Markers of Liver Regeneration—The Role of Growth Factors and Cytokines

Total Page:16

File Type:pdf, Size:1020Kb

Markers of Liver Regeneration—The Role of Growth Factors and Cytokines Hoffmann et al. BMC Surgery (2020) 20:31 https://doi.org/10.1186/s12893-019-0664-8 RESEARCH ARTICLE Open Access Markers of liver regeneration—the role of growth factors and cytokines: a systematic review Katrin Hoffmann*†, Alexander Johannes Nagel†, Kazukata Tanabe, Juri Fuchs, Karolin Dehlke, Omid Ghamarnejad, Anastasia Lemekhova and Arianeb Mehrabi Abstract Background: Post-hepatectomy liver failure contributes significantly to postoperative mortality after liver resection. The prediction of the individual risk for liver failure is challenging. This review aimed to provide an overview of cytokine and growth factor triggered signaling pathways involved in liver regeneration after resection. Methods: MEDLINE and Cochrane databases were searched without language restrictions for articles from the time of inception of the databases till March 2019. All studies with comparative data on the effect of cytokines and growth factors on liver regeneration in animals and humans were included. Results: Overall 3.353 articles comprising 40 studies involving 1.498 patients and 101 animal studies were identified and met the inclusion criteria. All included trials on humans were retrospective cohort/observational studies. There was substantial heterogeneity across all included studies with respect to the analyzed cytokines and growth factors and the described endpoints. Conclusion: High-level evidence on serial measurements of growth factors and cytokines in blood samples used to predict liver regeneration after resection is still lacking. To address the heterogeneity of patients and potential markers, high throughput serial analyses may offer a method to predict an individual’s regenerative potential in the future. Keywords: Liver regeneration, Biochemical markers, Post-hepatectomy liver failure , Cytokines, Growth factors Introduction operative assessments and careful indications, PHLF is a Post-hepatectomy liver failure (PHLF) is a serious com- major contributor to mortality rates of up to 5% after plication after liver resection and the incidence varies liver resection [7, 8]. Various patient- (comorbidities, from 1.2 to 32% [1–4]. PHLF is defined as functional de- age, and previous chemotherapy), parenchyma- (cirrho- terioration of the liver associated with an increased sis, fibrosis, cholestasis, and steatosis), and surgery- international normalized ratio (INR) and hyperbilirubi- related factors (extent of resection, blood loss, and ische- nemia on, or after, the fifth postoperative day [1]. There mia reperfusion injury) affect the regenerative capacity are recommendations that PHLF could be prevented if of the FLR [9, 10]. However, to predict the adequate size the future liver remnant (FLR) is not smaller than 20% and individual regenerative capacity of the FLR remains of the original liver size in patients with normal liver a significant challenge for clinicians, surgeons, and scien- function and 30–40% in patients with steatohepatitis or tists. The current PHLF therapy focuses on symptomatic cirrhosis [5, 6]. Nevertheless, even with adequate pre- and supportive treatment of the progredient dysregula- tion in the hepato-organic axis. However, the ultima ra- tio for PHLF is liver transplantation if patients fulfill * Correspondence: [email protected] † listing regulations. This poses a marked morbidity and Katrin Hoffmann and Alexander Johannes Nagel contributed equally to this work. mortality risk for patients, and surgeons and clinicians Department of General, Visceral and Transplant Surgery, Ruprecht Karls should aim to ensure that postoperative liver failure does University, Im Neuenheimer Feld, 110 69120 Heidelberg, Germany © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Hoffmann et al. BMC Surgery (2020) 20:31 Page 2 of 15 not occur. In clinical practice, there is a high variety of additional studies. Non-peer reviewed studies were morphological and biochemical assessment methods for excluded. qualitative (indocyanine green retention rates; LiMAx- Information sources: The MEDLINE and Cochrane Li- tests, MELD or CHILD-PUGH scores) and quantitative brary databases were searched for relevant studies; last (computed tomography liver volumetry, analysis of biliru- search was conducted in April 2019. bin, transaminases, albumin) predictions for liver function Search: Search strategies included the following Medical in the context of liver