SCIENCE CHINA Roles of Intracellular Fibroblast Growth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fog2 Is Critical for Cardiac Function and Maintenance of Coronary Vasculature in the Adult Mouse Heart
Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart Bin Zhou, … , Sergei G. Tevosian, William T. Pu J Clin Invest. 2009;119(6):1462-1476. https://doi.org/10.1172/JCI38723. Research Article Cardiology Aberrant transcriptional regulation contributes to the pathogenesis of both congenital and adult forms of heart disease. While the transcriptional regulator friend of Gata 2 (FOG2) is known to be essential for heart morphogenesis and coronary development, its tissue-specific function has not been previously investigated. Additionally, little is known about the role of FOG2 in the adult heart. Here we used spatiotemporally regulated inactivation of Fog2 to delineate its function in both the embryonic and adult mouse heart. Early cardiomyocyte-restricted loss of Fog2 recapitulated the cardiac and coronary defects of the Fog2 germline murine knockouts. Later cardiomyocyte-restricted loss ofF og2 (Fog2MC) did not result in defects in cardiac structure or coronary vessel formation. However, Fog2MC adult mice had severely depressed ventricular function and died at 8–14 weeks. Fog2MC adult hearts displayed a paucity of coronary vessels, associated with myocardial hypoxia, increased cardiomyocyte apoptosis, and cardiac fibrosis. Induced inactivation of Fog2 in the adult mouse heart resulted in similar phenotypes, as did ablation of the FOG2 interaction with the transcription factor GATA4. Loss of the FOG2 or FOG2-GATA4 interaction altered the expression of a panel of angiogenesis-related genes. Collectively, our data indicate that FOG2 regulates adult heart function and coronary angiogenesis. Find the latest version: https://jci.me/38723/pdf Research article Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart Bin Zhou,1,2 Qing Ma,1 Sek Won Kong,1 Yongwu Hu,1,3 Patrick H. -
ARTICLES Fibroblast Growth Factors 1, 2, 17, and 19 Are The
0031-3998/07/6103-0267 PEDIATRIC RESEARCH Vol. 61, No. 3, 2007 Copyright © 2007 International Pediatric Research Foundation, Inc. Printed in U.S.A. ARTICLES Fibroblast Growth Factors 1, 2, 17, and 19 Are the Predominant FGF Ligands Expressed in Human Fetal Growth Plate Cartilage PAVEL KREJCI, DEBORAH KRAKOW, PERTCHOUI B. MEKIKIAN, AND WILLIAM R. WILCOX Medical Genetics Institute [P.K., D.K., P.B.M., W.R.W.], Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Obstetrics and Gynecology [D.K.] and Department of Pediatrics [W.R.W.], UCLA School of Medicine, Los Angeles, California 90095 ABSTRACT: Fibroblast growth factors (FGF) regulate bone growth, (G380R) or TD (K650E) mutations (4–6). When expressed at but their expression in human cartilage is unclear. Here, we deter- physiologic levels, FGFR3-G380R required, like its wild-type mined the expression of entire FGF family in human fetal growth counterpart, ligand for activation (7). Similarly, in vitro cul- plate cartilage. Using reverse transcriptase PCR, the transcripts for tivated human TD chondrocytes as well as chondrocytes FGF1, 2, 5, 8–14, 16–19, and 21 were found. However, only FGF1, isolated from Fgfr3-K644M mice had an identical time course 2, 17, and 19 were detectable at the protein level. By immunohisto- of Fgfr3 activation compared with wild-type chondrocytes and chemistry, FGF17 and 19 were uniformly expressed within the showed no receptor activation in the absence of ligand (8,9). growth plate. In contrast, FGF1 was found only in proliferating and hypertrophic chondrocytes whereas FGF2 localized predominantly to Despite the importance of the FGF ligand for activation of the resting and proliferating cartilage. -
Disruption of Fibroblast Growth Factor Signal
