The Molecular Balancing Act of P16 in Cancer and Aging

Total Page:16

File Type:pdf, Size:1020Kb

The Molecular Balancing Act of P16 in Cancer and Aging Published OnlineFirst October 17, 2013; DOI: 10.1158/1541-7786.MCR-13-0350 Molecular Cancer Review Research The Molecular Balancing Act of p16INK4a in Cancer and Aging Kyle M. LaPak1 and Christin E. Burd1,2 Abstract p16INK4a, located on chromosome 9p21.3, is lost among a cluster of neighboring tumor suppressor genes. Although it is classically known for its capacity to inhibit cyclin-dependent kinase (CDK) activity, p16INK4a is not just a one-trick pony. Long-term p16INK4a expression pushes cells to enter senescence, an irreversible cell-cycle arrest that precludes the growth of would-be cancer cells but also contributes to cellular aging. Importantly, loss of p16INK4a is one of the most frequent events in human tumors and allows precancerous lesions to bypass senescence. Therefore, precise regulation of p16INK4a is essential to tissue homeostasis, maintaining a coordinated balance between tumor suppression and aging. This review outlines the molecular pathways critical for proper p16INK4a regulation and emphasizes the indispensable functions of p16INK4a in cancer, aging, and human physiology that make this gene special. Mol Cancer Res; 12(2); 167–83. Ó2013 AACR. Introduction frames (ORF) to yield two distinct proteins: p16INK4a and ARF ARF Every day, we depend on our cells to make the right ARF (p14 in humans and p19 in mice). In addition to — CDKN2A,theINK4/ARF locus encodes a third tumor decision to divide or not to divide. Proliferation is essential INK4b for tissue homeostasis, but, when deregulated, it can both suppressor protein, p15 ,justupstreamoftheARF promoter (3). Discovered through homology-based cDNA promote cancer and lead to aging. For this reason, the INK4b INK4a decision to replicate is tightly controlled by a complex library screens, p15 functions analogously to p16 , – directly blocking the interaction of CDK4/6 with D-type network of cell-cycle regulatory proteins. In the early INK4b INK4a 1990s, it was clear that the catalytic activity of cyclin- cyclins (2, 3). In contrast to p15 and p16 ,which dependent kinases (CDKs) was required to drive cellular function to inhibit RB phosphorylation, ARF expression division. Less obvious were the signals that regulate CDK stabilizes and thereby activates another tumor suppressor, activity and how these became altered in neoplastic disease. p53 (5, 6). Like the INK family of inhibitors, p53 functions to In an attempt to address this very question, Beach and block inappropriate proliferation and cellular transformation. colleagues made the observation that CDK4 bound a dis- Through a poorly understood mechanism, likely dependent tinct, 16-kDa protein in cells transduced with a viral onco- upon cell type and transcriptional output, p53 activation can gene (1). Biochemical characterization of this protein, later trigger either apoptosis or cell-cycle arrest (7). A fourth INK4/ named p16INK4a, placed it amongst the INK4-class of cell- ARF transcript, ANRIL (Antisense Noncoding RNA in the cycle inhibitors, which bind directly to CDK4 and CDK6, INK4/ARF Locus), was recently discovered in a familial blocking phosphorylation of the retinoblastoma tumor sup- melanoma kindred with neural system tumors (8). The ANRIL transcript runs antisense to p15INK4b and encodes a pressor (RB) and subsequent traversal of the G1/S cell-cycle checkpoint (Fig. 1A; refs 2, 3). In the presence of various long, noncoding RNA elevated in prostate cancer and leu- stressors (e.g., oncogenic signaling, DNA damage), p16INK4a kemia (9, 10). ANRIL is proposed to function as an epigenetic expression blocks inappropriate cellular division, and pro- regulator of INK4/ARF gene transcription, targeting histone- longed induction of p16INK4a leads to an irreversible cell- modifying enzymes to the locus (see the Discussion section). cycle arrest termed "cellular senescence". In summary, the INK4/ARF locus is a relatively small (110 The gene encoding p16INK4a, CDKN2A,lieswithinthe kb), but complex locus, essential to the proper maintenance of INK4/ARF tumor suppressor locus on human chromosome cell-cycle control and tumor suppression. In this review, we 9p21.3 (Fig. 1B). CDKN2A encodes two transcripts with focus on the founding member of the INK4/ARF locus, p16INK4a, and discuss what is known and unknown about