The Pennsylvania State University the Graduate School

Total Page:16

File Type:pdf, Size:1020Kb

The Pennsylvania State University the Graduate School The Pennsylvania State University The Graduate School Department of Philosophy THE DISCOVERY OF MATHEMATICAL PROBABILITY THEORY: A CASE STUDY IN THE LOGIC OF MATHEMATICAL INQUIRY A Thesis in Philosophy by Daniel Gerardo Campos © 2005 Daniel Gerardo Campos Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2005 The thesis of Daniel Gerardo Campos was reviewed and approved* by the following: Douglas Anderson Associate Professor of Philosophy Thesis Advisor Co-Chair of Committee Emily Grosholz Professor of Philosophy Co-Chair of Committee Dale Jacquette Professor of Philosophy Catherine Kemp Assistant Professor of Philosophy Michael Rovine Associate Professor of Human Development and Family Studies John Christman Associate Professor of Philosophy Head of the Department of Philosophy *Signatures are on file in the Graduate School iii ABSTRACT What is the logic at work in the inquiring activity of mathematicians? I address this question, which pertains to the philosophical debate over whether, in addition to a logic of justification of mathematical knowledge, there is a logic of inquiry and discovery at work in actual mathematical research. Based on the philosophy of Charles Sanders Peirce (1839-1914), I propose that there is a logic of mathematical inquiry, and I expound its form. I argue that even though there are not rules or algorithms that will lead to breakthrough discoveries and successful inquiry with absolute certainty, Peirce’s philosophy provides a way to describe (i) the conditions for the possibility of mathematical discovery; (ii) the actual method of inquiry in mathematics and its associated heuristic techniques; and (iii) the logical form of reasoning that warrants the application of mathematical theories to the study of actual scientific problems in nature. With regard to (i), I discuss the role of the problem-context of discovery and describe the epistemic conditions necessary for carrying out mathematical reasoning. With respect to (ii), I argue that experimental hypothesis-making in the course of analytical problem- solving, and not deduction from axioms, is the actual method of mathematical research. Regarding (iii), I argue that abduction and analogy warrant the application of mathematical theories to the study of actual scientific problems. The discovery and early development of mathematical probability, culminating with Jacob Bernoulli’s Ars Conjectandi (1713), serves as the historical case study to examine critically the proposed logic of mathematical inquiry. I discuss the practical implications of the proposed logic of inquiry for a philosophy of mathematical education. iv TABLE OF CONTENTS LIST OF FIGURES .....................................................................................................vii ACKNOWLEDGEMENTS.........................................................................................viii Chapter 1 Introduction ................................................................................................1 Chapter 2 The Peircean Framework: Peirce’s Philosophy of Inquiry ........................11 2.1 Peirce’s Trichotomic.......................................................................................11 2.1.1 The Peircean Categories: Firstness, Secondness, and Thirdness .........13 2.1.2 Triadic Relations and the Mathematical Origin of the Categories.......18 2.2 The Triad in Reasoning ..................................................................................24 2.2.1 The Triad in Signs: Icons, Indices, and Symbols .................................26 2.2.2 The Triad in Arguments: Deduction, Induction, and Abduction..........30 2.2.3 On Peirce’s Distinction between Induction and Abduction .................43 2.3 Peirce’s Conception of Mathematics..............................................................57 2.3.1 Hypothetical States of Things ..............................................................58 2.3.1.1 Diagrams and Icons....................................................................65 2.3.1.2 The Applicability of Mathematical Theories .............................69 2.3.2 Necessary Reasoning, Experimentation, and Observation...................74 2.3.3 Pure Mathematical Reasoning versus Poietic Creation........................82 2.4 Mathematics as Creative, Precise, Experimental, Open-Ended Inquiry.........88 Chapter 3 The Context of Mathematical Discovery: The Case of Mathematical Probability Theory................................................................................................95 3.1 The 1654 Pascal-Fermat Correspondence and the Problem-Context of Discovery.......................................................................................................104 3.1.1 The ‘Problem with Dice’......................................................................105 3.1.2 The ‘Problem of Points’ and Expectation ............................................118 3.2 The Creation of a Hypothetical State of Affairs and the Origins of Mathematical Probability Theory..................................................................130 3.3 Peircean Considerations and Implications.....................................................141 Chapter 4 Epistemic Conditions for the Possibility of Mathematical Discovery .......146 4.1 Epistemic Abilities..........................................................................................146 4.1.1 Imagination...........................................................................................148 4.1.2 Concentration .......................................................................................158 