Appendix a Introduction to IDEF0
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Filling the Gap Between Business Process Modeling and Behavior Driven Development
Filling the Gap between Business Process Modeling and Behavior Driven Development Rogerio Atem de Carvalho Rodrigo Soares Manhães Fernando Luis de Carvalho e Silva Nucleo de Pesquisa em Sistemas de Informação (NSI), Instituto Federal Fluminense (IFF), Brazil {ratem, rmanhaes, [email protected]} 1. Introduction Behavior Driven Development (NORTH, 2006) is a specification technique that is growing in acceptance in the Agile methods communities. BDD allows to securely verify that all functional requirements were treated properly by source code, by connecting the textual description of these requirements to tests. On the other side, the Enterprise Information Systems (EIS) researchers and practitioners defends the use of Business Process Modeling (BPM) to, before defining any part of the system, perform the modeling of the system's underlying business process. Therefore, it can be stated that, in the case of EIS, functional requirements are obtained by identifying Use Cases from the business process models. The aim of this paper is, in a narrower perspective, to propose the use of Finite State Machines (FSM) to model business process and then connect them to the BDD machinery, thus driving better quality for EIS. In a broader perspective, this article aims to provoke a discussion on the mapping of the various BPM notations, since there isn't a real standard for business process modeling (Moller et al., 2007), to BDD. Firstly a historical perspective of the evolution of previous proposals from which this one emerged will be presented, and then the reasons to change from Model Driven Development (MDD) to BDD will be presented also in a historical perspective. -
Data-Driven Grasp Synthesis - a Survey Jeannette Bohg, Member, IEEE, Antonio Morales, Member, IEEE, Tamim Asfour, Member, IEEE, Danica Kragic Member, IEEE
TRANSACTIONS ON ROBOTICS 1 Data-Driven Grasp Synthesis - A Survey Jeannette Bohg, Member, IEEE, Antonio Morales, Member, IEEE, Tamim Asfour, Member, IEEE, Danica Kragic Member, IEEE specific metric. This process is usually based on some existing Abstract—We review the work on data-driven grasp synthesis grasp experience that can be a heuristic or is generated in and the methodologies for sampling and ranking candidate simulation or on a real robot. Kamon et al. [5] refer to this grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown as the comparative and Shimoga [2] as the knowledge-based objects. This structure allows us to identify common object rep- approach. Here, a grasp is commonly parameterized by [6, 7]: resentations and perceptual processes that facilitate the employed • the grasping point on the object with which the tool center data-driven grasp synthesis technique. In the case of known point (TCP) should be aligned, objects, we concentrate on the approaches that are based on • the approach vector which describes the 3D angle that object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching the robot hand approaches the grasping point with, to a set of previously encountered objects. Finally, for the • the wrist orientation of the robotic hand and approaches dealing with unknown objects, the core part is the • an initial finger configuration extraction of specific features that are indicative of good grasps. Data-driven approaches differ in how the set of grasp candi- Our survey provides an overview of the different methodologies dates is sampled, how the grasp quality is estimated and how and discusses open problems in the area of robot grasping. -
Sysml Distilled: a Brief Guide to the Systems Modeling Language
ptg11539604 Praise for SysML Distilled “In keeping with the outstanding tradition of Addison-Wesley’s techni- cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. Lenny has done a masterful job of capturing the spirit of OMG SysML as a practical, standards-based modeling language to help systems engi- neers address growing system complexity. This book is loaded with matter-of-fact insights, starting with basic MBSE concepts to distin- guishing the subtle differences between use cases and scenarios to illu- mination on namespaces and SysML packages, and even speaks to some of the more esoteric SysML semantics such as token flows.” — Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory “The power of a modeling language, such as SysML, is that it facilitates communication not only within systems engineering but across disci- plines and across the development life cycle. Many languages have the ptg11539604 potential to increase communication, but without an effective guide, they can fall short of that objective. In SysML Distilled, Lenny Delligatti combines just the right amount of technology with a common-sense approach to utilizing SysML toward achieving that communication. Having worked in systems and software engineering across many do- mains for the last 30 years, and having taught computer languages, UML, and SysML to many organizations and within the college setting, I find Lenny’s book an invaluable resource. He presents the concepts clearly and provides useful and pragmatic examples to get you off the ground quickly and enables you to be an effective modeler.” — Thomas W. Fargnoli, Lead Member of the Engineering Staff, Lockheed Martin “This book provides an excellent introduction to SysML. -
