Fibroblast Growth Factor (FGF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fgf17b and FGF18 Have Different Midbrain Regulatory Properties from Fgf8b Or Activated FGF Receptors Aimin Liu1,2, James Y
Research article 6175 FGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors Aimin Liu1,2, James Y. H. Li2, Carrie Bromleigh2, Zhimin Lao2, Lee A. Niswander1 and Alexandra L. Joyner2,* 1Howard Hughes Medical Institute, Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA 2Howard Hughes Medical Institute and Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, and Physiology and Neuroscience, NYU School of Medicine, New York, NY 10016, USA *Author for correspondence (e-mail: [email protected]) Accepted 28 August 2003 Development 130, 6175-6185 Published by The Company of Biologists 2003 doi:10.1242/dev.00845 Summary Early patterning of the vertebrate midbrain and region in the midbrain, correlating with cerebellum cerebellum is regulated by a mid/hindbrain organizer that development. By contrast, FGF17b and FGF18 mimic produces three fibroblast growth factors (FGF8, FGF17 FGF8a by causing expansion of the midbrain and and FGF18). The mechanism by which each FGF upregulating midbrain gene expression. This result is contributes to patterning the midbrain, and induces a consistent with Fgf17 and Fgf18 being expressed in the cerebellum in rhombomere 1 (r1) is not clear. We and midbrain and not just in r1 as Fgf8 is. Third, analysis of others have found that FGF8b can transform the midbrain gene expression in mouse brain explants with beads soaked into a cerebellum fate, whereas FGF8a can promote in FGF8b or FGF17b showed that the distinct activities of midbrain development. In this study we used a chick FGF17b and FGF8b are not due to differences in the electroporation assay and in vitro mouse brain explant amount of FGF17b protein produced in vivo. -
FGF19 Protects Hepatocellular Carcinoma Cells Against Endoplasmic Reticulum Stress Via Activation of FGFR4-Gsk3β-Nrf2 Signaling
Author Manuscript Published OnlineFirst on September 26, 2017; DOI: 10.1158/0008-5472.CAN-17-2039 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. FGF19 protects hepatocellular carcinoma cells against endoplasmic reticulum stress via activation of FGFR4-GSK3β-Nrf2 signaling Yong Teng1,2#*, Huakan Zhao3,4#, Lixia Gao1, Wenfa Zhang3, Austin Y Shull5, Chloe Shay6 1. Department of Oral Biology, Augusta University, Augusta, GA, USA 2. Georgia Cancer Center, Augusta University, Augusta, GA, USA 3. School of Life Sciences, Chongqing University, Chongqing, China 4. Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China 5. Department of Biology, Presbyterian College, Clinton, SC, USA 6. Emory Children’s Center, Emory University, Atlanta, GA, USA # These authors contributed equally to this work Running Title: Role of FGF19 in ER stress Key Words: FGF19, FGFR4, Nrf2, HCC, ER stress, anticancer Abbreviations list: AARE: amino-acid-response element; ANOVA: analysis of variance; ARE: antioxidant response elements; ATF4: activating transcription factor 4; ChIP-qPCR: chromatin immunoprecipitation quantitative-PCR; CV: cyclic voltammetry; DMSO: dimethyl sulfoxide; EMT: epithelial-mesenchymal transition; ER: endoplasmic reticulum; FGF19: fibroblast growth factor 19; FGFR4: FGF receptor 4; GSK3β: glycogen synthase kinase •− 3β; HCC: hepatocellular carcinoma; Nrf2: nuclear factor E2-related factor 2; O2 : superoxide; PBS: phosphate-buffered saline; ROS: reactive free -
ARTICLES Fibroblast Growth Factors 1, 2, 17, and 19 Are The
0031-3998/07/6103-0267 PEDIATRIC RESEARCH Vol. 61, No. 3, 2007 Copyright © 2007 International Pediatric Research Foundation, Inc. Printed in U.S.A. ARTICLES Fibroblast Growth Factors 1, 2, 17, and 19 Are the Predominant FGF Ligands Expressed in Human Fetal Growth Plate Cartilage PAVEL KREJCI, DEBORAH KRAKOW, PERTCHOUI B. MEKIKIAN, AND WILLIAM R. WILCOX Medical Genetics Institute [P.K., D.K., P.B.M., W.R.W.], Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Obstetrics and Gynecology [D.K.] and Department of Pediatrics [W.R.W.], UCLA School of Medicine, Los Angeles, California 90095 ABSTRACT: Fibroblast growth factors (FGF) regulate bone