4.1.3 Generalization.......................................................................................163 4.2 The Community of Inquirers ..........................................................................171 4.2.1 Systems of Representation ...................................................................174 4.2.2 Existing Mathematical Knowledge ......................................................180 v 4.2.3 Dialogical Criticism..............................................................................187 4.3 Pragmatic Upshot Towards a Logic of Mathematical Inquiry .......................192 Chapter 5 The Method of Mathematical Inquiry and the Heuristics of Discovery ....198 5.1 Heuristic Methods for Creating ‘Framing Hypotheses’ .................................200 5.1.1 Abstraction ...........................................................................................200 5.1.2 Framing Analogy..................................................................................205 5.2 The ‘Analytic Method’ of Mathematics and the Heuristics of ‘Analytical Hypothesis-Making’......................................................................................210 5.2.1 Lessons from Huygens’s General Method of Solution for the Problem of Points...................................................................................211 5.2.1.1 The ‘Analytic Method’ of Mathematics.....................................213 5.2.1.2 Generalization and Particularization as Analytical Heuristics...219 5.2.2 Lesson’s from the Demonstration of Bernoulli’s Theorem..................224 5.2.3 Pragmatic Upshot of the Historical Lessons: Towards a Logic of Mathematical Inquiry .............................................................................238 Chapter 6 The Leibniz-Bernoulli Correspondence: The Abductive Warrant of Bernoulli’s Theorem.............................................................................................242 6.1 The Correspondence .......................................................................................243 6.2 Bernoulli’s Hypothesis as an Inference to the Best Explanation....................259 6.3 Bernoulli’s Hypothesis as a Case of Abduction .............................................274 6.3.1 Formulating and Weighing Plausible Explanatory Hypotheses in Response to Living Doubt......................................................................279 6.3.2 ‘Abductive Insight’ in Bernoulli’s Hypothesis.....................................287 6.3.3 ‘Simplicity’ in Bernoulli’s Hypothesis.................................................292 6.4 Comparing Both Accounts of Bernoulli’s Ampliative Inference...................294 Chapter 7 Abduction as Rational Ampliative Inference: Objections and Replies......300 7.1 The Descriptive Adequacy of the Abductive Model ......................................301 7.2 The Problem of Truthful Hypothesizing.........................................................308 7.2.1 The Abductive Faculty .........................................................................312 7.2.2 The Simplicity of Abductive Hypotheses.............................................320 7.2.3 Bernoulli’s Truthful Hypothesizing .....................................................326 Chapter 8 Explanation and Reality .............................................................................329 8.1 True Probabilities as a priori Real Dispositions.............................................331 8.2 A priori Real Dispositions as Explanatory of a posteriori Statistical Regularities....................................................................................................344 8.2.1 Some Possible Objections ....................................................................354 8.2.1.1 Bernoulli’s ‘Propensity’ Interpretation?.....................................354 8.2.1.2 Bernoulli’s
Recommended publications
  • AND MARIO V. W ¨UTHRICH† This Year We Celebrate the 300Th
    BERNOULLI’S LAW OF LARGE NUMBERS BY ∗ ERWIN BOLTHAUSEN AND MARIO V. W UTHRICH¨ † ABSTRACT This year we celebrate the 300th anniversary of Jakob Bernoulli’s path-breaking work Ars conjectandi, which appeared in 1713, eight years after his death. In Part IV of his masterpiece, Bernoulli proves the law of large numbers which is one of the fundamental theorems in probability theory, statistics and actuarial science. We review and comment on his original proof. KEYWORDS Bernoulli, law of large numbers, LLN. 1. INTRODUCTION In a correspondence, Jakob Bernoulli writes to Gottfried Wilhelm Leibniz in October 1703 [5]: “Obwohl aber seltsamerweise durch einen sonderbaren Na- turinstinkt auch jeder D¨ummste ohne irgend eine vorherige Unterweisung weiss, dass je mehr Beobachtungen gemacht werden, umso weniger die Gefahr besteht, dass man das Ziel verfehlt, ist es doch ganz und gar nicht Sache einer Laienun- tersuchung, dieses genau und geometrisch zu beweisen”, saying that anyone would guess that the more observations we have the less we can miss the target; however, a rigorous analysis and proof of this conjecture is not trivial at all. This extract refers to the law of large numbers. Furthermore, Bernoulli expresses that such thoughts are not new, but he is proud of being the first one who has given a rigorous mathematical proof to the statement of the law of large numbers. Bernoulli’s results are the foundations of the estimation and prediction theory that allows one to apply probability theory well beyond combinatorics. The law of large numbers is derived in Part IV of his centennial work Ars conjectandi, which appeared in 1713, eight years after his death (published by his nephew Nicolaus Bernoulli), see [1].