resection [11]. However, non- Subject Headings (MeSH) in various combinations: liver invasive individualized identification of valid predictive regeneration, liver resection, partial hepatectomy, major and prognostic biomarkers of PHLF based on the cyto- liver resection, hemi-hepatectomy, post-hepatectomy liver kines and hepatic growth factors in the liquid-biopsy sam- failure, cytokine, growth factor, hepatocyte growth factor ples might be a novel approach in the peri-operative (HGF), tumor necrosis factor alpha (TNF-α), interleukin diagnosis and monitoring of regeneration on a molecular 6, epidermal growth factor (EGF), insulin-like growth fac- basis. The growing subgroup of high-risk patients with tor (IGF), vascular endothelial growth factor (VEGF), hepatic steatosis, steatohepatitis, or sinusoidal obstruction fibroblast growth factors (FGFs), angiopoietin, platelet- syndrome, after neo-adjuvant chemotherapy, in particular, derived growth factor (PDGF), proliferating cell nuclear would benefit from markers that indicate the livers’ indi- antigen (PCNA), Ki-67, and micro-RNA (miRNA). vidual abilities to cope with extended surgical resection Study selection: Two authors (AN and YT) independ- [12]. Since liver regeneration is a well-orchestrated process ently screened the titles and abstracts of all retrieved ref- controlled by various cytokines and growth factors, these erences and obtained full-text articles in cases of might also be promising targets for modulation. Despite potential eligibility. Full texts of all animal studies and the growing knowledge of regeneration-associated signal- studies including patients that provided data on cyto- ing pathways and regulatory mediators in rodents, conver- kine- and growth factor- mediated regeneration pro- sion of the process into humans and clinical practice has cesses were analyzed according to the eligibility criteria. just begun [13]. A third author (KH) was consulted in case of disagree- Therefore, the purpose of this review was to systemat- ment. Three thousand three hundred fifty- three articles ically summarize current evidence on the cytokine- and were identified. After excluding duplicates (n = 294) and growth factor- mediated signaling pathways in liver re- non-English studies (n = 43), 1172 animal studies and generation for the benefit of clinicians and surgeons, and 1844 human studies were analyzed. Ultimately, 40 stud- to discuss their suitability for individual mediator-based ies including 1498 patients were included in this review regeneration predictions in patients. (Fig. 1). Studies were included based on predefined se- lection criteria: relevant information regarding measure- Methods ments of available markers; clearly defined outcome Protocol and registration: there was no review protocol parameters (such as PHLF according to International and the study was not registered. Study Group of Liver Surgery definitions); regeneration Eligibility criteria: inclusion of the studies was based measured by clinically relevant methods such as com- on the Population, Intervention, Comparison, Outcome puterized tomography scans, magnetic resonance im- and Study design (PICOS) strategy with the following in- aging, or well-established laboratory methods such as clusion criteria [14]: cytology including any standard staining techniques (i.e. hematoxylin and eosin, Papanicolaou); molecular detec- Population: all patients undergoing liver resection tion methods (with or without immunocytochemistry); Intervention: reports of measurements of cytokines any form of reverse-transcriptase polymerase chain reac- and growth factors in the context of PHLF tion ([RT]-PCR) tests; and protein analyses which may Comparator: no measurements of cytokines and include Western Blots or Fluorescence-activated cell growth factors, sorting. Outcome: association with PHLF Studies were excluded if the language was not English, Study design: any study except study protocols, not published in peer-reviewed journals, and if the letters, and common overviews. above-mentioned definitions of cytology or molecular diagnostics were not met. However, human trials in- Report characteristics: There were no restrictions re- cluded no randomized controlled trials, no multi-center garding languages, years of publication, or publication trials, 37 prospective single-center trials, and 3 retro- status in the initial search. Original articles, case reports, spective analyses. Case numbers were < 50 in the major- clinical trials, reviews, meta-analyses, and systematic re- ity of trials. views were all included.