growth, (G380R) or TD (K650E) mutations (4–6). When expressed at but their expression in human cartilage is unclear. Here, we deter- physiologic levels, FGFR3-G380R required, like its wild-type mined the expression of entire FGF family in human fetal growth counterpart, ligand for activation (7). Similarly, in vitro cul- plate cartilage. Using reverse transcriptase PCR, the transcripts for tivated human TD chondrocytes as well as chondrocytes FGF1, 2, 5, 8–14, 16–19, and 21 were found. However, only FGF1, isolated from Fgfr3-K644M mice had an identical time course 2, 17, and 19 were detectable at the protein level. By immunohisto- of Fgfr3 activation compared with wild-type chondrocytes and chemistry, FGF17 and 19 were uniformly expressed within the showed no receptor activation in the absence of ligand (8,9). growth plate. In contrast, FGF1 was found only in proliferating and hypertrophic chondrocytes whereas FGF2 localized predominantly to Despite the importance of the FGF ligand for activation of the resting and proliferating cartilage. -
Disruption of Fibroblast Growth Factor Signal
Cancer Therapy: Preclinical Disruption of Fibroblast Growth Factor Signal Pathway Inhibits the Growth of Synovial Sarcomas: Potential Application of Signal Inhibitors to MolecularTarget Therapy Ta t s u y a I s hi b e , 1, 2 Tomitaka Nakayama,2 Ta k e s h i O k a m o t o, 1, 2 Tomoki Aoyama,1Koichi Nishijo,1, 2 Kotaro Roberts Shibata,1, 2 Ya s u ko Shim a ,1, 2 Satoshi Nagayama,3 Toyomasa Katagiri,4 Yusuke Nakamura, 4 Takashi Nakamura,2 andJunya Toguchida 1 Abstract Purpose: Synovial sarcoma is a soft tissue sarcoma, the growth regulatory mechanisms of which are unknown.We investigatedthe involvement of fibroblast growth factor (FGF) signals in synovial sarcoma andevaluatedthe therapeutic effect of inhibiting the FGF signal. Experimental Design:The expression of 22 FGF and4 FGF receptor (FGFR) genes in18prima- ry tumors andfive cell lines of synovial sarcoma were analyzedby reverse transcription-PCR. Effects of recombinant FGF2, FGF8, andFGF18 for the activation of mitogen-activatedprotein kinase (MAPK) andthe growth of synovial sarcoma cell lines were analyzed.Growth inhibitory effects of FGFR inhibitors on synovial sarcoma cell lines were investigated in vitro and in vivo. Results: Synovial sarcoma cell lines expressedmultiple FGF genes especially those expressed in neural tissues, among which FGF8 showedgrowth stimulatory effects in all synovial sarcoma cell lines. FGF signals in synovial sarcoma induced the phosphorylation of extracellular signal ^ regulatedkinase (ERK1/2) andp38MAPK but not c-Jun NH 2-terminal kinase. Disruption of the FGF signaling pathway in synovial sarcoma by specific inhibitors of FGFR causedcell cycle ar- rest leading to significant growth inhibition both in vitro and in vivo.Growthinhibitionbythe FGFR inhibitor was associatedwith a down-regulation of phosphorylatedERK1/2 but not p38MAPK, andan ERK kinase inhibitor also showedgrowth inhibitory effects for synovial sar- coma, indicating that the growth stimulatory effect of FGF was transmitted through the ERK1/2. -
Up-Regulation of Fibroblast Growth Factor 19 and Its Receptor Associates with Progression from Fatty Liver to Hepatocellular Carcinoma
www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 32 Research Paper Up-regulation of fibroblast growth factor 19 and its receptor associates with progression from fatty liver to hepatocellular carcinoma Yan Li1,*, Weizhong Zhang2,*, Anne Doughtie1, Guozhen Cui3, Xuanyi Li1, Harshul Pandit1, Yingbin Yang1, Suping Li1, Robert Martin1 1Division of Surgical Oncology, Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, 40202, USA 2Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, 130022, China 3Department of Hepatology, Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China *These authors contributed equally to this work Correspondence to: Yan Li, email: [email protected] Robert Martin, email: [email protected] Keywords: hepatocellular carcinoma, FGF19, FGFR4, cancer stem cell Received: February 08, 2016 Accepted: June 12, 2016 Published: July 21, 2016 ABSTRACT Background: Human fibroblast growth factor 19 (FGF19), its receptor (FGFR4) and EpCAM play an important role in cell proliferation, differentiation, motility, and overexpression have been linked to hepatocellular carcinoma (HCC). The aim of this study was to evaluate the FGF19 signals responsible for the progression of HCC arising from fatty liver. Results: FGF19 level was significantly increased in the HCC patients’ serum compared to non-HCC controls. The IHC results demonstrated significant increases of protein expressions of FGF19, FGFR4 and EpCAM in specimens with fatty liver, NASH, cirrhosis, and HCC compared to healthy liver tissue. There was a significant positive correlation between the protein expressions (FGF19, FGFR4, and EpCAM) and histopathologic changes from FL to HCC. Furthermore, FGF19 was positively correlated with FGFR4 and with EpCAM. -
What, If Anything, Is Rodent Prefrontal Cortex?
Review Cognition and Behavior What, If Anything, Is Rodent Prefrontal Cortex? Mark Laubach,1 Linda M. Amarante,1 Kyra Swanson,1 and Samantha R. White1 https://doi.org/10.1523/ENEURO.0315-18.2018 1Department of Biology and Center for Behavioral Neuroscience, American University, Washington, DC 20016 Visual Abstract Prefrontal cortex (PFC) means different things to different people. In recent years, there has been a major increase in publications on the PFC, especially using mice. However, inconsistencies in the nomenclature and anatomical boundaries of PFC areas has made it difficult for researchers to compare data and interpret findings across species. We conducted a meta-analysis of publications on the PFC of humans and rodents and found dramatic differences in the focus of research on these species. In addition, we compared anatomical terms and criteria across several common rodent brain atlases and found inconsistencies among, and even within, leading atlases. To assess the impact of these issues on the research community, we conducted a survey of established PFC researchers on their use of anatomical terms and found little consensus. We report on the results of the survey and propose an alternative scheme for interpreting data Significance Statement Studies on prefrontal parts of the rodent cerebral cortex have appeared at an increasing rate in recent years. However, there has been no consensus on the terms used to describe the rodent prefrontal cortex (PFC) or how it relates to the PFC of monkeys and humans. To address these issues, we conducted a meta-analysis of publications on the PFC across species, a review of rodent brain atlases, a survey of PFC researchers on anatomic terms, and an analysis of how species differences in the corpus callosum might help relate PFC areas across species. -
FGF21 Acts As a Negative Regulator of Bile Acid Synthesis
237 2 Journal of M M Chen, C Hale et al. FGF21 negative regulator of bile 237:2 139–152 Endocrinology acid metabolism RESEARCH FGF21 acts as a negative regulator of bile acid synthesis Michelle M Chen*, Clarence Hale*, Shanaka Stanislaus, Jing Xu and Murielle M Véniant Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, California, USA Correspondence should be addressed to M M Véniant: [email protected] *(M M Chen and C Hale contributed equally to this work) Abstract Fibroblast growth factor 21 (FGF21) is a potent regulator of glucose and lipid Key Words homeostasis in vivo; its most closely related subfamily member, FGF19, is known to be a f FGF21 critical negative regulator of bile acid synthesis. To delineate whether FGF21 also plays a f Fc-fusion protein functional role in bile acid metabolism, we evaluated the effects of short- and long-term f β-klotho binding exposure to native FGF21 and long-acting FGF21 analogs on hepatic signal transduction, f bile acid gene expression and enterohepatic bile acid levels in primary hepatocytes and in rodent and monkey models. FGF21 acutely induced ERK phosphorylation and inhibited Cyp7A1 mRNA expression in primary hepatocytes and in different rodent models, although less potently than recombinant human FGF19. Long-term administration of FGF21 in mice fed a standard chow diet resulted in a 50–60% decrease in bile acid levels in the liver and small intestines and consequently a 60% reduction of bile acid pool size. In parallel, colonic and fecal bile acid was decreased, whereas fecal cholesterol and fatty acid excretions were elevated. -
