XIPE Yellow Book
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Service Delivery Systems to Farmers and Village Associations in the Zone of the Office De La Haute Vallee Du Niger
ANALYSIS OF SERVICE DELIVERY SYSTEMS TO FARMERS AND VILLAGE ASSOCIATIONS IN THE ZONE OF THE OFFICE DE LA HAUTE VALLEE DU NIGER Prepared by R. James Bingen Adama Berthe Brent Simpson Haute Valle Development Project USAID/Mai Project 688-0233 DAI Development Alternatives, Inc. TABLE OF CONTENTS Page EXECUTIVE SUMMARY ........................................ iii ACKNOWLEDGEMENTS ........................................ vii LIST OF ACRONYMS ........................................... viii I. INTRODUCTION ............................................. 1 Study O bjectives ......................................... 1 Study Approach ................................... ....... 2 Organization of the Report ................................. 2 I. TECHNOLOGY ASSESSMENT AND TECHNICAL SERVICES NEEDS ANALYSIS ................................ 3 Household Economic Portfolios ............................. 3 Issues ............................................ 8 Options ......................................... 10 III. ORGANIZATIONS AND THEIR CONTRIBUTIONS ................. 13 OH VN ............................................... 13 Extension .............................................. 13 Issues ........................................... 15 - Options ................................. ....... 20 Agricultural Equipment Supply and Credit ..................... 22 Issues ........................................... 23 Options ......................................... 24 Agricultural M arketing .................................... 24 Issues .......................................... -
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
Female Desire in the UK Teen Drama Skins
Female desire in the UK teen drama Skins An analysis of the mise-en-scene in ‘Sketch’ Marthe Kruijt S4231007 Bachelor thesis Dr. T.J.V. Vermeulen J.A. Naeff, MA 15-08-16 1 Table of contents Introduction………………………………..………………………………………………………...…...……….3 Chapter 1: Private space..............................................…….………………………………....….......…....7 1.1 Contextualisation of 'Sketch'...........................................................................................7 1.2 Gendered space.....................................................................................................................8 1.3 Voyeurism...............................................................................................................................9 1.4 Properties.............................................................................................................................11 1.5 Conclusions..........................................................................................................................12 Chapter 2: Public space....................……….…………………...……….….……………...…...…....……13 2.1 Desire......................................................................................................................................13 2.2 Confrontation and humiliation.....................................................................................14 2.3 Conclusions...........................................................................................................................16 Chapter 3: The in-between -
X-Ray and Gamma-Ray Variability of NGC 1275
galaxies Article X-ray and Gamma-ray Variability of NGC 1275 Varsha Chitnis 1,*,† , Amit Shukla 2,*,† , K. P. Singh 3 , Jayashree Roy 4 , Sudip Bhattacharyya 5, Sunil Chandra 6 and Gordon Stewart 7 1 Department of High Energy Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India 2 Discipline of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India 3 Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli 140306, India; [email protected] 4 Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411 007, India; [email protected] 5 Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; [email protected] 6 Centre for Space Research, North-West University, Potchefstroom 2520, South Africa; [email protected] 7 Department of Physics and Astronomy, The University of Leicester, University Road, Leicester LE1 7RH, UK; [email protected] * Correspondence: [email protected] (V.C.); [email protected] (A.S.) † These authors contributed equally to this work. Received: 30 June 2020; Accepted: 24 August 2020; Published: 28 August 2020 Abstract: Gamma-ray emission from the bright radio source 3C 84, associated with the Perseus cluster, is ascribed to the radio galaxy NGC 1275 residing at the centre of the cluster. Study of the correlated X-ray/gamma-ray emission from this active galaxy, and investigation of the possible disk-jet connection, are hampered because the X-ray emission, particularly in the soft X-ray band (2–10 keV), is overwhelmed by the cluster emission. -