alternative transcriptional start sites (4). Both transcripts share INK4a exons 2 and 3, but are translated in different open reading p16 regulation in cancer and aging. CDK4/6-independent roles of p16INK4a INK4a Authors' Affiliations: Departments of 1Molecular Genetics and 2Molecular Several lines of evidence suggest that p16 may and Cellular Biochemistry, The Ohio State University, Columbus, Ohio function both through CDK4/6-dependent and -indepen- – Corresponding Author: Christin E. Burd, Biomedical Research Tower, Rm dent mechanisms to regulate the cell cycle. CYCLIN D 586, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210. CDK4/6 complexes are stabilized by interactions with the Phone: 614-688-7569; Fax: 614-292-6356; E-mail: [email protected] CDK2 inhibitors, p21CIP1, p27KIP1, and p57KIP2, and serve doi: 10.1158/1541-7786.MCR-13-0350 to titrate these proteins away from CDK2 (11–14). Subse- INK4a INK4b Ó2013 American Association for Cancer Research. quent expression of p16 or p15 causes these www.aacrjournals.org 167 Downloaded from mcr.aacrjournals.org on October 1, 2021. © 2014 American Association for Cancer Research. Published OnlineFirst October 17, 2013; DOI: 10.1158/1541-7786.MCR-13-0350 LaPak and Burd Figure 1. Function, structure, and polymorphisms of the INK4/ARF locus. A, p15INK4b and p16INK4a both function in the RB tumor suppressor pathway through inhibition of CDK4/6 activity. Expression of p14ARF inhibits the E3 ubiquitin ligase activity of MDM2, leading to stabilization of p53. The p53 and RB pathways play integral roles in blocking inappropriate cellular proliferation. B, packed into 35 kb of chromosome 9p21.3 are three well-characterized tumor ARF INK4b INK4a suppressor genes: p14 , p15 , and p16 . GWAS have implicated 9p21.3 SNPs in cancer, heart disease, glaucoma, type 2 diabetes, autism, and endometriosis. The majority of the SNPs lie outside of the coding regions in a recently discovered long, noncoding RNA, ANRIL.Ofthe identified SNPs, those that have been shown to correlate with CDKN2A expression in at least one study are filled with gray. Other SNPs that have not been correlated with CDKN2A expression in validation studies, or have yet to be examined are filled with black or white, respectively. complexes to disassociate, releasing sequestered CDK2 inhi- or p19INK4d) develop normally, and are born at expected bitors (15). This process, known as "CDK inhibitor re- mendelian ratios (23–25). In contrast, p18INK4c KOs are shuffling", has been documented in a growing list of cell characterized by organomegaly; yet, the association of lines, and several lines of evidence support the biologic p27KIP1 with CDK2 complexes is unchanged in these relevance of this model. Mice harboring kinase-dead Cdk4 animals (26). Work examining combined loss of p15INK4b or Cyclin D1 alleles that retain p27KIP1-binding capacity and p18INK4c (24) or p27KIP1 and p18INK4c (26) in mice (Cyclin D1K112E, Cdk4D158N) display heightened CDK2 suggests that distinct mechanisms are used by each inhibitor activity (16–18) and fewer developmental defects than to control cellular proliferation. This result is in contrast to Cyclin D1 knockouts (KOs). The same observation holds the CDK inhibitor reshuffling model wherein co-deletion true for a Cyclin D1 knockin mutation incapable of binding would be predicted to concertedly promote CDK2 activity. D RB (Cyclin D1 LxCxE; ref. 19). As such, it is not surprising However, it is important to note that none of these pub- that p27KIP1 deletion can rescue the retinal hypoplasia and lications contest the fact that CDK2 inhibitors bind early mortality phenotypes of Cyclin D1-null mice (20, 21). CYCLIN D–CDK4/6 complexes and are released upon More recently, the biologic relevance of CDK inhibitor p16INK4a expression. Moreover, recent findings suggest that reshuffling has come under scrutiny. Knockin mice harbor- p16INK4a may contribute to cell-cycle regulation through ing p16INK4a-insensitive Cdk4 and Cdk6 alleles still capable additional CDK-independent mechanisms. Specifically, of binding p27KIP1 (Cdk6R31C and Cdk4R21C, respectively) expression of p16INK4a has been reported to stabilize do not display the phenotypes predicted by this model p21CIP1, and may inhibit the AUF1-dependent decay of (18, 22). The decreased p16INK4a-binding capacity of these p21CIP1, cyclin D1, and e2f1 mRNA (27, 28). As a whole, mutants should promote p27KIP1 sequestration and