FGF Signaling Network in the Gastrointestinal Tract (Review)
163-168 1/6/06 16:12 Page 163 INTERNATIONAL JOURNAL OF ONCOLOGY 29: 163-168, 2006 163 FGF signaling network in the gastrointestinal tract (Review) MASUKO KATOH1 and MASARU KATOH2 1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center Research Institute, Tokyo 104-0045, Japan Received March 29, 2006; Accepted May 2, 2006 Abstract. Fibroblast growth factor (FGF) signals are trans- Contents duced through FGF receptors (FGFRs) and FRS2/FRS3- SHP2 (PTPN11)-GRB2 docking protein complex to SOS- 1. Introduction RAS-RAF-MAPKK-MAPK signaling cascade and GAB1/ 2. FGF family GAB2-PI3K-PDK-AKT/aPKC signaling cascade. The RAS~ 3. Regulation of FGF signaling by WNT MAPK signaling cascade is implicated in cell growth and 4. FGF signaling network in the stomach differentiation, the PI3K~AKT signaling cascade in cell 5. FGF signaling network in the colon survival and cell fate determination, and the PI3K~aPKC 6. Clinical application of FGF signaling cascade in cell polarity control. FGF18, FGF20 and 7. Clinical application of FGF signaling inhibitors SPRY4 are potent targets of the canonical WNT signaling 8. Perspectives pathway in the gastrointestinal tract. SPRY4 is the FGF signaling inhibitor functioning as negative feedback apparatus for the WNT/FGF-dependent epithelial proliferation. 1. Introduction Recombinant FGF7 and FGF20 proteins are applicable for treatment of chemotherapy/radiation-induced mucosal injury, Fibroblast growth factor (FGF) family proteins play key roles while recombinant FGF2 protein and FGF4 expression vector in growth and survival of stem cells during embryogenesis, are applicable for therapeutic angiogenesis. Helicobacter tissues regeneration, and carcinogenesis (1-4). -
Age-Driven Developmental Drift in the Pathogenesis of Idiopathic Pulmonary Fibrosis
BACK TO BASICS INTERSTITIAL LUNG DISEASES | Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis Moisés Selman1, Carlos López-Otín2 and Annie Pardo3 Affiliations: 1Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico city, Mexico. 2Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain. 3Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico city, Mexico. Correspondence: Moisés Selman, Instituto Nacional de Enfermedades Respiratorias, Tlalpan 4502, CP 14080, México DF, México. E-mail: [email protected] ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal disease of unknown aetiology. A growing body of evidence supports that IPF represents an epithelial-driven process characterised by aberrant epithelial cell behaviour, fibroblast/myofibroblast activation and excessive accumulation of extracellular matrix with the subsequent destruction of the lung architecture. The mechanisms involved in the abnormal hyper-activation of the epithelium are unclear, but we propose that recapitulation of pathways and processes critical to embryological development associated with a tissue specific age-related stochastic epigenetic drift may be implicated. These pathways may also contribute to the distinctive behaviour of IPF fibroblasts. Genomic and epigenomic studies have revealed that wingless/ Int, sonic hedgehog and other developmental signalling pathways are reactivated and deregulated in IPF. Moreover, some of these pathways cross-talk with transforming growth factor-β activating a profibrotic feedback loop. The expression pattern of microRNAs is also dysregulated in IPF and exhibits a similar expression profile to embryonic lungs. In addition, senescence, a process usually associated with ageing, which occurs early in alveolar epithelial cells of IPF lungs, likely represents a conserved programmed developmental mechanism. -
Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons
1720 Diabetes Volume 67, September 2018 Targeting FXR and FGF19 to Treat Metabolic Diseases— Lessons Learned From Bariatric Surgery Nadejda Bozadjieva,1 Kristy M. Heppner,2 and Randy J. Seeley1 Diabetes 2018;67:1720–1728 | https://doi.org/10.2337/dbi17-0007 Bariatric surgery procedures, such as Roux-en-Y gastric diabetes (T2D) (1). Clinical data demonstrate that patients bypass (RYGB) and vertical sleeve gastrectomy (VSG), who have undergone RYGB or VSG experience increased are the most effective interventions available for sus- satiety and major glycemic improvements prior to significant tained weight loss and improved glucose metabolism. weight loss, suggesting that metabolic changes as result Bariatric surgery alters the enterohepatic bile acid cir- of these surgeries are essential to the weight loss and glycemic culation, resulting in increased plasma bile levels as well benefits (2). Therefore, it is important to identify the medi- as altered bile acid composition. While it remains unclear ators that play a role in promoting the benefits of these why both VSG and RYGB can alter bile acids, it is possible surgeries with the goal of improving current surgical that these changes are important mediators of the approaches and developing less invasive therapies that effects of surgery. Moreover, a molecular target of bile harness these effects. acid synthesis, the bile acid–activated transcription fac- The effectiveness of bariatric surgery to reduce body tor FXR, is essential for the positive effects of VSG on weight and improve glucose metabolism highlights the weight loss and glycemic control. This Perspective examines the relationship and sequence of events be- important role the gastrointestinal tract plays in regulat- tween altered bile acid levels and composition, FXR ing a wide range of metabolic processes. -
The Virtual Mouse Brain: a Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics
bioRxiv preprint doi: https://doi.org/10.1101/123406; this version posted April 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Virtual Mouse Brain: a computational neuroinformatics platform to study whole mouse brain dynamics Francesca Melozzi, Marmaduke M. Woodman, Viktor K. Jirsa∗, Christophe Bernard∗ Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France ∗equally contributing last authors Correspondence author: [email protected] Abstract Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain’s structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain to whole mouse brain network modeling based on individual diffusion Magnetic Resonance Imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. The Virtual Mouse Brain enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions. Introduction -
The Roles of Fgfs in the Early Development of Vertebrate Limbs
Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The roles of FGFs in the early development of vertebrate limbs Gail R. Martin1 Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, California 94143–0452 USA ‘‘Fibroblast growth factor’’ (FGF) was first identified 25 tion of two closely related proteins—acidic FGF and ba- years ago as a mitogenic activity in pituitary extracts sic FGF (now designated FGF1 and FGF2, respectively). (Armelin 1973; Gospodarowicz 1974). This modest ob- With the advent of gene isolation techniques it became servation subsequently led to the identification of a large apparent that the Fgf1 and Fgf2 genes are members of a family of proteins that affect cell proliferation, differen- large family, now known to be comprised of at least 17 tiation, survival, and motility (for review, see Basilico genes, Fgf1–Fgf17, in mammals (see Coulier et al. 1997; and Moscatelli 1992; Baird 1994). Recently, evidence has McWhirter et al. 1997; Hoshikawa et al. 1998; Miyake been accumulating that specific members of the FGF 1998). At least five of these genes are expressed in the family function as key intercellular signaling molecules developing limb (see Table 1). The proteins encoded by in embryogenesis (for review, see Goldfarb 1996). Indeed, the 17 different FGF genes range from 155 to 268 amino it may be no exaggeration to say that, in conjunction acid residues in length, and each contains a conserved with the members of a small number of other signaling ‘‘core’’ sequence of ∼120 amino acids that confers a com- molecule families [including WNT (Parr and McMahon mon tertiary structure and the ability to bind heparin or 1994), Hedgehog (HH) (Hammerschmidt et al.