Identifying and Defining Relationships: Techniques for Improving Student Systemic Thinking
AC 2011-897: IDENTIFYING AND DEFINING RELATIONSHIPS: TECH- NIQUES FOR IMPROVING STUDENT SYSTEMIC THINKING Cecelia M. Wigal, University of Tennessee, Chattanooga Cecelia M. Wigal received her Ph.D. in 1998 from Northwestern University and is presently a Professor of Engineering and Assistant Dean of the College of Engineering and Computer Science at the University of Tennessee at Chattanooga (UTC). Her primary areas of interest and expertise include complex process and system analysis, process improvement analysis, and information system analysis with respect to usability and effectiveness. Dr. Wigal is also interested in engineering education reform to address present and future student and national and international needs. c American Society for Engineering Education, 2011 Identifying and Defining Relationships: Techniques for Improving Student Systemic Thinking Abstract ABET, Inc. is looking for graduating undergraduate engineering students who are systems thinkers. However, genuine systems thinking is contrary to the traditional practice of using linear thinking to help solve design problems often used by students and many practitioners. Linear thinking has a tendency to compartmentalize solution options and minimize recognition of relationships between solutions and their elements. Systems thinking, however, has the ability to define the whole system, including its environment, objectives, and parts (subsystems), both static and dynamic, by their relationships. The work discussed here describes two means of introducing freshman engineering students to thinking systemically or holistically when understanding and defining problems. Specifically, the modeling techniques of Rich Pictures and an instructor generated modified IDEF0 model are discussed. These techniques have roles in many applications. In this case they are discussed in regards to their application to the design process. -
Matters of (Meta-) Modeling
Appeared in the Journal on Software and Systems Modeling, Volume 5, Number 4, pp. 369-385, December 2006 Matters of (Meta-) Modeling Thomas Kuh¨ ne Darmstadt University of Technology, Darmstadt, Germany e-mail: [email protected] Abstract With the recent trend to model driven engineering ontologies for the basic terms of their discipline, any com- a common understanding of basic notions such as “model” munication may create the illusion of agreement where there and “metamodel” becomes a pivotal issue. Even though these is none, i.e., unnoticed misunderstandings, and raise barriers notions have been in widespread use for quite a while, there of communication where they are just accidental. is still little consensus about when exactly it is appropriate In the following we will focus on the term “model” in the to use them. The aim of this article is to start establishing a context of model driven engineering. Our models are thus all consensus about generally acceptable terminology. Its main language-based in nature, unlike, e.g., physical scale models contributions are the distinction between two fundamental- and they describe something as opposed to models in mathe- ly different kinds of model roles, i.e. “token model” versus matics which are understood as interpretations of a theory [3]. “type model”1, a formal notion of “metaness”, and the consi- In an attempt to define the scope of the notion “model” we deration of “generalization” as yet another basic relationship should consider how it has been traditionally used in softwa- between models. In particular, the recognition of the funda- re engineering. -
Introduction to Systems Modeling Languages