Cancer Therapy: Preclinical Disruption of Fibroblast Growth Factor Signal Pathway Inhibits the Growth of Synovial Sarcomas: Potential Application of Signal Inhibitors to MolecularTarget Therapy Ta t s u y a I s hi b e , 1, 2 Tomitaka Nakayama,2 Ta k e s h i O k a m o t o, 1, 2 Tomoki Aoyama,1Koichi Nishijo,1, 2 Kotaro Roberts Shibata,1, 2 Ya s u ko Shim a ,1, 2 Satoshi Nagayama,3 Toyomasa Katagiri,4 Yusuke Nakamura, 4 Takashi Nakamura,2 andJunya Toguchida 1 Abstract Purpose: Synovial sarcoma is a soft tissue sarcoma, the growth regulatory mechanisms of which are unknown.We investigatedthe involvement of fibroblast growth factor (FGF) signals in synovial sarcoma andevaluatedthe therapeutic effect of inhibiting the FGF signal. Experimental Design:The expression of 22 FGF and4 FGF receptor (FGFR) genes in18prima- ry tumors andfive cell lines of synovial sarcoma were analyzedby reverse transcription-PCR. Effects of recombinant FGF2, FGF8, andFGF18 for the activation of mitogen-activatedprotein kinase (MAPK) andthe growth of synovial sarcoma cell lines were analyzed.Growth inhibitory effects of FGFR inhibitors on synovial sarcoma cell lines were investigated in vitro and in vivo. Results: Synovial sarcoma cell lines expressedmultiple FGF genes especially those expressed in neural tissues, among which FGF8 showedgrowth stimulatory effects in all synovial sarcoma cell lines. FGF signals in synovial sarcoma induced the phosphorylation of extracellular signal ^ regulatedkinase (ERK1/2) andp38MAPK but not c-Jun NH 2-terminal kinase. Disruption of the FGF signaling pathway in synovial sarcoma by specific inhibitors of FGFR causedcell cycle ar- rest leading to significant growth inhibition both in vitro and in vivo.Growthinhibitionbythe FGFR inhibitor was associatedwith a down-regulation of phosphorylatedERK1/2 but not p38MAPK, andan ERK kinase inhibitor also showedgrowth inhibitory effects for synovial sar- coma, indicating that the growth stimulatory effect of FGF was transmitted through the ERK1/2. -
FGF14 Regulates Presynaptic Ca2+ Channels and Synaptic Transmission
Cell Reports Article FGF14 Regulates Presynaptic Ca2+ Channels and Synaptic Transmission Haidun Yan,1,3 Juan L. Pablo,2,3 and Geoffrey S. Pitt1,2,3,* 1Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA 2Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA 3Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.celrep.2013.06.012 This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. SUMMARY data pinpointed FGF14 as the locus for spinocerebellar ataxia 27 (SCA27). Fibroblast growth factor homologous factors (FHFs) Focus on FHF regulation of neuronal excitability began when are not growth factors, but instead bind to voltage- Fgf14–/– mice showed ataxia (Wang et al., 2002), providing + gated Na channels (NaV) and regulate their function. a basis for exploring the implications of a linkage analysis that Mutations in FGF14, an FHF that is the locus for identified a F150S missense mutation in a ‘‘b’’ splice variant of F150S F145S spinocerebellar ataxia 27 (SCA27), are believed to FGF14 (FGF14b ; termed FGF14 in some studies that be pathogenic because of a dominant-negative used numbering based on the alternatively spliced FGF14a variant) as the etiology of the autosomal-dominant SCA27 in reduction of Na currents in cerebellar granule cells. V an extended Dutch family (van Swieten et al., 2003). -
Fibroblast Growth Factor 12 Is Expressed in Spiral and Vestibular
www.nature.com/scientificreports OPEN Fibroblast growth factor 12 is expressed in spiral and vestibular ganglia and necessary for auditory Received: 5 February 2018 Accepted: 26 June 2018 and equilibrium function Published: xx xx xxxx Yukiko Hanada1,2, Yukiko Nakamura1, Yoshiyuki Ozono2, Yusuke Ishida1,3, Yasumitsu Takimoto1,2,4, Manabu Taniguchi5, Kazuya Ohata1,2, Yoshihisa Koyama1, Takao Imai2, Tetsuo Morihana2,6, Makoto Kondo1, Takashi Sato2, Hidenori Inohara2 & Shoichi Shimada1 We investigated fbroblast growth factor 12 (FGF12) as a transcript enriched in the inner ear by searching published cDNA library databases. FGF12 is a fbroblast growth factor homologous factor, a subset of the FGF superfamily. To date, its localisation and function in the inner ear have not been determined. Here, we show that FGF12 mRNA is localised in spiral ganglion neurons (SGNs) and the vestibular ganglion. We also show that FGF12 protein is localised in SGNs, the vestibular ganglion, and nerve fbres extending beneath hair cells. Moreover, we investigated FGF12 function in auditory and vestibular systems using Fgf12-knockout (FGF12-KO) mice generated with CRISPR/Cas9 technology. Our results show that the inner ear morphology of FGF12-KO mice is not signifcantly diferent compared with wild-type mice. However, FGF12-KO mice exhibited an increased hearing threshold, as measured by the auditory brainstem response, as well as defcits in rotarod and balance beam performance tests. These results suggest that FGF12 is necessary for normal auditory and equilibrium function. Hearing loss is a common problem in people of all ages. Te World Health Organization reports that 360 million people worldwide have hearing loss, with 32 million being children1. -