Recommended publications
  • FGF Signaling Network in the Gastrointestinal Tract (Review)
    163-168 1/6/06 16:12 Page 163 INTERNATIONAL JOURNAL OF ONCOLOGY 29: 163-168, 2006 163 FGF signaling network in the gastrointestinal tract (Review) MASUKO KATOH1 and MASARU KATOH2 1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center Research Institute, Tokyo 104-0045, Japan Received March 29, 2006; Accepted May 2, 2006 Abstract. Fibroblast growth factor (FGF) signals are trans- Contents duced through FGF receptors (FGFRs) and FRS2/FRS3- SHP2 (PTPN11)-GRB2 docking protein complex to SOS- 1. Introduction RAS-RAF-MAPKK-MAPK signaling cascade and GAB1/ 2. FGF family GAB2-PI3K-PDK-AKT/aPKC signaling cascade. The RAS~ 3. Regulation of FGF signaling by WNT MAPK signaling cascade is implicated in cell growth and 4. FGF signaling network in the stomach differentiation, the PI3K~AKT signaling cascade in cell 5. FGF signaling network in the colon survival and cell fate determination, and the PI3K~aPKC 6. Clinical application of FGF signaling cascade in cell polarity control. FGF18, FGF20 and 7. Clinical application of FGF signaling inhibitors SPRY4 are potent targets of the canonical WNT signaling 8. Perspectives pathway in the gastrointestinal tract. SPRY4 is the FGF signaling inhibitor functioning as negative feedback apparatus for the WNT/FGF-dependent epithelial proliferation. 1. Introduction Recombinant FGF7 and FGF20 proteins are applicable for treatment of chemotherapy/radiation-induced mucosal injury, Fibroblast growth factor (FGF) family proteins play key roles while recombinant FGF2 protein and FGF4 expression vector in growth and survival of stem cells during embryogenesis, are applicable for therapeutic angiogenesis. Helicobacter tissues regeneration, and carcinogenesis (1-4).
    [Show full text]
  • Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons
    1720 Diabetes Volume 67, September 2018 Targeting FXR and FGF19 to Treat Metabolic Diseases— Lessons Learned From Bariatric Surgery Nadejda Bozadjieva,1 Kristy M. Heppner,2 and Randy J. Seeley1 Diabetes 2018;67:1720–1728 | https://doi.org/10.2337/dbi17-0007 Bariatric surgery procedures, such as Roux-en-Y gastric diabetes (T2D) (1). Clinical data demonstrate that patients bypass (RYGB) and vertical sleeve gastrectomy (VSG), who have undergone RYGB or VSG experience increased are the most effective interventions available for sus- satiety and major glycemic improvements prior to significant tained weight loss and improved glucose metabolism. weight loss, suggesting that metabolic changes as result Bariatric surgery alters the enterohepatic bile acid cir- of these surgeries are essential to the weight loss and glycemic culation, resulting in increased plasma bile levels as well benefits (2). Therefore, it is important to identify the medi- as altered bile acid composition. While it remains unclear ators that play a role in promoting the benefits of these why both VSG and RYGB can alter bile acids, it is possible surgeries with the goal of improving current surgical that these changes are important mediators of the approaches and developing less invasive therapies that effects of surgery. Moreover, a molecular target of bile harness these effects. acid synthesis, the bile acid–activated transcription fac- The effectiveness of bariatric surgery to reduce body tor FXR, is essential for the positive effects of VSG on weight and improve glucose metabolism highlights the weight loss and glycemic control. This Perspective examines the relationship and sequence of events be- important role the gastrointestinal tract plays in regulat- tween altered bile acid levels and composition, FXR ing a wide range of metabolic processes.