Fundamentals of Systems Engineering Prof. Olivier L. de Weck, Mark Chodas, Narek Shougarian Session 3 System Modeling Languages 1 Reminder: A1 is due today ! 2 3 Overview Why Systems Modeling Languages? Ontology, Semantics and Syntax OPM – Object Process Methodology SySML – Systems Modeling Language Modelica What does it mean for Systems Engineering of today and tomorrow (MBSE)? 4 Exercise: Describe the “Mr. Sticky” System Work with a partner (5 min) Use your webex notepad/white board I will call on you randomly We will compare across student teams © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 5 Why Systems Modeling Languages? Means for describing artifacts are traditionally as follows: Natural Language (English, French etc….) Graphical (Sketches and Drawings) These then typically get aggregated in “documents” Examples: Requirements Document, Drawing Package Technical Data Package (TDP) should contain all info needed to build and operate system Advantages of allowing an arbitrary description: Familiarity to creator of description Not-confining, promotes creativity Disadvantages of allowing an arbitrary description: Room for ambiguous interpretations and errors Difficult to update if there are changes Handoffs between SE lifecycle phases are discontinuous Uneven level of abstraction Large volume of information that exceeds human cognitive bandwidth Etc…. 6 System Modeling Languages Past efforts -
Integration of Model-Based Systems Engineering and Virtual Engineering Tools for Detailed Design
Scholars' Mine Masters Theses Student Theses and Dissertations Spring 2011 Integration of model-based systems engineering and virtual engineering tools for detailed design Akshay Kande Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Systems Engineering Commons Department: Recommended Citation Kande, Akshay, "Integration of model-based systems engineering and virtual engineering tools for detailed design" (2011). Masters Theses. 5155. https://scholarsmine.mst.edu/masters_theses/5155 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. INTEGRATION OF MODEL-BASED SYSTEMS ENGINEERING AND VIRTUAL ENGINEERING TOOLS FOR DETAILED DESIGN by AKSHA Y KANDE A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN SYSTEMS ENGINEERING 2011 Approved by Steve Corns, Advisor Cihan Dagli Scott Grasman © 2011 Akshay Kande All Rights Reserved 111 ABSTRACT Design and development of a system can be viewed as a process of transferring and transforming data using a set of tools that form the system's development environment. Conversion of the systems engineering data into useful information is one of the prime objectives of the tools used in the process. With complex systems, the objective is further augmented with a need to represent the information in an accessible and comprehensible manner. -
System-Of-Systems Approach for Integrated Energy Systems
A System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation Preprint Saurabh Mittal, Mark Ruth, Annabelle Pratt, Monte Lunacek, Dheepak Krishnamurthy, and Wesley Jones National Renewable Energy Laboratory Presented at the Society for Modeling & Simulation International Summer Simulation Multi-Conference Chicago, Illinois July 26–29, 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Conference Paper NREL/CP-2C00-64045 August 2015 Contract No. DE-AC36-08GO28308 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Complexity Evaluation with Business Process Modeling and Simulation
Complexity Evaluation with Business Process Modeling and Simulation Krishan Chand and Muthu Ramachandran School of Computing, Creative Technologies and Engineering, Leeds Beckett University, Leeds, U.K. Keywords: Business Process Modeling, BPMN, Simulation, Complexity. Abstract: To stay in the competition and to make a stand in the market, companies have to make the quick changes. Business Process Modelling (BPM) has made an impact in the respect to capture the process and to make the changes accordingly for improvement in business operations. Modeling and simulation is the process of making a process simple to reduce complexity. However, modellers or researchers still making the complex models. Modeling and simulation are the areas which need to be addressed, despite only a few researchers worked in the respective areas of modelling and simulation. The paper addresses the complexity issue of cloud performance criteria of time and cost. To this end, this paper has evaluated the domain of financial services in the cloud with Business Process Modeling Notation (BPMN) and simulation. Two different scenarios have been created to demonstrate the result of performance complexity of cloud services. Finally, the conclusion has been derived to help and guide further research. 1 INTRODUCTION of a process directed to make it with fewer efforts, accordingly to ease the complexity of the business Due to its existence importance not because of process and to make it simple and understanding. However, the main objective of the process modeller descriptive nature of the process, but also the is to make the process understanding and to reduce characteristics representation for the activities such as business process improvement, business process the complexity in the practical world, are designing the complex models (Henriksen, 2008; Chwif et al., re-engineering and process standardization, business 2000). -
Automated Malware Analysis Report For