these data provide evidence that the cell-cycle–related func- enhanced CDK2 activity, but neither cells from the liver tions of p16INK4a may extend beyond CDK4/6 inhibition to or testes of Cdk4R21C mice show changes in the composition include the regulation of other CDK-CYCLIN targets. of CDK2–Cyclin complexes, nor do thymocytes harboring the Cdk6R31C allele (18, 22). These data suggest that, in at Transcriptional, Translational, and Epigenetic p16INK4a least a subset of cell types, the kinase activity of CDK4/6 is Regulation of predominantly responsible for proliferative control. KO To maintain tissue homeostasis and prevent cancer, the mice lacking a single CDK4/6 inhibitor (p16INK4a, p15INK4b ability of p16INK4a to inhibit cellular proliferation must be 168 Mol Cancer Res; 12(2) February 2014 Molecular Cancer Research
Recommended publications
  • INK4 Locus of the Tumor-Resistant Rodent, the Naked Mole Rat, Expresses a Functional P15/P16 Hybrid Isoform
    INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform Xiao Tiana,1, Jorge Azpuruaa,1,2, Zhonghe Kea, Adeline Augereaub, Zhengdong D. Zhangc, Jan Vijgc, Vadim N. Gladyshevb, Vera Gorbunovaa,3, and Andrei Seluanova,3 aDepartment of Biology, University of Rochester, Rochester, NY 14627; bBrigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and cAlbert Einstein College of Medicine, Bronx, NY 10461 Edited* by Eviatar Nevo, Institute of Evolution, Haifa, Israel, and approved December 1, 2014 (received for review September 21, 2014) The naked mole rat (Heterocephalus glaber) is a long-lived and because, in mammals, it encodes three distinct tumor suppressors: tumor-resistant rodent. Tumor resistance in the naked mole rat p16INK4a, p15INK4b, and p19ARF (p14ARF in human) (9). These is mediated by the extracellular matrix component hyaluronan three proteins coordinate a signaling network that depends on of very high molecular weight (HMW-HA). HMW-HA triggers hy- the activities of the retinoblastoma protein (RB) and the p53 persensitivity of naked mole rat cells to contact inhibition, which is tumor suppressor protein. The p16INK4a and p15INK4b pro- associated with induction of the INK4 (inhibitors of cyclin depen- teins are cyclin-dependent kinase inhibitors that directly in- dent kinase 4) locus leading to cell-cycle arrest. The INK4a/b locus is hibit the binding of cyclins to their target cyclin-dependent among the most frequently mutated in human cancer. This locus kinases (10). p16INK4a is involved in establishing replicative encodes three distinct tumor suppressors: p15INK4b, p16INK4a, and senescence, oncogene-induced senescence, and stress-induced INK4b ARF (alternate reading frame).
    [Show full text]
  • Jun Dimerization Protein 2 Activates Mc2r Transcriptional Activity: Role of Phosphorylation and Sumoylation
    International Journal of Molecular Sciences Article Jun Dimerization Protein 2 Activates Mc2r Transcriptional Activity: Role of Phosphorylation and SUMOylation Chiung-Min Wang 1, Raymond X. Wang 1, Runhua Liu 2 and Wei-Hsiung Yang 1,* 1 Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; [email protected] (C.-M.W.); [email protected] (R.X.W.) 2 Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-912-721-8203; Fax: +1-912-721-8268 Academic Editor: William Chi-shing Cho Received: 15 December 2016; Accepted: 26 January 2017; Published: 31 January 2017 Abstract: Jun dimerization protein 2 (JDP2), a basic leucine zipper transcription factor, is involved in numerous biological and cellular processes such as cancer development and regulation, cell-cycle regulation, skeletal muscle and osteoclast differentiation, progesterone receptor signaling, and antibacterial immunity. Though JDP2 is widely expressed in mammalian tissues, its function in gonads and adrenals (such as regulation of steroidogenesis and adrenal development) is largely unknown. Herein, we find that JDP2 mRNA and proteins are expressed in mouse adrenal gland tissues. Moreover, overexpression of JDP2 in Y1 mouse adrenocortical cancer cells increases the level of melanocortin 2 receptor (MC2R) protein. Notably, Mc2r promoter activity is activated by JDP2 in a dose-dependent manner. Next, by mapping the Mc2r promoter, we show that cAMP response elements (between −1320 and −720-bp) are mainly required for Mc2r activation by JDP2 and demonstrate that −830-bp is the major JDP2 binding site by real-time chromatin immunoprecipitation (ChIP) analysis.