115 Abell Galaxy Cluster # 373
WINTER Medium-scope challenges 271 # # 115 Abell Galaxy Cluster # 373 Target Type RA Dec. Constellation Magnitude Size Chart AGCS 373 Galaxy cluster 03 38.5 –35 27.0 Fornax – 180 ′ 5.22 Chart 5.22 Abell Galaxy Cluster (South) 373 272 Cosmic Challenge WINTER Nestled in the southeast corner of the dim early winter western suburbs. Deep photographs reveal that NGC constellation Fornax, adjacent to the distinctive triangle 1316 contains many dust clouds and is surrounded by a formed by 6th-magnitude Chi-1 ( 1), Chi-2 ( 2), and complex envelope of faint material, several loops of Chi-3 ( 3) Fornacis, is an attractive cluster of galaxies which appear to engulf a smaller galaxy, NGC 1317, 6 ′ known as Abell Galaxy Cluster – Southern Supplement to the north. Astronomers consider this to be a case of (AGCS) 373. In addition to his research that led to the galactic cannibalism, with the larger NGC 1316 discovery of more than 80 new planetary nebulae in the devouring its smaller companion. The merger is further 1950s, George Abell also examined the overall structure signaled by strong radio emissions being telegraphed of the universe. He did so by studying and cataloging from the scene. 2,712 galaxy clusters that had been captured on the In my 8-inch reflector, NGC 1316 appears as a then-new National Geographic Society–Palomar bright, slightly oval disk with a distinctly brighter Observatory Sky Survey taken with the 48-inch Samuel nucleus. NGC 1317, about 12th magnitude and 2 ′ Oschin Schmidt camera at Palomar Observatory. In across, is visible in a 6-inch scope, although averted 1958, he published the results of his study as a paper vision may be needed to pick it out. -
TYPHOON Observations of NGC 1365, NGC 1068, and The
MNRAS 479, 4907–4935 (2018) doi:10.1093/mnras/sty1676 Advance Access publication 2018 June 26 Starburst–AGN mixing: TYPHOON observations of NGC 1365, NGC 1068, and the effect of spatial resolution on the AGN fraction Downloaded from https://academic.oup.com/mnras/article-abstract/479/4/4907/5045261 by Da-Collect Chifley Library ANUC user on 17 December 2018 Joshua J. D’Agostino,1,2‹ Henry Poetrodjojo,1,2 I-Ting Ho,3 Brent Groves,1,2 Lisa Kewley,1,2 Barry F. Madore,4 Jeff Rich4 and Mark Seibert4 1Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston ACT 2611, Australia 2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) 3Max Planck Institute for Astronomy, Konigstuhl¨ 17, D-69117 Heidelberg, Germany 4Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St, Pasadena, CA 91101, USA Accepted 2018 June 22. Received 2018 June 22; in original form 2018 April 16 ABSTRACT We demonstrate a robust method of resolving the star formation and AGN contributions to emission lines using two very well known AGN systems: NGC 1365 and NGC 1068, using the high spatial resolution data from the TYPHOON/PrISM survey. We expand the previous method of calculating the AGN fraction by using theoretical-based model grids rather than empirical points. The high spatial resolution of the TYPHOON/PrISM observations shows evidence of both star formation and AGN activity occurring in the nuclei of the two galaxies. We rebin the data to the lower resolutions, typically found in other integral field spectroscopy surveys such as SAMI, MaNGA, and CALIFA. -
Executive Summary
The Boston University Astronomy Department Annual Report 2010 Chair: James Jackson Administrator: Laura Wipf 1 2 TABLE OF CONTENTS Executive Summary 5 Faculty and Staff 5 Teaching 6 Undergraduate Programs 6 Observatory and Facilities 8 Graduate Program 9 Colloquium Series 10 Alumni Affairs/Public Outreach 10 Research 11 Funding 12 Future Plans/Departmental Needs 13 APPENDIX A: Faculty, Staff, and Graduate Students 16 APPENDIX B: 2009/2010 Astronomy Graduates 18 APPENDIX C: Seminar Series 19 APPENDIX D: Sponsored Project Funding 21 APPENDIX E: Accounts Income Expenditures 25 APPENDIX F: Publications 27 Cover photo: An ultraviolet image of Saturn taken by Prof. John Clarke and his group using the Hubble Space Telescope. The oval ribbons toward the top and bottom of the image shows the location of auroral activity near Saturn’s poles. This activity is analogous to Earth’s aurora borealis and aurora australis, the so-called “northern” and “southern lights,” and is caused by energetic particles from the sun trapped in Saturn’s magnetic field. 