    [Show full text]
  • Fgf15 Neurons of the Dorsomedial Hypothalamus Control Glucagon Secretion and Hepatic Gluconeogenesis
    Diabetes Volume 70, July 2021 1443 Fgf15 Neurons of the Dorsomedial Hypothalamus Control Glucagon Secretion and Hepatic Gluconeogenesis Alexandre Picard, Salima Metref, David Tarussio, Wanda Dolci, Xavier Berney, Sophie Croizier, Gwena€el Labouebe, and Bernard Thorens Diabetes 2021;70:1443–1457 | https://doi.org/10.2337/db20-1121 The counterregulatory response to hypoglycemia is an between the brain and these peripheral tissues is ensured, essential survival function. It is controlled by an inte- in large part, by the autonomic nervous system. This is grated network of glucose-responsive neurons, which activated in response to changes in the concentration of trigger endogenous glucose production to restore nor- circulating hormones such as insulin, leptin, or ghrelin moglycemia. The complexity of this glucoregulatory and of nutrients such as glucose and lipids. Glucose-re- network is, however, only partly characterized. In a ge- sponsive neurons, which increase their firing activity in netic screen of a panel of recombinant inbred mice we response to hyperglycemia (glucose-excited [GE] neurons) METABOLISM fi previously identi ed Fgf15, expressed in neurons of the or to hypoglycemia (glucose-inhibited [GI] neurons) (1–3), dorsomedial hypothalamus (DMH), as a negative regula- are thought to couple fluctuations in blood glucose con- tor of glucagon secretion. Here, we report on the gener- centrations to the regulation of sympathetic or parasym- ation of Fgf15CretdTomato mice and their use to further pathetic nerve activity. characterize these neurons. We show that they were A major glucoregulatory role of the central nervous sys- glutamatergic and comprised glucose-inhibited and tem is to maintain glycemic levels at a minimum value of glucose-excited neurons.
    [Show full text]
  • FGF19/SOCE/Nfatc2 Signaling Circuit Facilitates the Self
    1 FGF19/SOCE/NFATc2 signaling circuit facilitates the self- 2 renewal of liver cancer stem cells 3 4 Jingchun Wang 1†, Huakan Zhao2†*, Lu Zheng3†, Yu Zhou2, Lei Wu2, Yanquan Xu1, Xiao 5 Zhang1, Guifang Yan2, Halei Sheng1, Rong Xin1, Lu Jiang1, Juan Lei2, Jiangang Zhang1, Yu 6 Chen2, Jin Peng1, Qian Chen1, Shuai Yang1, Kun Yu1, Dingshan Li1, Qichao Xie4*, 7 Yongsheng Li1,2* 8 9 1Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, 10 Chongqing 400037, China. 11 2Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 12 400030, China. 13 3Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, 14 Chongqing 400037, China. 15 4Department of Oncology, The Third Affiliated Hospital, Chongqing Medical University, 16 Chongqing 401120, China 17 18 †These authors contributed equal to this work. 19 *Correspondence ([email protected]) (H.Z.), ([email protected]) (Q.X.), 20 ([email protected]) (Y.L.). 21 22 Running title: FGF19-NFATc2 signaling promotes self-renewal of LCSCs. 23 Keywords: FGF19; Self-renewal; SOCE; NFATc2, LCSCs 24 1 25 Abstract 26 Background & Aims: Liver cancer stem cells (LCSCs) mediate therapeutic resistance and 27 correlate with poor outcomes in patients with hepatocellular carcinoma (HCC). Fibroblast 28 growth factor (FGF)-19 is a crucial oncogenic driver gene in HCC and correlates with poor 29 prognosis. However, whether FGF19 signaling regulates the self-renewal of LCSCs is 30 unknown. 31 Methods: LCSCs were enriched by serum-free suspension. Self-renewal of LCSCs were 32 characterized by sphere formation assay, clonogenicity assay, sorafenib resistance assay and 33 tumorigenic potential assays.