    [Show full text]
  • Single Cell Transcriptomics Reveal Temporal Dynamics of Critical Regulators of Germ Cell Fate During Mouse Sex Determination
    bioRxiv preprint doi: https://doi.org/10.1101/747279; this version posted November 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Single cell transcriptomics reveal temporal dynamics of critical regulators of germ 2 cell fate during mouse sex determination 3 Authors: Chloé Mayère1,2, Yasmine Neirijnck1,3, Pauline Sararols1, Chris M Rands1, 4 Isabelle Stévant1,2, Françoise Kühne1, Anne-Amandine Chassot3, Marie-Christine 5 Chaboissier3, Emmanouil T. Dermitzakis1,2, Serge Nef1,2,*. 6 Affiliations: 7 1Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, 8 Switzerland; 9 2iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 10 Geneva, Switzerland; 11 3Université Côte d'Azur, CNRS, Inserm, iBV, France; 12 Lead Contact: 13 *Corresponding Author: Serge Nef, 1 rue Michel-Servet CH-1211 Genève 4, 14 [email protected]. + 41 (0)22 379 51 93 15 Running Title: Single cell transcriptomics of germ cells 1 bioRxiv preprint doi: https://doi.org/10.1101/747279; this version posted November 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abbreviations; 17 AGC: Adrenal Germ Cell 18 GC: Germ cell 19 OGC: Ovarian Germ Cell 20 TGC: Testicular Germ Cell 21 scRNA-seq: Single-cell RNA-Sequencing 22 DEG: Differentially Expressed Gene 23 24 25 Keywords: 26 Single-cell RNA-Sequencing (scRNA-seq), sex determination, ovary, testis, gonocytes, 27 oocytes, prospermatogonia, meiosis, gene regulatory network, germ cells, development, 28 RNA splicing 29 2 bioRxiv preprint doi: https://doi.org/10.1101/747279; this version posted November 2, 2020.
    [Show full text]
  • Multifactorial Erβ and NOTCH1 Control of Squamous Differentiation and Cancer
    Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer Yang Sui Brooks, … , Karine Lefort, G. Paolo Dotto J Clin Invest. 2014;124(5):2260-2276. https://doi.org/10.1172/JCI72718. Research Article Oncology Downmodulation or loss-of-function mutations of the gene encoding NOTCH1 are associated with dysfunctional squamous cell differentiation and development of squamous cell carcinoma (SCC) in skin and internal organs. While NOTCH1 receptor activation has been well characterized, little is known about how NOTCH1 gene transcription is regulated. Using bioinformatics and functional screening approaches, we identified several regulators of the NOTCH1 gene in keratinocytes, with the transcription factors DLX5 and EGR3 and estrogen receptor β (ERβ) directly controlling its expression in differentiation. DLX5 and ERG3 are required for RNA polymerase II (PolII) recruitment to the NOTCH1 locus, while ERβ controls NOTCH1 transcription through RNA PolII pause release. Expression of several identified NOTCH1 regulators, including ERβ, is frequently compromised in skin, head and neck, and lung SCCs and SCC-derived cell lines. Furthermore, a keratinocyte ERβ–dependent program of gene expression is subverted in SCCs from various body sites, and there are consistent differences in mutation and gene-expression signatures of head and neck and lung SCCs in female versus male patients. Experimentally increased ERβ expression or treatment with ERβ agonists inhibited proliferation of SCC cells and promoted NOTCH1 expression and squamous differentiation both in vitro and in mouse xenotransplants. Our data identify a link between transcriptional control of NOTCH1 expression and the estrogen response in keratinocytes, with implications for differentiation therapy of squamous cancer. Find the latest version: https://jci.me/72718/pdf Research article Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer Yang Sui Brooks,1,2 Paola Ostano,3 Seung-Hee Jo,1,2 Jun Dai,1,2 Spiro Getsios,4 Piotr Dziunycz,5 Günther F.L.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/26/2021 02:04:00PM Via Free Access