3 4 EXECUTIVE SUMMARY associates authored or co-authored a total of 204 refereed, scholarly papers in the disciplines’ most The Department of Astronomy teaches science to prestigious journals. hundreds of non-science majors from throughout the university, and runs one of the largest astronomy degree The funding of the Astronomy Department, the Center programs in the country. Research within the for Space Physics, and the Institute for Astrophysical Astronomy Department is thriving, and we retain our Research was changed this past year. In previous years, strong commitment to teaching and service. only the research centers received research funding, but last year the Department received a portion of this The Department graduated a class of twelve research funding based on grant activity by its faculty. -
Solar Orbiter and Sentinels
HELEX: Heliophysical Explorers: Solar Orbiter and Sentinels Report of the Joint Science and Technology Definition Team (JSTDT) PRE-PUBLICATION VERSION 1 Contents HELEX Joint Science and Technology Definition Team .................................................................. 3 Executive Summary ................................................................................................................................. 4 1.0 Introduction ........................................................................................................................................ 6 1.1 Heliophysical Explorers (HELEX): Solar Orbiter and the Inner Heliospheric Sentinels ........ 7 2.0 Science Objectives .............................................................................................................................. 8 2.1 What are the origins of the solar wind streams and the heliospheric magnetic field? ............. 9 2.2 What are the sources, acceleration mechanisms, and transport processes of solar energetic particles? ........................................................................................................................................ 13 2.3 How do coronal mass ejections evolve in the inner heliosphere? ............................................. 16 2.4 High-latitude-phase science ......................................................................................................... 19 3.0 Measurement Requirements and Science Implementation ........................................................ 20 -
Particle Background for Equatorial Low Earth Orbit (ELEO)
Particle background for Equatorial Low Earth Orbit (ELEO) Yashvi Sharma August 11, 2020 1 Introduction An important consideration for X-ray and Gamma ray missions is the particle background environ- ment. Focusing telescopes with lower effective area are only background limited at the fainter end of sensitivity. On the other hand, collimators and concentrators have larger effective area hence there primary concern is to both limit and model the background to get better sensitivity. It can be achieved through employing shielding systems and careful modeling of radiation environment (see figure ?? for state of the art simulation efforts) and choosing the orbit in accordance with science objectives and background limitations. Low Earth Orbit (LEO) is the most commonly used orbit for imaging satellites, communication satellites (network) and many different space telescopes (Hubble, AGILE, ASTROSAT, etc.) and space stations (ISS, Tiangong-2). It is defined to be less than 2000 km in altitude or with less than 128 minutes period and with eccentricity within 0.25. Thus, it requires less energy for satellite placement (although does require frequent orbital corrections due to orbital decay), provides good bandwidth and low latency for communication (although the window for communication is short due to smaller orbits) and is more easily accessible for servicing of space stations and satellites. Moreover, it is between the Earth's upper atmosphere and inner Van Allen radiation belt to keep the high energy particle background to the minimum. Figure 1: Simulated background environment using MGGPOD 1 2 Particle Background for ELEO missions The particle background for an unshielded detector in LEO is primarily made up of cosmic diffuse radiation (below 150 keV) and albedo glow of Earth from interaction of cosmic rays with atmosphere (above 150 keV). -
The Distance to NGC 1316 \(Fornax
