu plum) is a native Australian plant containing phytochemicals with antioxidant capacity. In the search for alternatives to synthetic preservatives, antioxidants from plants and herbs are increasingly being investigated for the preservation of food. In this study, extracts were prepared from Terminalia ferdinandiana fruit, leaves, seedcoats, and bark using different solvents. Hydrolysable and condensed tannin contents in the extracts were determined, as well as antioxidant capacity, by measuring the total phenolic content (TPC) and free radical scavenging activity using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. Total phenolic content was higher in the fruits and barks with methanol extracts, containing the highest TPC, hydrolysable tannins, and DPPH-free radical scavenging capacity (12.2 2.8 g/100 g dry weight ± (DW), 55 2 mg/100 g DW, and 93% respectively). Saponins and condensed tannins were highest in ± bark extracts (7.0 0.2 and 6.5 0.7 g/100 g DW).
    [Show full text]
  • Pomegranate: Nutraceutical with Promising Benefits on Human Health
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 Review Pomegranate: nutraceutical with promising benefits on human health Anna Caruso 1, +, Alexia Barbarossa 2,+, Antonio Tassone 1 , Jessica Ceramella 1, Alessia Carocci 2,*, Alessia Catalano 2,* Giovanna Basile 1, Alessia Fazio 1, Domenico Iacopetta 1, Carlo Franchini 2 and Maria Stefania Sinicropi 1 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende (Italy); anna.caruso@unical .it (Ann.C.), [email protected] (A.T.), [email protected] (J.C.), [email protected] (G.B.), [email protected] (A.F.), [email protected] (D.I.), [email protected] (M.S.S.) 2 Department of Pharmacy‐Drug Sciences, University of Bari “Aldo Moro”, 70126, Bari (Italy); [email protected] (A.B.), [email protected] (Al.C.), [email protected] (A.C.), [email protected] (C.F.) + These authors equally contributed to this work. * Correspondence: [email protected] Abstract: The pomegranate, an ancient plant native to Central Asia, cultivated in different geographical areas including the Mediterranean basin and California, consists of flowers, roots, fruits and leaves. Presently, it is utilized not only for the exterior appearance of its fruit but above all, for the nutritional and health characteristics of the various parts composing this last one (carpellary membranes, arils, seeds and bark). The fruit, the pomegranate, is rich in numerous chemical compounds (flavonoids, ellagitannins, proanthocyanidins, mineral salts, vitamins, lipids, organic acids) of high biological and nutraceutical value that make it the object of study for many research groups, particularly in the pharmaceutical sector.
    [Show full text]
  • One Step Purification of Corilagin and Ellagic Acid from Phyllanthus
    PHYTOCHEMICAL ANALYSIS Phytochem. Anal. 13, 1–3 (2002) DOI: 10.1002/pca.608 One Step Purification of Corilagin and Ellagic Acid from Phyllanthus urinaria using High-Speed Countercurrent Chromatography Liu Jikai,1* Huang Yue,1 Thomas Henkel2 and Karlheinz Weber2 1Department of Phytochemistry, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, People s Republic of China 2Bayer AG, Pharma Research, D-42096 Wuppertal, Germany High-speed countercurrent chromatography (HSCCC) has been successfully applied to the preparative separation of corilagin and ellagic acid in one step from the Chinese medicinal plant Phyllanthus urinaria L. by use of direct and successive injections of a crude methanolic extract. Some aspects concerning the practical use of this technique in the described application are considered. Copyright # 2001 John Wiley & Sons, Ltd. Keywords: High-speed countercurrent chromatography (HSCCC); one step purification; corilagin; ellagic acid; Phyllanthus urinaria. INTRODUCTION al., 1993; Cheng et al., 1995) and infectious disease (anti- viral, Yoon et al., 2000). The present report deals with the one-step isolation of compounds 1 and 2 from the Most separations in the natural product field are methanolic extract of aerial parts of P. urinaria, and performed through chromatography on solid supports, demonstrates the rapid and efficient access of the but all-liquid techniques are currently attracting con- constituents using HSCCC. siderable interest. High-speed countercurrent chroma- tography (HSCCC) is an all-liquid technique that employs no solid support and functions using a multi- layer coil rotating at high speed in a device that creates a fluctuating acceleration field which produces successive bands of mixing and settling along a continuous tube (Conway, 1995).
    [Show full text]
  • Epilobium Angustifolium Isolated from Immunomodulatory Activity Of
    Immunomodulatory Activity of Oenothein B Isolated from Epilobium angustifolium Igor A. Schepetkin, Liliya N. Kirpotina, Larissa Jakiw, Andrei I. Khlebnikov, Christie L. Blaskovich, Mark A. Jutila This information is current as and Mark T. Quinn of September 23, 2021. J Immunol 2009; 183:6754-6766; Prepublished online 21 October 2009; doi: 10.4049/jimmunol.0901827 http://www.jimmunol.org/content/183/10/6754 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2009/10/21/jimmunol.090182 Material 7.DC1 http://www.jimmunol.org/ References This article cites 81 articles, 4 of which you can access for free at: http://www.jimmunol.org/content/183/10/6754.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 23, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Immunomodulatory Activity of Oenothein B Isolated from Epilobium angustifolium1 Igor A. Schepetkin,* Liliya N.