    26 1 Endocrine-Related N Portman et al. CDK4/6 inhibitor resistance in 26:1 R15–R30 Cancer breast cancer REVIEW Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer Neil Portman1,2, Sarah Alexandrou1,2, Emma Carson1,2, Shudong Wang3, Elgene Lim1,2 and C Elizabeth Caldon1,2 1The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia 2St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia 3Centre for Drug Discovery and Development, Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia Correspondence should be addressed to C E Caldon: [email protected] Abstract Three inhibitors of CDK4/6 kinases were recently FDA approved for use in combination Key Words with endocrine therapy, and they significantly increase the progression-free survival of f CDK4/6 inhibitors patients with advanced estrogen receptor-positive (ER+) breast cancer in the first-line f estrogen receptor treatment setting. As the new standard of care in some countries, there is the clinical f breast cancer emergence of patients with breast cancer that is both CDK4/6 inhibitor and endocrine f endocrine therapy therapy resistant. The strategies to combat these cancers with resistance to multiple treatments are not yet defined and represent the next major clinical challenge in ER+ breast cancer. In this review, we discuss how the molecular landscape of endocrine therapy resistance may affect the response to CDK4/6 inhibitors, and how this intersects with biomarkers of intrinsic insensitivity. We identify the handful of pre-clinical models of acquired resistance to CDK4/6 inhibitors and discuss whether the molecular changes in these models are likely to be relevant or modified in the context of endocrine therapy resistance.
    [Show full text]
  • The Role of Dlx3 in Gene Regulation in the Mouse Placenta
    The role of Dlx3 in gene regulation in the mouse placenta by Li Han This thesis/dissertation document has been electronically approved by the following individuals: Roberson,Mark Stephen (Chairperson) Wolfner,Mariana Federica (Minor Member) Cohen,Paula (Field Appointed Minor Member) Weiss,Robert S. (Field Appointed Minor Member) THE ROLE OF DLX3 IN GENE REGULATION IN THE MOUSE PLACENTA A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Li Han August 2010 © 2010 Li Han THE ROLE OF DLX3 IN GENE REGULATION IN THE MOUSE PLACENTA Li Han, Ph. D. Cornell University 2010 Distal-less 3 (Dlx3) is a homeodomain containing transcription factor that is required for the normal development of the mouse placenta. Moreover in human trophoblasts, DLX3 appears to be a necessary transcriptional regulator of the glycoprotein hormone α subunit gene, a protein subunit of placental-derived chorionic gonadotropin. The aim of my studies described here was to determine the role of Dlx3 in gene regulation within the placenta. My studies initially sought to determine if Dlx3 could interact physically with other transcriptional regulators in placental trophoblast cells and how these protein- protein interactions might influence Dlx3-dependent gene expression. Yeast two- hybrid screens provide evidence that mothers against decapentaplegic homolog 6 (SMAD6) was a binding partner for DLX3. SMAD6 was found to be expressed and nuclear localized in placental trophoblasts and interacted directly with DLX3. Structure-function analysis revealed that this interaction occurred within a DLX3 domain that overlapped the homeobox, a key domain necessary for DLX3 DNA binding.
    [Show full text]
  • The Structural Basis for Selective Binding of Non-Methylated Cpg Islands by the CFP1 CXXC Domain
    ARTICLE Received 13 Dec 2010 | Accepted 9 Feb 2011 | Published 8 Mar 2011 DOI: 10.1038/ncomms1237 The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain Chao Xu1,*, Chuanbing Bian1,*, Robert Lam1, Aiping Dong1 & Jinrong Min1,2 CFP1 is a CXXC domain-containing protein and an essential component of the SETD1 histone H3K4 methyltransferase complex. CXXC domain proteins direct different chromatin-modifying activities to various chromatin regions. Here, we report crystal structures of the CFP1 CXXC domain in complex with six different CpG DNA sequences. The crescent-shaped CFP1 CXXC domain is wedged into the major groove of the CpG DNA, distorting the B-form DNA, and interacts extensively with the major groove of the DNA. The structures elucidate the molecular mechanism of the non-methylated CpG-binding specificity of the CFP1 CXXC domain. The CpG motif is confined by a tripeptide located in a rigid loop, which only allows the accommodation of the non-methylated CpG dinucleotide. Furthermore, we demonstrate that CFP1 has a preference for a guanosine nucleotide following the CpG motif. 1 Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada. 2 Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to J.M. (email: [email protected]). NATURE COMMUNICATIONS | 2:227 | DOI: 10.1038/ncomms1237 | www.nature.com/naturecommunications © 2011 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1237 pG islands contain a high density of CpG content and embrace the promoters of most genes in vertebrate genomes1.