A&A 552, A106 (2013) Astronomy DOI: 10.1051/0004-6361/201220756 & c ESO 2013 Astrophysics The distance to NGC 1316 (Fornax A): yet another curious case,, M. Cantiello1,A.Grado2, J. P. Blakeslee3, G. Raimondo1,G.DiRico1,L.Limatola2, E. Brocato1,4, M. Della Valle2,6, and R. Gilmozzi5 1 INAF, Osservatorio Astronomico di Teramo, via M. Maggini snc, 64100 Teramo, Italy e-mail: [email protected] 2 INAF, Osservatorio Astronomico di Capodimonte, salita Moiariello, 80131 Napoli, Italy 3 Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria BC V82 3H3, Canada 4 INAF, Osservatorio Astronomico di Roma, via Frascati 33, Monte Porzio Catone, 00040 Roma, Italy 5 European Southern Observatory, Karl–Schwarzschild–Str. 2, 85748 Garching bei München, Germany 6 International Centre for Relativistic Astrophysics, Piazzale della Repubblica 2, 65122 Pescara, Italy Received 16 November 2012 / Accepted 14 February 2013 ABSTRACT Aims. The distance of NGC 1316, the brightest galaxy in the Fornax cluster, provides an interesting test for the cosmological distance scale. First, because Fornax is the second largest cluster of galaxies within 25 Mpc after Virgo and, in contrast to Virgo, has a small line-of-sight depth; and second, because NGC 1316 is the single galaxy with the largest number of detected Type Ia supernovae (SNe Ia), giving the opportunity to test the consistency of SNe Ia distances both internally and against other distance indicators. Methods. We measure surface brightness fluctuations (SBF) in NGC 1316 from ground- and space-based imaging data. The sample provides a homogeneous set of measurements over a wide wavelength interval. -
Figure-Of-Eight Velocity Curves: UGC 10205? J.C
AND Your thesaurus codes are: ASTROPHYSICS 03(11.09.1 UGC 10205; 11.11.1; 11.19.2; 11.19.6) 9.5.1997 Figure-of-eight velocity curves: UGC 10205? J.C. Vega1,E.M.Corsini2, A. Pizzella2, and F. Bertola2 1 Telescopio Nazionale Galileo, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy 2 Dipartimento di Astronomia, Universit`a di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy Received..................; accepted................... Abstract. We measured the velocity curve Boulesteix 1996). and the velocity dispersion profile of the ion- In the inner regions of the Sc NGC 5907 Miller ized gas along the major axis of the edge-on & Rubin (1995) observed double-valued ion- galaxy UGC 10205. The observed kinematics ized gas emissions. They attributed the higher extends up to about 4000 from the nucleus. In velocity system to disk gas near the nucleus, the inner ±1300 of this early-type spiral three and the lower velocity system to an outer kinematically distinct gaseous components are gas ring. Although these two gas components present. We disentangle a fast-rotating and are supposed to be spatially distinct, they are a slow-rotating component. They give to the viewed superimposed along the line-of-sight on UGC 10205 velocity curve a “figure-of-eight” account of NGC 5907 high inclination. appearance. A third velocity component is The spirals NGC 5746 (Kuijken & Merrifield also detected on the southeast side of the 1995; Bureau & Freeman 1996), NGC 5965 galaxy. Possibly it is produced by gas in non- (Kuijken & Merrifield 1995), IC 5096 (Bureau circular motions. -
DGSAT: Dwarf Galaxy Survey with Amateur Telescopes
Astronomy & Astrophysics manuscript no. arxiv30539 c ESO 2017 March 21, 2017 DGSAT: Dwarf Galaxy Survey with Amateur Telescopes II. A catalogue of isolated nearby edge-on disk galaxies and the discovery of new low surface brightness systems C. Henkel1;2, B. Javanmardi3, D. Mart´ınez-Delgado4, P. Kroupa5;6, and K. Teuwen7 1 Max-Planck-Institut f¨urRadioastronomie, Auf dem H¨ugel69, 53121 Bonn, Germany 2 Astronomy Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 3 Argelander Institut f¨urAstronomie, Universit¨atBonn, Auf dem H¨ugel71, 53121 Bonn, Germany 4 Astronomisches Rechen-Institut, Zentrum f¨urAstronomie, Universit¨atHeidelberg, M¨onchhofstr. 12{14, 69120 Heidelberg, Germany 5 Helmholtz Institut f¨ur Strahlen- und Kernphysik (HISKP), Universit¨at Bonn, Nussallee 14{16, D-53121 Bonn, Germany 6 Charles University, Faculty of Mathematics and Physics, Astronomical Institute, V Holeˇsoviˇck´ach 2, CZ-18000 Praha 8, Czech Republic 7 Remote Observatories Southern Alps, Verclause, France Received date ; accepted date ABSTRACT The connection between the bulge mass or bulge luminosity in disk galaxies and the number, spatial and phase space distribution of associated dwarf galaxies is a dis- criminator between cosmological simulations related to galaxy formation in cold dark matter and generalised gravity models. Here, a nearby sample of isolated Milky Way- class edge-on galaxies is introduced, to facilitate observational campaigns to detect the associated families of dwarf galaxies at low surface brightness. Three galaxy pairs with at least one of the targets being edge-on are also introduced. Approximately 60% of the arXiv:1703.05356v2 [astro-ph.GA] 19 Mar 2017 catalogued isolated galaxies contain bulges of different size, while the remaining objects appear to be bulgeless.