    [Show full text]
  • The Interpretation of Probability: Still an Open Issue? 1
    philosophies Article The Interpretation of Probability: Still an Open Issue? 1 Maria Carla Galavotti Department of Philosophy and Communication, University of Bologna, Via Zamboni 38, 40126 Bologna, Italy; [email protected] Received: 19 July 2017; Accepted: 19 August 2017; Published: 29 August 2017 Abstract: Probability as understood today, namely as a quantitative notion expressible by means of a function ranging in the interval between 0–1, took shape in the mid-17th century, and presents both a mathematical and a philosophical aspect. Of these two sides, the second is by far the most controversial, and fuels a heated debate, still ongoing. After a short historical sketch of the birth and developments of probability, its major interpretations are outlined, by referring to the work of their most prominent representatives. The final section addresses the question of whether any of such interpretations can presently be considered predominant, which is answered in the negative. Keywords: probability; classical theory; frequentism; logicism; subjectivism; propensity 1. A Long Story Made Short Probability, taken as a quantitative notion whose value ranges in the interval between 0 and 1, emerged around the middle of the 17th century thanks to the work of two leading French mathematicians: Blaise Pascal and Pierre Fermat. According to a well-known anecdote: “a problem about games of chance proposed to an austere Jansenist by a man of the world was the origin of the calculus of probabilities”2. The ‘man of the world’ was the French gentleman Chevalier de Méré, a conspicuous figure at the court of Louis XIV, who asked Pascal—the ‘austere Jansenist’—the solution to some questions regarding gambling, such as how many dice tosses are needed to have a fair chance to obtain a double-six, or how the players should divide the stakes if a game is interrupted.
    [Show full text]
  • Tercentennial Anniversary of Bernoulli's Law of Large Numbers
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 3, July 2013, Pages 373–390 S 0273-0979(2013)01411-3 Article electronically published on March 28, 2013 TERCENTENNIAL ANNIVERSARY OF BERNOULLI’S LAW OF LARGE NUMBERS MANFRED DENKER 0 The importance and value of Jacob Bernoulli’s work was eloquently stated by Andre˘ı Andreyevich Markov during a speech presented to the Russian Academy of Science1 on December 1, 1913. Marking the bicentennial anniversary of the Law of Large Numbers, Markov’s words remain pertinent one hundred years later: In concluding this speech, I return to Jacob Bernoulli. His biogra- phers recall that, following the example of Archimedes he requested that on his tombstone the logarithmic spiral be inscribed with the epitaph Eadem mutata resurgo. This inscription refers, of course, to properties of the curve that he had found. But it also has a second meaning. It also expresses Bernoulli’s hope for resurrection and eternal life. We can say that this hope is being realized. More than two hundred years have passed since Bernoulli’s death but he lives and will live in his theorem. Indeed, the ideas contained in Bernoulli’s Ars Conjectandi have impacted many mathematicians since its posthumous publication in 1713. The twentieth century, in particular, has seen numerous advances in probability that can in some way be traced back to Bernoulli. It is impossible to survey the scope of Bernoulli’s influence in the last one hundred years, let alone the preceding two hundred. It is perhaps more instructive to highlight a few beautiful results and avenues of research that demonstrate the lasting effect of his work.
    [Show full text]
  • The Bernoullis and the Harmonic Series
    The Bernoullis and The Harmonic Series By Candice Cprek, Jamie Unseld, and Stephanie Wendschlag An Exciting Time in Math l The late 1600s and early 1700s was an exciting time period for mathematics. l The subject flourished during this period. l Math challenges were held among philosophers. l The fundamentals of Calculus were created. l Several geniuses made their mark on mathematics. Gottfried Wilhelm Leibniz (1646-1716) l Described as a universal l At age 15 he entered genius by mastering several the University of different areas of study. Leipzig, flying through l A child prodigy who studied under his father, a professor his studies at such a of moral philosophy. pace that he completed l Taught himself Latin and his doctoral dissertation Greek at a young age, while at Altdorf by 20. studying the array of books on his father’s shelves. Gottfried Wilhelm Leibniz l He then began work for the Elector of Mainz, a small state when Germany divided, where he handled legal maters. l In his spare time he designed a calculating machine that would multiply by repeated, rapid additions and divide by rapid subtractions. l 1672-sent form Germany to Paris as a high level diplomat. Gottfried Wilhelm Leibniz l At this time his math training was limited to classical training and he needed a crash course in the current trends and directions it was taking to again master another area. l When in Paris he met the Dutch scientist named Christiaan Huygens. Christiaan Huygens l He had done extensive work on mathematical curves such as the “cycloid”.