    [Show full text]
  • 51338269.Pdf
    UNIVERSITÉ DE SHERBROOKE Dérégulation de l’axe endocrine FGF15/FGF4 lors d’infection du système entérohépatique. Par Guillaume Romain, B. Sc. Département de Microbiologie et Infectiologie Laboratoire d’Alfredo Menendez Mémoire présenté à la Faculté de médecine et des sciences de la santé en vue de l’obtention du grade de Maître ès sciences (M.Sc) en microbiologie Sherbrooke, Québec, Canada Juillet 2014 Membre du jury Pr. Alfredo Menendez (Ph. D.), Département de Microbiologie et Infectiologie Pr. Louis-Charles Fortier (Ph. D.), Département de Microbiologie et Infectiologie Pre. Julie Carrier (M. D.), Département de médecine, service de gastro-entérologie ii Résumé Dérégulation de l’axe endocrine FGF15/FGF4 lors d’infection du système entérohépatique. Par Guillaume Romain Département de microbiologie et infectiologie Mémoire présentée à la Faculté de médecine et des sciences de la santé Faculté de médecine et sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4 Fibroblast Growth Factor 19 (FGF19 chez l’humain ; FGF15 chez la souris) est un régulateur central du métabolisme hépatique. Cette molécule a un impact important au niveau de la différentiation neurologique et de l’oreille interne au stade fœtal. À l’âge adulte, le patron d’expression est restreint au système gastro-intestinal. Contrairement aux autres membres de la superfamille des FGFs, FGF19/15 agit de manière endocrine car il n’est pas retenu par la matrice extracellulaire et peut rejoindre la circulation sanguine. L’expression de FGF19/15 est induite par les acides biliaires au niveau de l’intestin grêle, plus précisément l’iléon. Les acides biliaires lient le récepteur nucléaire Farnesoid-X- Receptor (FXR) qui peut ensuite s’hétérodimériser avec Retinoid-X-Receptor (RXR) pour se lier au promoteur de FGF19/15, ce qui enclenche son expression.
    [Show full text]
  • Expression of Fgfs During Early Mouse Tongue Development
    Gene Expression Patterns 20 (2016) 81e87 Contents lists available at ScienceDirect Gene Expression Patterns journal homepage: http://www.elsevier.com/locate/gep Expression of FGFs during early mouse tongue development * Wen Du a, b, Jan Prochazka b, c, Michaela Prochazkova b, c, Ophir D. Klein b, d, a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China b Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA c Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic d Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA article info abstract Article history: The fibroblast growth factors (FGFs) constitute one of the largest growth factor families, and several Received 29 September 2015 ligands and receptors in this family are known to play critical roles during tongue development. In order Received in revised form to provide a comprehensive foundation for research into the role of FGFs during the process of tongue 13 December 2015 formation, we measured the transcript levels by quantitative PCR and mapped the expression patterns by Accepted 29 December 2015 in situ hybridization of all 22 Fgfs during mouse tongue development between embryonic days (E) 11.5 Available online 31 December 2015 and E14.5. During this period, Fgf5, Fgf6, Fgf7, Fgf9, Fgf10, Fgf13, Fgf15, Fgf16 and Fgf18 could all be detected with various intensities in the mesenchyme, whereas Fgf1 and Fgf2 were expressed in both the Keywords: Tongue epithelium and the mesenchyme.
    [Show full text]
  • Original Article the Expression Pattern of Fibroblast Growth Factor 10 and Its Receptors During Buffalo Follicular Development
    Int J Clin Exp Pathol 2018;11(10):4934-4941 www.ijcep.com /ISSN:1936-2625/IJCEP0083076 Original Article The expression pattern of fibroblast growth factor 10 and its receptors during buffalo follicular development Shanshan Du1,2, Xiaohua Liu1, Kai Deng1, Wenting Zhou1, Fenghua Lu1, Deshun Shi1 1Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China; 2Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China Received July 24, 2018; Accepted August 25, 2018; Epub October 1, 2018; Published October 15, 2018 Abstract: This study explored the expression and localization of fibroblast growth factor (FGF) 10 and its receptors (FGF receptor 1 and FGF receptor 2, FGFR1 and FGFR2) during buffalo follicular development, laying a founda- tion for the further study of FGF signaling pathways in follicular development and oogenesis. Granulosa cells and ovarian follicles were extracted from buffalo ovaries, and in vitro maturation culture of oocytes was conducted. Immunohistochemistry was performed to detect the expression of FGF10 and its receptors FGFR1 and FGFR2. In addition, immunofluorescence staining was used to detect the expression of FGF10 in buffalo cumulus oocyte complexes (COCs). Moreover, mRNA levels of FGF10, sub-types of FGFR1 and FGFR2 (FGFR1b and FGFR2b) were measured using qRT-PCR. Immunohistochemistry results showed that FGF10 and its receptors FGFR1 and FGFR2 appeared to have positive responses in buffalo primordial follicles, primary follicles, secondary follicles, and mature follicle oocytes and granulosa cells, and mature follicle basal membrane cells.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Rat Growth Factors Cat. no. 330231 PARN-041ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Rat Growth Factors RT² Profiler PCR Array profiles the expression of 84 genes related to growth factors. Growth factors play a vital role in various normal biological processes such as embryogenesis, wound healing and inflammation. This array contains angiogenic growth factors and regulators of apoptosis. Genes involved in cell differentiation are included as well. Also represented are genes related to embryonic development as well as genes involved in tissue-specific development. Using real-time PCR, you can easily and reliably analyze expression of a focused panel of genes related to the growth factors with this array.