    [Show full text]
  • Biologically Plant-Based Pigments in Sustainable Innovations for Functional Textiles – the Role of Bioactive Plant Phytochemicals
    Heriot-Watt University Research Gateway Biologically plant-based pigments in sustainable innovations for functional textiles – The role of bioactive plant phytochemicals Citation for published version: Thakker, A & Sun, D 2021, 'Biologically plant-based pigments in sustainable innovations for functional textiles – The role of bioactive plant phytochemicals', Journal of Textile Science and Fashion Technology , vol. 8, no. 3, pp. 1-25. https://doi.org/10.33552/JTSFT.2021.08.000689 Digital Object Identifier (DOI): 10.33552/JTSFT.2021.08.000689 Link: Link to publication record in Heriot-Watt Research Portal Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Textile Science and Fashion Technology General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. Sep. 2021 ISSN: 2641-192X DOI: 10.33552/JTSFT.2021.08.000689 Journal of Textile Science & Fashion Technology Review Article Copyright © All rights are reserved by Alka Madhukar Thakker Biologically Plant-Based Pigments in Sustainable Innovations for Functional Textiles – The Role of Bioactive Plant Phytochemicals Alka Madhukar Thakker* and Danmei Sun School of Textiles and Design, Heriot-Watt University, UK *Corresponding author: Alka Madhukar Thakker, School of Textiles and Design, He- Received Date: March 29, 2021 riot-Watt University, TD1 3HF, UK.
    [Show full text]
  • Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed)
    Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed) Authors: Igor A. Schepetkin, Andrew G. Ramstead, Liliya N. Kirpotina, Jovanka M. Voyich, Mark A. Jutila, and Mark T. Quinn This is the peer reviewed version of the following article: [Schepetkin, IA, AG Ramstead, LN Kirpotina, JM Voyich, MA Jutila, and MT Quinn. "Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed)." Phytotherapy Research 30, no. 8 (May 2016): 1287-1297.], which has been published in final form at https://dx.doi.org/10.1002/ptr.5648. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed) Igor A. Schepetkin, Andrew G. Ramstead, Liliya N. Kirpotina, Jovanka M. Voyich, Mark A. Jutila and Mark T. Quinn* Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA Epilobium angustifolium is a medicinal plant used around the world in traditional medicine for the treatment of many disorders and ailments. Experimental studies have demonstrated that Epilobium extracts possess a broad range of pharmacological and therapeutic effects, including antioxidant, anti-proliferative, anti-inflammatory, an- tibacterial, and anti-aging properties. Flavonoids and ellagitannins, such as oenothein B, are among the com- pounds considered to be the primary biologically active components in Epilobium extracts. In this review, we focus on the biological properties and the potential clinical usefulness of oenothein B, flavonoids, and other poly- phenols derived from E. angustifolium. Understanding the biochemical properties and therapeutic effects of polyphenols present in E.
    [Show full text]
  • Antifungal Activity and DNA Topoisomerase Inhibition of Hydrolysable Tannins from Punica Granatum L
    International Journal of Molecular Sciences Article Antifungal Activity and DNA Topoisomerase Inhibition of Hydrolysable Tannins from Punica granatum L. Virginia Brighenti 1, Ramona Iseppi 1 , Luca Pinzi 1, Annamaria Mincuzzi 2, Antonio Ippolito 2 , Patrizia Messi 1 , Simona Marianna Sanzani 3, Giulio Rastelli 1,* and Federica Pellati 1,* 1 Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103/287, 41125 Modena, Italy; [email protected] (V.B.); [email protected] (R.I.); [email protected] (L.P.); [email protected] (P.M.) 2 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; [email protected] (A.M.); [email protected] (A.I.) 3 CIHEAM-Bari, Via Ceglie 9, 70010 Valenzano, Italy; [email protected] * Correspondence: [email protected] (G.R.); [email protected] (F.P.); Tel.: +39-059-2058564 (G.R.); +39-059-2058565 (F.P.) Abstract: Punica granatum L. (pomegranate) fruit is known to be an important source of bioactive phenolic compounds belonging to hydrolysable tannins. Pomegranate extracts have shown antifungal activity, but the compounds responsible for this activity and their mechanism/s of action have not been completely elucidated up to now. The aim of the present study was the investigation of the inhibition ability of a selection of pomegranate phenolic compounds (i.e., punicalagin, punicalin, ellagic acid, gallic acid) on both plant and human fungal pathogens. In addition, the biological target Citation: Brighenti, V.; Iseppi, R.; of punicalagin was identified here for the first time.