    [Show full text]
  • A Tricentenary History of the Law of Large Numbers
    Bernoulli 19(4), 2013, 1088–1121 DOI: 10.3150/12-BEJSP12 A Tricentenary history of the Law of Large Numbers EUGENE SENETA School of Mathematics and Statistics FO7, University of Sydney, NSW 2006, Australia. E-mail: [email protected] The Weak Law of Large Numbers is traced chronologically from its inception as Jacob Bernoulli’s Theorem in 1713, through De Moivre’s Theorem, to ultimate forms due to Uspensky and Khinchin in the 1930s, and beyond. Both aspects of Jacob Bernoulli’s Theorem: 1. As limit theorem (sample size n →∞), and: 2. Determining sufficiently large sample size for specified precision, for known and also unknown p (the inversion problem), are studied, in frequentist and Bayesian settings. The Bienaym´e–Chebyshev Inequality is shown to be a meeting point of the French and Russian directions in the history. Particular emphasis is given to less well-known aspects especially of the Russian direction, with the work of Chebyshev, Markov (the organizer of Bicentennial celebrations), and S.N. Bernstein as focal points. Keywords: Bienaym´e–Chebyshev Inequality; Jacob Bernoulli’s Theorem; J.V. Uspensky and S.N. Bernstein; Markov’s Theorem; P.A. Nekrasov and A.A. Markov; Stirling’s approximation 1. Introduction 1.1. Jacob Bernoulli’s Theorem Jacob Bernoulli’s Theorem was much more than the first instance of what came to be know in later times as the Weak Law of Large Numbers (WLLN). In modern notation Bernoulli showed that, for fixed p, any given small positive number ε, and any given large positive number c (for example c = 1000), n may be specified so that: arXiv:1309.6488v1 [math.ST] 25 Sep 2013 X 1 P p >ε < (1) n − c +1 for n n0(ε,c).
    [Show full text]
  • Jakob Bernoulli on the Law of Large Numbers
    Jakob Bernoulli On the Law of Large Numbers Translated into English by Oscar Sheynin Berlin 2005 Jacobi Bernoulli Ars Conjectandi Basileae, Impensis Thurnisiorum, Fratrum, 1713 Translation of Pars Quarta tradens Usum & Applicationem Praecedentis Doctrinae in Civilibus, Moralibus & Oeconomicis [The Art of Conjecturing; Part Four showing The Use and Application of the Previous Doctrine to Civil, Moral and Economic Affairs ] ISBN 3-938417-14-5 Contents Foreword 1. The Art of Conjecturing and Its Contents 2. The Art of Conjecturing, Part 4 2.1. Randomness and Necessity 2.2. Stochastic Assumptions and Arguments 2.3. Arnauld and Leibniz 2.4. The Law of Large Numbers 3. The Translations Jakob Bernoulli. The Art of Conjecturing; Part 4 showing The Use and Application of the Previous Doctrine to Civil, Moral and Economic Affairs Chapter 1. Some Preliminary Remarks about Certainty, Probability, Necessity and Fortuity of Things Chapter 2. On Arguments and Conjecture. On the Art of Conjecturing. On the Grounds for Conjecturing. Some General Pertinent Axioms Chapter 3. On Arguments of Different Kinds and on How Their Weights Are Estimated for Calculating the Probabilities of Things Chapter 4. On a Two-Fold Method of Investigating the Number of Cases. What Ought To Be Thought about Something Established by Experience. A Special Problem Proposed in This Case, etc Chapter 5. Solution of the Previous Problem Notes References Foreword 1. The Art of Conjecturing and Its Contents Jakob Bernoulli (1654 – 1705) was a most eminent mathematician, mechanician and physicist. His Ars Conjectandi (1713) (AC) was published posthumously with a Foreword by his nephew, Niklaus Bernoulli (English translation: David (1962, pp.