    [Show full text]
  • Dose-Dependent Functions of Fgf8 in Regulating Telencephalic Patterning
    RESEARCH ARTICLE 1831 Development 133, 1831-1844 (2006) doi:10.1242/dev.02324 Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers Elaine E. Storm1,*,†, Sonia Garel2,*,‡, Ugo Borello2,*, Jean M. Hebert3, Salvador Martinez4, Susan K. McConnell5, Gail R. Martin2 and John L. R. Rubenstein2,§ Mouse embryos bearing hypomorphic and conditional null Fgf8 mutations have small and abnormally patterned telencephalons. We provide evidence that the hypoplasia results from decreased Foxg1 expression, reduced cell proliferation and increased cell death. In addition, alterations in the expression of Bmp4, Wnt8b, Nkx2.1 and Shh are associated with abnormal development of dorsal and ventral structures. Furthermore, nonlinear effects of Fgf8 gene dose on the expression of a subset of genes, including Bmp4 and Msx1, correlate with a holoprosencephaly phenotype and with the nonlinear expression of transcription factors that regulate neocortical patterning. These data suggest that Fgf8 functions to coordinate multiple patterning centers, and that modifications in the relative strength of FGF signaling can have profound effects on the relative size and nature of telencephalic subdivisions. KEY WORDS: Fgf8, Forebrain, Patterning, Mouse INTRODUCTION function intracellularly, such as sprouty or SEF proteins, to repress Secreted molecules produced by patterning centers regulate signaling (Minowada et al., 1999; Lin et al., 2002; Kim and Bar- embryonic morphogenesis. Multiple patterning centers are Sagi, 2004). juxtaposed in developing tissues to provide qualitatively distinct Previous studies support a model in which Fgf8 expression in the signals that regulate regional identity and growth. In the embryonic mouse anterior neural ridge (the anlage of the telencephalic rostral telencephalon, at least three patterning centers extend from the patterning center) positively regulates the expression of Foxg1 midline (Crossley et al., 2001; Grove and Fukuchi-Shimogori, 2003; (Shimamura and Rubenstein, 1997; Ye et al., 1998).
    [Show full text]
  • HSV-1 Triggers Paracrine Fibroblast Growth Factor Response from Cortical
    Hensel et al. Journal of Neuroinflammation (2019) 16:248 https://doi.org/10.1186/s12974-019-1647-5 RESEARCH Open Access HSV-1 triggers paracrine fibroblast growth factor response from cortical brain cells via immediate-early protein ICP0 Niko Hensel1,2,3†, Verena Raker1,2,3†, Benjamin Förthmann1,2, Nora Tula Detering1,2,3, Sabrina Kubinski1,2,3, Anna Buch2,4,5, Georgios Katzilieris-Petras6, Julia Spanier2,7, Viktoria Gudi8, Sylvia Wagenknecht9, Verena Kopfnagel9, Thomas Andreas Werfel9, Martin Stangel2,3,8, Andreas Beineke3,10, Ulrich Kalinke2,3,7, Søren Riis Paludan6,11, Beate Sodeik2,3,4,5 and Peter Claus1,2,3* Abstract Background: Herpes simplex virus-1 (HSV-1) infections of the central nervous system (CNS) can result in HSV-1 encephalitis (HSE) which is characterized by severe brain damage and long-term disabilities. Different cell types including neurons and astrocytes become infected in the course of an HSE which leads to an activation of glial cells. Activated glial cells change their neurotrophic factor profile and modulate inflammation and repair. The superfamily of fibroblast growth factors (FGFs) is one of the largest family of neurotrophic factors comprising 22 ligands. FGFs induce pro-survival signaling in neurons and an anti-inflammatory answer in glial cells thereby providing a coordinated tissue response which favors repair over inflammation. Here, we hypothesize that FGF expression is altered in HSV-1-infected CNS cells. Method: We employed primary murine cortical cultures comprising a mixed cell population of astrocytes, neurons, microglia, and oligodendrocytes. Astrocyte reactivity was morphometrically monitored by an automated image analysis algorithm as well as by analyses of A1/A2 marker expression.