    [Show full text]
  • Corilagin in Cancer: a Critical Evaluation of Anticancer Activities and Molecular Mechanisms
    molecules Review Corilagin in Cancer: A Critical Evaluation of Anticancer Activities and Molecular Mechanisms Ashutosh Gupta 1 , Amit Kumar Singh 1 , Ramesh Kumar 1, Risha Ganguly 1, Harvesh Kumar Rana 1, Prabhash Kumar Pandey 1 , Gautam Sethi 2, Anupam Bishayee 3,* and Abhay K. Pandey 1,* 1 Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India; [email protected] (A.G.); [email protected] (A.K.S.); [email protected] (R.K.); [email protected] (R.G.); [email protected] (H.K.R.); [email protected] (P.K.P.) 2 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; [email protected] 3 Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA * Correspondence: [email protected] or [email protected] (A.B.); [email protected] or akpandey23@rediffmail.com (A.K.P.); Tel.: +1-941-782-5729 (A.B.); +91-983-952-1138 (A.K.P.) Academic Editor: Gianni Sacchetti Received: 28 August 2019; Accepted: 16 September 2019; Published: 19 September 2019 Abstract: Corilagin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose), an ellagitannin, is one of the major bioactive compounds present in various plants. Ellagitannins belong to the hydrolyzable tannins, a group of polyphenols. Corilagin shows broad-spectrum biological, and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, and antitumor actions. Natural compounds possessing antitumor activities have attracted significant attention for treatment of cancer. Corilagin has shown inhibitory activity against the growth of numerous cancer cells by prompting cell cycle arrest at the G2/M phase and augmented apoptosis.
    [Show full text]
  • Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-Methyl-4-Nitrophenol in Murine Splenic Lymphocyte
    nutrients Article Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-methyl-4-nitrophenol in Murine Splenic Lymphocyte Lubing Yang 1,2, Sihui Ma 1,2, Yu Han 1,2, Yuhan Wang 1, Yan Guo 3, Qiang Weng 1,2 and Meiyu Xu 1,2,* 1 Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; [email protected] (L.Y.); [email protected] (S.M.); [email protected] (Y.H.); [email protected] (Y.W.); [email protected] (Q.W.) 2 Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China 3 College of Basic Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6233-8221 Received: 23 February 2016; Accepted: 21 April 2016; Published: 12 May 2016 Abstract: 4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC), two important components of vehicle emissions, have been shown to confer toxicity in splenocytes. Certain natural products, such as those derived from walnuts, exhibit a range of antioxidative, antitumor, and anti-inflammatory properties. Here, we investigated the effects of walnut polyphenol extract (WPE) on immunotoxicity induced by PP and PNMC in murine splenic lymphocytes. Treatment with WPE was shown to significantly enhance proliferation of splenocytes exposed to PP or PNMC, characterized by increases in the percentages of splenic T lymphocytes (CD3+ T cells) and T cell subsets (CD4+ and CD8+ T cells), as well as the production of T cell-related cytokines and granzymes (interleukin-2, interleukin-4, and granzyme-B) in cells exposed to PP or PNMC.
    [Show full text]
  • Juglans Regia L.) Counteracts A172 Glioblastoma Cell Survival and Bacterial Growth
    INTERNATIONAL JOURNAL OF ONCOLOGY 57: 1129-1144, 2020 The double effect of walnut septum extract (Juglans regia L.) counteracts A172 glioblastoma cell survival and bacterial growth CARLO GENOVESE1,2*, MARIA TERESA CAMBRIA3*, FLORIANA D'ANGELI3, ALESSANDRO PAOLO ADDAMO1, GIUSEPPE ANTONIO MALFA4, LAURA SIRACUSA5, LUANA PULVIRENTI5, CARMELINA DANIELA ANFUSO3, GABRIELLA LUPO3 and MARIO SALMERI1 1Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania; 2Nacture S.r.l., Spin‑off University of Catania; 3Department of Biomedical and Biotechnological Sciences, Biochemistry Section, University of Catania, I‑95123; 4Department of Drug Science, Biochemistry Section, University of Catania, I‑95125 Catania; 5Istituto di Chimica Biomolecolare del CNR, I‑95126 Catania, Italy Received April 28, 2020; Accepted June 25, 2020 DOI: 10.3892/ijo.2020.5130 Abstract. Walnut (Juglans regia L.) is considered to be a promising results could provide novel perspective in the field of ‘superfood’ for its multiple protective actions on human health. chemotherapeutic co-adjuvants. Walnut extracts have proven antitumor activity in different cancer cell lines. However, the efficacy of septum extract against Introduction glioblastoma has still not been investigated. Glioblastoma is the most difficult type of brain cancer to treat. The standard Plant extracts are becoming increasingly important, as a therapy, based on temozolomide, causes several side effects, prominent source of active compounds, which are able to including neutropenia
    [Show full text]
  • Colonic Metabolism of Phenolic Compounds: from in Vitro to in Vivo Approaches Juana Mosele
    Nom/Logotip de la Universitat on s’ha llegit la tesi Colonic metabolism of phenolic compounds: from in vitro to in vivo approaches Juana Mosele http://hdl.handle.net/10803/378039 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora.
    [Show full text]