Instability Restricts Signaling of Multiple Fibroblast Growth Factors
Cell. Mol. Life Sci. DOI 10.1007/s00018-015-1856-8 Cellular and Molecular Life Sciences RESEARCH ARTICLE Instability restricts signaling of multiple fibroblast growth factors Marcela Buchtova • Radka Chaloupkova • Malgorzata Zakrzewska • Iva Vesela • Petra Cela • Jana Barathova • Iva Gudernova • Renata Zajickova • Lukas Trantirek • Jorge Martin • Michal Kostas • Jacek Otlewski • Jiri Damborsky • Alois Kozubik • Antoni Wiedlocha • Pavel Krejci Received: 18 June 2014 / Revised: 7 February 2015 / Accepted: 9 February 2015 Ó Springer Basel 2015 Abstract Fibroblast growth factors (FGFs) deliver ex- failure to activate FGF receptor signal transduction over tracellular signals that govern many developmental and long periods of time, and influence specific cell behavior regenerative processes, but the mechanisms regulating FGF in vitro and in vivo. Stabilization via exogenous heparin signaling remain incompletely understood. Here, we ex- binding, introduction of stabilizing mutations or lowering plored the relationship between intrinsic stability of FGF the cell cultivation temperature rescues signaling of un- proteins and their biological activity for all 18 members of stable FGFs. Thus, the intrinsic ligand instability is an the FGF family. We report that FGF1, FGF3, FGF4, FGF6, important elementary level of regulation in the FGF sig- FGF8, FGF9, FGF10, FGF16, FGF17, FGF18, FGF20, and naling system. FGF22 exist as unstable proteins, which are rapidly de- graded in cell cultivation media. Biological activity of Keywords Fibroblast growth factor Á FGF Á Unstable Á FGF1, FGF3, FGF4, FGF6, FGF8, FGF10, FGF16, FGF17, Proteoglycan Á Regulation and FGF20 is limited by their instability, manifesting as Electronic supplementary material The online version of this article (doi:10.1007/s00018-015-1856-8) contains supplementary material, which is available to authorized users. -
Expression of Fibroblast Growth Factor 9 in Normal Human Lung and Idiopathic Pulmonary Fibrosis
JHCXXX10.1369/0022155413497366Coffey et al.FGF9 in IPF 497366research-article2013 Article Journal of Histochemistry & Cytochemistry 61(9) 671 –679 © The Author(s) 2013 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1369/0022155413497366 jhc.sagepub.com Expression of Fibroblast Growth Factor 9 in Normal Human Lung and Idiopathic Pulmonary Fibrosis Emily Coffey, Donna R. Newman, and Philip L. Sannes Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina Summary The fibroblast growth factor (FGF) family of signaling ligands contributes significantly to lung development and maintenance in the adult. FGF9 is involved in control of epithelial branching and mesenchymal proliferation and expansion in developing lungs. However, its activity and expression in the normal adult lung and by epithelial and interstitial cells in fibroproliferative diseases like idiopathic pulmonary fibrosis (IPF) are unknown. Tissue samples from normal organ donor human lungs and those of a cohort of patients with mild to severe IPF were sectioned and stained for the immunolocalization of FGF9. In normal lungs, FGF9 was confined to smooth muscle surrounding airways, alveolar ducts and sacs, and blood vessels. In addition to these same sites, lungs of IPF patients expressed FGF9 in a population of myofibroblasts within fibroblastic foci, hypertrophic and hyperplastic epithelium of airways and alveoli, and smooth muscle cells surrounding vessels embedded in thickened interstitium. The results demonstrate that FGF9 protein increased in regions of active cellular hyperplasia, metaplasia, and fibrotic expansion of IPF lungs, and in isolated human lung fibroblasts treated with TGF- β1 and/or overexpressing Wnt7B. -
FGF Signaling Regulates Mesenchymal Differentiation and Skeletal Patterning Along the Limb Bud Proximodistal Axis Kai Yu and David M