    [Show full text]
  • Hedgehog–FGF Signaling Axis Patterns Anterior Mesoderm During Gastrulation
    Hedgehog–FGF signaling axis patterns anterior mesoderm during gastrulation Alexander Guzzettaa,b,c, Mervenaz Koskaa,b,c, Megan Rowtona,b,c, Kaelan R. Sullivand,e,f, Jessica Jacobs-Lia,b,c, Junghun Kweona,b,c, Hunter Hidalgoa,b,c, Heather Eckartg, Andrew D. Hoffmanna,b,c, Rebecca Backg, Stephanie Lozanog, Anne M. Moond,e,f,1, Anindita Basug,h,1, Michael Bressani,1, Sebastian Pottc,1, and Ivan P. Moskowitza,b,c,1,2 aDepartment of Pediatrics, University of Chicago, Chicago, IL 60637; bDepartment of Pathology, University of Chicago, Chicago, IL 60637; cDepartment of Human Genetics, University of Chicago, Chicago, IL 60637; dDepartment of Molecular and Functional Genomics, Geisinger Clinic, Weis Center for Research, Danville, PA 17822; eDepartment of Pediatrics, University of Utah, Salt Lake City, UT 84112; fDepartment of Human Genetics, University of Utah, Salt Lake City, UT 84112; gDepartment of Medicine, University of Chicago, Chicago, IL 60637; hCenter for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439; and iDepartment of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599 Edited by Janet Rossant, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada, and approved May 1, 2020 (received for review August 20, 2019) The mechanisms used by embryos to pattern tissues across their and truncation of GLI2/3 proteins to repressive isoforms GLI2R/ axes has fascinated developmental biologists since the founding 3R, repressing Hh target gene transcription (13, 14). Hh signaling of embryology. Here, using single-cell technology, we interro- participates in the patterning of a diverse array of structures in- gate complex patterning defects and define a Hedgehog (Hh)– cluding the Drosophila wing disk (15), cnidarian pharyngeal mus- fibroblast growth factor (FGF) signaling axis required for anterior culature (16), tetrapod forelimb (17), vertebrate central nervous mesoderm lineage development during gastrulation.
    [Show full text]
  • Regulatory Role of Fibroblast Growth Factors on Hematopoietic Stem Cells Yeoh, Joyce Siew Gaik
    University of Groningen Regulatory role of fibroblast growth factors on hematopoietic stem cells Yeoh, Joyce Siew Gaik IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Yeoh, J. S. G. (2007). Regulatory role of fibroblast growth factors on hematopoietic stem cells. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 23-09-2021 CHAPTER 1 Fibroblast growth factors as regulators of stem cell self renewal and aging Joyce S. G. Yeoh and Gerald de Haan Department of Cell Biology, Section Stem Cell Biology, University Medical Centre Groningen, The Netherlands Submitted in Mechanisms of Ageing and Development, in press 17 Fibroblast growth factors regulates stem cell self renewal and aging Abstract Organ and tissue dysfunction which is readily observable during aging results from a loss of cellular homeostasis and reduced stem cell self renewal.
    [Show full text]