    [Show full text]
  • The Art of Conjecturing (Ars Conjectandi). on the Historical Origin of Normal Distribution [Rodowód Rozkładu Normalnego]
    DIDACTICS OF MATHEMATICS 7(11) The Publishing House of the Wrocław University of Economics Wrocław 2010 Editors Janusz Łyko Antoni Smoluk Referee Marian Matłoka (Uniwersytet Ekonomiczny w Poznaniu) Proof reading Agnieszka Flasińska Setting Elżbieta Szlachcic Cover design Robert Mazurczyk Front cover painting: W. Tank, Sower (private collection) © Copyright by the Wrocław University of Economics Wrocław 2010 PL ISSN 1733-7941 Print run: 200 copies TABLE OF CONTENTS MAREK BIERNACKI Applications of the integral in economics. A few simple examples for first-year students [Zastosowania całki w ekonomii] .......................................................... 5 PIOTR CHRZAN, EWA DZIWOK Matematyka jako fundament nowoczesnych finansów. Analiza problemu na podstawie doświadczeń związanych z uruchomieniem specjalności Master Program Quantitative Asset and Risk Management (ARIMA) [Mathematics as a foundation of modern finance] .............................................................................................. 15 BEATA FAŁDA, JÓZEF ZAJĄC Algebraiczne aspekty procesów ekonomicznych [Algebraical aspects of economics processes] .......................................................................................... 23 HELENA GASPARS-WIELOCH How to teach quantitative subjects at universities of economics in a comprehensible and pleasant way? [Jak uczyć ilościowych przedmiotów na uczelniach ekonomicznych w zrozumiały i przyjemny sposób?] ......................... 33 DONATA KOPAŃSKA-BRÓDKA Wspomaganie dydaktyki matematyki narzędziami informatyki
    [Show full text]
  • History of the Modern Probability Philosophy
    Open Journal of Philosophy, 2014, 4, 130-133 Published Online May 2014 in SciRes. http://www.scirp.org/journal/ojpp http://dx.doi.org/10.4236/ojpp.2014.42017 History of the Modern Probability Philosophy Seifedine Kadry American University of the Middle East, Egaila, Kuwait Email: [email protected] Received 27 January 2014; revised 27 February 2014; accepted 5 March 2014 Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The purpose of the paper is to introduce the evolution of modern probability from its birth in the seventeenth century onwards. Keywords Probability; History; Modern Probability 1. What Is Probability? Today probability is understood as a quantitative notion, expressed by a real number ranging in the interval be- tween 0 and 1. Probability values are determined in relation to a given body of evidence, conveying information that is relevant to the facts of which the probability is to be estimated. 2. The Notion of Probability The notion of probability so conceived is reputed to have come into existence in the decade around 1660, in connection to the work of Blaise Pascal and Pierre Fermat. Early on, probability was mainly taken to refer to the approval of an opinion on the part of experts. In an au- thoritative study focused on Thomas Aquinas, Edmund Byrne shows how in the Middle Ages probability was not so much linked to empirical evidence, as it concerned approval by people widely recognized as upright and respectable (Byrne, 1968).
    [Show full text]
  • Ars Conjectandi (1713) Jacob Bernoulli and the Founding of Mathematical Probability
    Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session IPS008) p.91 Tercentenary of Ars Conjectandi (1713) Jacob Bernoulli and the Founding of Mathematical Probability Edith Dudley Sylla North Carolina State University, Raleigh, North Carolina, USA Email: [email protected]. Abstract Jacob Bernoulli worked for many years on the manuscript of his book Ars Conjectandi, but it was incomplete when he died in 1705 at age 50. Only in 1713 was it published as he had left it. By then Pierre Rémond de Montmort had published his Essay d’analyse sur les jeux de hazard (1708), Jacob’s nephew, Nicholas Bernoulli, had written a master’s thesis on the use of the art of conjecture in law (1709), and Abraham De Moivre had published “De Mensura Sortis, seu de Probabilitate Eventuum in Ludis a Casu Fortuito Pendentibus” (1712). Nevertheless, Ars Conjectandi deserves to be considered the founding document of mathematical probability, for reasons explained in this paper. By the “art of conjecturing” Bernoulli meant an approach by which one could choose more appropriate, safer, more carefully considered, and, in a word, more probable actions in matters in which complete certainty is impossible. He believed that his proof of a new fundamental theorem – later called the weak law of large numbers – showed that the mathematics of games of chance could be extended to a wide range civil, moral, and economic problems. Gottfried Wilhelm Leibniz boasted that Bernoulli had taken up the mathematics of probability at his urging. Abraham De Moivre pursued the project that Bernoulli had begun, at the same time shifting the central meaning of probability to relative frequency.