RESEARCH ARTICLE 483 Development 135, 483-491 (2008) doi:10.1242/dev.013268 FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis Kai Yu and David M. Ornitz* Fibroblast growth factors (FGFs) are signals from the apical ectodermal ridge (AER) that are essential for limb pattern formation along the proximodistal (PD) axis. However, how patterning along the PD axis is regulated by AER-FGF signals remains controversial. To further explore the molecular mechanism of FGF functions during limb development, we conditionally inactivated fgf receptor 2 (Fgfr2) in the mouse AER to terminate all AER functions; for comparison, we inactivated both Fgfr1 and Fgfr2 in limb mesenchyme to block mesenchymal AER-FGF signaling. We also re-examined published data in which Fgf4 and Fgf8 were inactivated in the AER. We conclude that limb skeletal phenotypes resulting from loss of AER-FGF signals cannot simply be a consequence of excessive mesenchymal cell death, as suggested by previous studies, but also must be a consequence of reduced mesenchymal proliferation and a failure of mesenchymal differentiation, which occur following loss of both Fgf4 and Fgf8. We further conclude that chondrogenic primordia formation, marked by initial Sox9 expression in limb mesenchyme, is an essential component of the PD patterning process and that a key role for AER-FGF signaling is to facilitate SOX9 function and to ensure progressive establishment of chondrogenic primordia along the PD axis. KEY WORDS: FGF, FGF receptor, Apical ectodermal ridge (AER), Limb bud development, Chondrogenesis INTRODUCTION Previous studies indicate that AER-FGF signals are important The apical ectodermal ridge (AER) is a specialized ectodermal for maintaining mesenchymal cell survival during limb structure formed at the distal tip of the vertebrate limb bud that is development (Boulet et al., 2004; Sun et al., 2002). -
FGF Signaling Network in the Gastrointestinal Tract (Review)
163-168 1/6/06 16:12 Page 163 INTERNATIONAL JOURNAL OF ONCOLOGY 29: 163-168, 2006 163 FGF signaling network in the gastrointestinal tract (Review) MASUKO KATOH1 and MASARU KATOH2 1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center Research Institute, Tokyo 104-0045, Japan Received March 29, 2006; Accepted May 2, 2006 Abstract. Fibroblast growth factor (FGF) signals are trans- Contents duced through FGF receptors (FGFRs) and FRS2/FRS3- SHP2 (PTPN11)-GRB2 docking protein complex to SOS- 1. Introduction RAS-RAF-MAPKK-MAPK signaling cascade and GAB1/ 2. FGF family GAB2-PI3K-PDK-AKT/aPKC signaling cascade. The RAS~ 3. Regulation of FGF signaling by WNT MAPK signaling cascade is implicated in cell growth and 4. FGF signaling network in the stomach differentiation, the PI3K~AKT signaling cascade in cell 5. FGF signaling network in the colon survival and cell fate determination, and the PI3K~aPKC 6. Clinical application of FGF signaling cascade in cell polarity control. FGF18, FGF20 and 7. Clinical application of FGF signaling inhibitors SPRY4 are potent targets of the canonical WNT signaling 8. Perspectives pathway in the gastrointestinal tract. SPRY4 is the FGF signaling inhibitor functioning as negative feedback apparatus for the WNT/FGF-dependent epithelial proliferation. 1. Introduction Recombinant FGF7 and FGF20 proteins are applicable for treatment of chemotherapy/radiation-induced mucosal injury, Fibroblast growth factor (FGF) family proteins play key roles while recombinant FGF2 protein and FGF4 expression vector in growth and survival of stem cells during embryogenesis, are applicable for therapeutic angiogenesis. Helicobacter tissues regeneration, and carcinogenesis (1-4). -
FGF-13 (H-40): Sc-50293
SAN TA C RUZ BI OTEC HNOL OG Y, INC . FGF-13 (H-40): sc-50293 BACKGROUND PRODUCT Fibroblast growth factor-1 (FGF-1), also designated acidic FGF, and fibroblast Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide growth factor-2 (FGF-2), also designated basic FGF, are members of a family and 0.1% gelatin. of growth factors that stimulate proliferation of cells of mesenchymal, epithe-lial and neuroectodermal origin. Additional members of the FGF fami ly APPLICATIONS include the oncogenes FGF-3 (Int2) and FGF-4 (hst/Kaposi), FGF-5, FGF-6, FGF-13 (H-40) is recommended for detection of FGF-13 of mouse, rat and FGF-7 (KGF), FGF-8 (AIGF), FGF-9 (GAF) and FGF-10–FGF-23. Members of the human origin by Western Blotting (starting dilution 1:200, dilution range FGF family share 30-55% amino acid sequence identity and similar gene 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein structure, and are capable of transforming cultured cells when overex - (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution pressed in transfected cells. Cellular receptors for FGFs are members of a range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution second multigene family including four tyrosine kinases, designated Flg range 1:30-1:3000). (FGFR-1), Bek (FGFR-L), TKF and FGFR-3. FGF-13 (H-40) is also recommended for detection of FGF-13 in additional REFERENCES species, including bovine and porcine. -
Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons
1720 Diabetes Volume 67, September 2018 Targeting FXR and FGF19 to Treat Metabolic Diseases— Lessons Learned From Bariatric Surgery Nadejda Bozadjieva,1 Kristy M. Heppner,2 and Randy J. Seeley1 Diabetes 2018;67:1720–1728 | https://doi.org/10.2337/dbi17-0007 Bariatric surgery procedures, such as Roux-en-Y gastric diabetes (T2D) (1). Clinical data demonstrate that patients bypass (RYGB) and vertical sleeve gastrectomy (VSG), who have undergone RYGB or VSG experience increased are the most effective interventions available for sus- satiety and major glycemic improvements prior to significant tained weight loss and improved glucose metabolism. weight loss, suggesting that metabolic changes as result Bariatric surgery alters the enterohepatic bile acid cir- of these surgeries are essential to the weight loss and glycemic culation, resulting in increased plasma bile levels as well benefits (2). Therefore, it is important to identify the medi- as altered bile acid composition. While it remains unclear ators that play a role in promoting the benefits of these why both VSG and RYGB can alter bile acids, it is possible surgeries with the goal of improving current surgical that these changes are important mediators of the approaches and developing less invasive therapies that effects of surgery. Moreover, a molecular target of bile harness these effects. acid synthesis, the bile acid–activated transcription fac- The effectiveness of bariatric surgery to reduce body tor FXR, is essential for the positive effects of VSG on weight and improve glucose metabolism highlights the weight loss and glycemic control. This Perspective examines the relationship and sequence of events be- important role the gastrointestinal tract plays in regulat- tween altered bile acid levels and composition, FXR ing a wide range of metabolic processes. -
Alternative Splicing Generates an Isoform of the Human Sef Gene with Altered Subcellular Localization and Specificity
Alternative splicing generates an isoform of the human Sef gene with altered subcellular localization and specificity Ella Preger*, Inbal Ziv*, Ariel Shabtay*, Ifat Sher*, Michael Tsang†, Igor B. Dawid†, Yael Altuvia‡, and Dina Ron*§ *Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel; †Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and ‡Department of Molecular Genetics and Biotechnology, Hebrew University–Hadassah Medical School, Jerusalem 91120, Israel Contributed by Igor B. Dawid, December 1, 2003 Receptor tyrosine kinases (RTKs) control a multitude of biological FGFs comprise a family of 22 structurally related polypeptide processes and are therefore subjected to multiple levels of regu- mitogens that control cell proliferation, differentiation, survival, lation. Negative feedback is one of the mechanisms that provide an and migration and play a key role in embryonic patterning effective means to control RTK-mediated signaling. Sef has re- (14–16). They signal via binding and activation of a family of cently been identified as a specific antagonist of fibroblast growth cell-surface tyrosine kinase receptors designated FGF receptors factor (FGF) signaling in zebrafish and subsequently in mouse and 1–4 (FGFR1–FGFR4) (17–20). Activated receptors trigger sev- human. Sef encodes a putative type I transmembrane protein that eral signal transduction cascades including the Ras͞MAPK and antagonizes the Ras͞mitogen-activated protein kinase pathway in the PI3-kinase pathway (15, 21). Depending on the cell type, all three species. Mouse Sef was also shown to inhibit the phos- FGF can also activate other MAPK pathways, such that leading phatidylinositol 3-kinase pathway.