    [Show full text]
  • The P16 (Cdkn2a/Ink4a) Tumor-Suppressor Gene in Head
    The p16 (CDKN2a/INK4a) Tumor-Suppressor Gene in Head and Neck Squamous Cell Carcinoma: A Promoter Methylation and Protein Expression Study in 100 Cases Lingbao Ai, M.D., Krystal K. Stephenson, Wenhua Ling, M.D., Chunlai Zuo, M.D., Perkins Mukunyadzi, M.D., James Y. Suen, M.D., Ehab Hanna, M.D., Chun-Yang Fan, M.D., Ph.D. Departments of Pathology (LA, KKS, CZ, PM, CYF) and Otolaryngology-Head and Neck Surgery (CYF, JYS, EH), University of Arkansas for Medical Sciences; and School of Public Health (LA, WL), Sun-Yat Sen University, Guangzhou, China apparent loss of p16 protein expression appears to The p16 (CDKN2a/INK4a) gene is an important be an independent prognostic factor, although loss tumor-suppressor gene, involved in the p16/cyclin- of p16 protein may be used to predict overall pa- dependent kinase/retinoblastoma gene pathway of tient survival in early-stage head and neck squa- cell cycle control. The p16 protein is considered to mous cell carcinoma. be a negative regulator of the pathway. The gene encodes an inhibitor of cyclin-dependent kinases 4 KEY WORDS: Gene inactivation, Head and and 6, which regulate the phosphorylation of reti- neck squamous cell carcinoma, p16, Promoter noblastoma gene and the G1 to S phase transition of hypermethylation. the cell cycle. In the present study, p16 gene pro- Mod Pathol 2003;16(9):944–950 moter hypermethylation patterns and p16 protein expression were analyzed in 100 consecutive un- The development of head and neck squamous cell treated cases of primary head and neck squamous carcinoma is believed to be a multistep process, in cell carcinoma by methylation-specific PCR and im- which genetic and epigenetic events accumulate as munohistochemical staining.
    [Show full text]
  • CDK1/Cyclin A2, Active (C0244)
    CDK1/Cyclin A2, active, GST-tagged, human PRECISIOÒ Kinase recombinant, expressed in Sf9 cells Catalog Number C0244 Storage Temperature –70 °C Synonyms: Figure 1. CDK1: CDC2, CDC28A, DKFZp686L20222, SDS-PAGE Gel of Typical Lot: MGC111195 ³70% (SDS-PAGE, densitometry) Cyclin A2: CCN1, CCNA 170 130 Product Description 95 Cyclin A2 CDK1 or Cell Division Control protein 1 is essential for 72 the completion of START, the controlling event in the 56 CDK1 cell cycle that is required to initiate mitosis. CDK1 is a 43 catalytic subunit of a protein kinase complex, called the M-Phase Promoting Factor that induces entry into 34 mitosis and is universal among eukaryotes.1 Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves Figure 2. a CDK1-mediated signal and delays the onset of Specific Activity of Typical Lot: apoptosis. Therapeutic potential of the CDK inhibitor, 151–205 nmole/min/mg NU2058, in androgen-independent prostate cancer has also been demonstrated.2 520,000 This recombinant product was expressed by 390,000 baculovirus in Sf9 insect cells using an N-terminal cpm) GST-tag. The gene accession numbers are NM 001786 260,000 and NM 001237. It is supplied in 50 mM Tris-HCl, 130,000 pH 7.5, with 150 mM NaCl, 0.25 mM DTT, 0.1 mM Activity ( EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% 0 glycerol. 0 40 80 120 160 Protein (ng) Molecular mass: CDK1 ~59 kDa Procedure Cyclin A2 ~78 kDa Preparation Instructions Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM Precautions and Disclaimer glycerol 2-phosphate, 25 mM MgCl2, 5 mM EGTA, and This product is for R&D use only, not for drug, 2 mM EDTA.