    [Show full text]
  • View This Volume's Front and Back Matter
    Titles in This Series Volume 8 Kare n Hunger Parshall and David £. Rowe The emergenc e o f th e America n mathematica l researc h community , 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moore 1994 7 Hen k J. M. Bos Lectures in the history of mathematic s 1993 6 Smilk a Zdravkovska and Peter L. Duren, Editors Golden years of Moscow mathematic s 1993 5 Georg e W. Mackey The scop e an d histor y o f commutativ e an d noncommutativ e harmoni c analysis 1992 4 Charle s W. McArthur Operations analysis in the U.S. Army Eighth Air Force in World War II 1990 3 Pete r L. Duren, editor, et al. A century of mathematics in America, part III 1989 2 Pete r L. Duren, editor, et al. A century of mathematics in America, part II 1989 1 Pete r L. Duren, editor, et al. A century of mathematics in America, part I 1988 This page intentionally left blank https://doi.org/10.1090/hmath/008 History of Mathematics Volume 8 The Emergence o f the American Mathematical Research Community, 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moor e Karen Hunger Parshall David E. Rowe American Mathematical Societ y London Mathematical Societ y 1991 Mathematics Subject Classification. Primary 01A55 , 01A72, 01A73; Secondary 01A60 , 01A74, 01A80. Photographs o n th e cove r ar e (clockwis e fro m right ) th e Gottinge n Mathematisch e Ges - selschafft, Feli x Klein, J. J. Sylvester, and E. H. Moore.
    [Show full text]
  • Ars Conjectandi Three Hundred Years On
    Significance - Statistics making sense Bernoulli and the Foundations of Statistics. Can you correct a 300-year-old error? Julian Champkin Ars Conjectandi is not a book that non-statisticians will have heard of, nor one that many statisticians will have heard of either. The title means ‘The Art of Conjecturing’ – which in turn means roughly ‘What You Can Work Out From the Evidence.’ But it is worth statisticians celebrating it, because it is the book that gave an adequate mathematical foundation to their discipline, and it was published 300 years ago this year. More people will have heard of its author. Jacob Bernouilli was one of a huge mathematical family of Bernoullis. In physics, aircraft engineers base everything they do on Bernoulli’s principle. It explains how aircraft wings give lift, is the basis of fluid dynamics, and was discovered by Jacob’s nephew Daniel Bernoulli. Jacob Bernoulli (1654-1705) Johann Bernoulli made important advances in mathematical calculus. He was Jacob’s younger brother – the two fell out bitterly. Johann fell out with his fluid-dynamics son Daniel, too, and even falsified the date on a book of his own to try to show that he had discovered the principle first. But our statistical Bernoulli is Jacob. In the higher reaches of pure mathematics he is loved for Bernoulli numbers, which are fiendishly complicated things which I do not pretend to understand but which apparently underpin number theory. In statistics, his contribution was two-fold: Bernoulli trials are, essentially, coinflips repeated lots of times. Toss a fair coin ten times, and you might well get 6 heads and four tails rather than an exact 5/5 split.
    [Show full text]
  • CSHPM Bulletin, November 2016
    BULLETIN November/Novembre 2016 Number/le num´ero 59 WHAT’S INSIDE Articles Announcements ................................................................................................ 3 Interact with MAA Convergence [Janet Beery] .............................................................. 7 Joint AMS/MAA Meetings in Atlanta........................................................................ 9 Quotations in Context [Mike Molinsky] ...................................................................... 13 Grattan-Guinness Archival Research Travel Grants [Karen Parshall] ...................................... 14 Ohio Section 100th Annual Meeting [David Kullman]....................................................... 18 Three Societies in Edmonton [David Orenstein] ............................................................. 19 COMHISMA12 in Marrakech [Gregg de Young] ............................................................. 20 Jim Kiernan (1949–2014) [Walter Meyer]..................................................................... 22 Reports From the President [Dirk Schlimm] ........................................................................... 2 Executive Council Meeting CSHPM/ SCHPM............................................................... 9 2017 Call for Papers............................................................................................ 10 Annual General Meeting HSSFC [Amy Ackerberg-Hastings] ............................................... 15 AGM of CSHPM/SCHPM [Patricia Allaire] ................................................................
    [Show full text]