ID: 330706 Sample Name: RFQ0270004296- PR0720001831-Grasp Trading Pvt. Ltd.doc Cookbook: defaultwindowsofficecookbook.jbs Time: 14:51:31 Date: 15/12/2020 Version: 31.0.0 Red Diamond Table of Contents Table of Contents 2 Analysis Report RFQ0270004296-PR0720001831-Grasp Trading Pvt. Ltd.doc 4 Overview 4 General Information 4 Detection 4 Signatures 4 Classification 4 Startup 4 Malware Configuration 4 Yara Overview 4 Sigma Overview 4 Signature Overview 4 AV Detection: 5 Mitre Att&ck Matrix 5 Behavior Graph 5 Screenshots 6 Thumbnails 6 Antivirus, Machine Learning and Genetic Malware Detection 7 Initial Sample 7 Dropped Files 7 Unpacked PE Files 7 Domains 7 URLs 7 Domains and IPs 9 Contacted Domains 9 URLs from Memory and Binaries 9 Contacted IPs 12 General Information 12 Simulations 13 Behavior and APIs 13 Joe Sandbox View / Context 13 IPs 14 Domains 14 ASN 14 JA3 Fingerprints 14 Dropped Files 14 Created / dropped Files 14 Static File Info 16 General 16 File Icon 17 Static RTF Info 17 Objects 17 Network Behavior 17 UDP Packets 17 Code Manipulations 18 Statistics 18 System Behavior 18 Analysis Process: WINWORD.EXE PID: 896 Parent PID: 792 18 General 18 File Activities 18 File Created 18 File Deleted 19 Registry Activities 19 Key Created 19 Key Value Created 19 Copyright null 2020 Page 2 of 23 Key Value Modified 21 Disassembly 23 Copyright null 2020 Page 3 of 23 Analysis Report RFQ0270004296-PR0720001831-Grasp …Trading Pvt. Ltd.doc Overview General Information Detection Signatures Classification Sample RFQ0270004296- Name: PR0720001831-Grasp Muullltttiii AAVV SSccaannnneerrr ddeettteecctttiiioonn fffoorrr ssuubbm… Trading Pvt. -
GRASP Patterns
GRASP Patterns David Duncan November 16, 2012 Introduction • GRASP (General Responsibility Assignment Software Patterns) is an acronym created by Craig Larman to encompass nine object‐oriented design principles related to creating responsibilities for classes • These principles can also be viewed as design patterns and offer benefits similar to the classic “Gang of Four” patterns • GRASP is an attempt to document what expert designers probably know intuitively • All nine GRASP patterns will be presented and briefly discussed What is GRASP? • GRASP = General Responsibility Assignment Software Patterns (or Principles) • A collection of general objected‐oriented design patterns related to assigning defining objects • Originally described as a collection by Craig Larman in Applying UML and Patterns: An Introduction to Object‐Oriented Analysis and Design, 1st edition, in 1997. Context (1 of 2) • The third edition of Applying UML and Patterns is the most current edition, published in 2005, and is by far the source most drawn upon for this material • Larman assumes the development of some type of analysis artifacts prior to the use of GRASP – Of particular note, a domain model is used • A domain model describes the subject domain without describing the software implementation • It may look similar to a UML class diagram, but there is a major difference between domain objects and software objects Context (2 of 2) • Otherwise, assumptions are broad: primarily, the practitioner is using some type of sensible and iterative process – Larman chooses -
Use of Formal Methods at Amazon Web Services
Use of Formal Methods at Amazon Web Services Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff Amazon.com 29th September, 2014 Since 2011, engineers at Amazon Web Services (AWS) have been using formal specification and model checking to help solve difficult design problems in critical systems. This paper describes our motivation and experience, what has worked well in our problem domain, and what has not. When discussing personal experiences we refer to authors by their initials. At AWS we strive to build services that are simple for customers to use. That external simplicity is built on a hidden substrate of complex distributed systems. Such complex internals are required to achieve high availability while running on cost-efficient infrastructure, and also to cope with relentless rapid business growth. As an example of this growth; in 2006 we launched S3, our Simple Storage Service. In the 6 years after launch, S3 grew to store 1 trillion objects [1]. Less than a year later it had grown to 2 trillion objects, and was regularly handling 1.1 million requests per second [2]. S3 is just one of tens of AWS services that store and process data that our customers have entrusted to us. To safeguard that data, the core of each service relies on fault-tolerant distributed algorithms for replication, consistency, concurrency control, auto-scaling, load balancing, and other coordination tasks. There are many such algorithms in the literature, but combining them into a cohesive system is a major challenge, as the algorithms must usually be modified in order to interact properly in a real-world system.