    [Show full text]
  • The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression
    International Journal of Molecular Sciences Review The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression Tingting Zou and Zhenghong Lin * School of Life Sciences, Chongqing University, Chongqing 401331, China; [email protected] * Correspondence: [email protected] Abstract: The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs. Keywords: cell cycle regulation; CDKs; cyclins; CKIs; UPS; E3 ubiquitin ligases; Deubiquitinases (DUBs) Citation: Zou, T.; Lin, Z. The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. 1. Introduction Int. J. Mol. Sci. 2021, 22, 5754. https://doi.org/10.3390/ijms22115754 The cell cycle is a ubiquitous, complex, and highly regulated process that is involved in the sequential events during which a cell duplicates its genetic materials, grows, and di- Academic Editors: Kwang-Hyun Bae vides into two daughter cells.
    [Show full text]
  • Involvement of the Cyclin-Dependent Kinase Inhibitor P16 (Ink4a) in Replicative Senescence of Normal Human Fibroblasts
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13742–13747, November 1996 Biochemistry Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts DAVID A. ALCORTA*†,YUE XIONG‡,DAWN PHELPS‡,GREG HANNON§,DAVID BEACH§, AND J. CARL BARRETT* *Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; ‡Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599; and §Howard Hughes Medical Institute, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724 Communicated by Raymond L. Erickson, Harvard University, Cambridge, MA, September 19, 1996 (received for review on May 15, 1996) ABSTRACT Human diploid fibroblasts (HDFs) can be viewed in ref. 5). In senescent fibroblasts, CDK2 is catalytically grown in culture for a finite number of population doublings inactive and the protein down-regulated (7). CDK4 is also before they cease proliferation and enter a growth-arrest state reported to be down-regulated in senescent cells (8), while the termed replicative senescence. The retinoblastoma gene prod- status of CDK6 has not been previously addressed. The uct, Rb, expressed in these cells is hypophosphorylated. To activating cyclins for these CDKs, cyclins D1 and E, are present determine a possible mechanism by which senescent human in senescent cells at similar or elevated levels relative to early fibroblasts maintain a hypophosphorylated Rb, we examined passage cells (8). A role of the CDK inhibitors in senescence the expression levels and interaction of the Rb kinases, CDK4 was revealed by the isolation of a cDNA of a highly expressed and CDK6, and the cyclin-dependent kinase inhibitors p21 message in senescent cells that encoded the CDK inhibitor, p21 and p16 in senescent HDFs.
    [Show full text]
  • Infrequent Methylation of CDKN2A(Mts1p16) and Rare Mutation of Both CDKN2A and CDKN2B(Mts2ip15) in Primary Astrocytic Tumours
    British Joumal of Cancer (1997) 75(1), 2-8 © 1997 Cancer Research Campaign Infrequent methylation of CDKN2A(MTS1p16) and rare mutation of both CDKN2A and CDKN2B(MTS2Ip15) in primary astrocytic tumours EE Schmidt, K Ichimura, KR Messerle, HM Goike and VP Collins Institute for Oncology and Pathology, Division of Tumour Pathology, and Ludwig Institute for Cancer Research, Stockholm Branch, Karolinska Hospital, S-171 76 Stockholm, Sweden Summary In a series of 46 glioblastomas, 16 anaplastic astrocytomas and eight astrocytomas, all tumours retaining one or both alleles of CDKN2A (48 tumours) and CDKN2B (49 tumours) were subjected to sequence analysis (entire coding region and splice acceptor and donor sites). One glioblastoma with hemizygous deletion of CDKN2A showed a missense mutation in exon 2 (codon 83) that would result in the substitution of tyrosine for histidine in the protein. None of the tumours retaining alleles of CDKN2B showed mutations of this gene. Glioblastomas with retention of both alleles of CDKN2A (14 tumours) and CDKN2B (16 tumours) expressed transcripts for these genes. In contrast, 7/13 glioblastomas with hemizygous deletions of CDKN2A and 8/11 glioblastomas with hemizygous deletions of CDKN2B showed no or weak expression. Anaplastic astrocytomas and astrocytomas showed a considerable variation in the expression of both genes, regardless of whether they retained one or two copies of the genes. The methylation status of the 5' CpG island of the CDKN2A gene was studied in all 15 tumours retaining only one allele of CDKN2A as well as in the six tumours showing no significant expression of transcript despite their retaining both CDKN2A alleles.
    [Show full text]