Visual Sensing of Spacecraft Guidance Information

Total Page:16

File Type:pdf, Size:1020Kb

Visual Sensing of Spacecraft Guidance Information N ASA CONTRACTOR REPORT LOAN COPY: RETURN TO AFWI, (WLIL-2) KIRTLAND AFB, N MEX VISUALSENSING OFSPACECRAFT GUIDANCEINFORMATION Earth Orbit Rendezvous Maneuvers by S. Seidenstein, W. K. Kincuid, Jr., G. L. Kyeezer, und D. H. Utter Prepared by LOCKHEED MISSILES & SPACE CO. Sunnyvale, Calif. for LangZey Research Center TECH LIBRARY KAFB, NM .."... .. .~~ . 00603ib NASA CR-1214 VISUAL SENSING OF SPACECRAFT GUIDANCE INFORMATION Earth Orbit Rendezvous Maneuvers By S. Seidenstein, W. K. Kincaid, Jr., G. L. Kreezer, and D. H. Utter Distribution of this report is provided in the interest of informationexchange. Responsibility for the contents resides in the author or organization that prepared it. Prepared under Contract No. NAS 1-6801 by LOCKHEED MISSILES & SPACE CO. Sunnyvale, Calif. for Langley Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ~~__~". For sale by the Clearinghouse for Federol Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 CONTENTS -Page TAELES V ILLUSTRATIONS viii SUMMARY 1 INTRODUCTION 1 RENDEZVOUS 4 Rendezvous Mission Phases 4 Mission Phase and Guidance Schemes 5 Visual Referencesand Techniques for Obtaining Parameters 6 References 7 PHYSICALCHARACTERISTICS OF THE VISUAL ENVIRONMENT 10 Introduction 10 Orbit Related Characteristics il Target Vehicle Chara.cteristics 15 Spacecraft Characteristics 21 Visual Sensitivity and the Physical Environment 24 Operational Flight Experience 25 References 28 MEASURINGVISUAL CAPABILITIES 30 References 35 SENSITIVITY OF THE EYE 36 General Characteristics 36 Pupil Responses 38 Retinal Sensitivity 40 Differential Sensitivity and Visibility 53 References 57 SENSING MOTION AND CROSS RPINGE INFORMATION 61 Introduction 61 Phenomenal Characteristics of Motion 62 Definitions of Thresholds for Motion Perception 64 Absolute Thresholds for Real Motion 70 DifferenceThresholds 75 Dynamic Visual Acuity 79 References 82 iii CONTENTS (cont Id) Page rMGE AND RANGE RATE DETERMINATIONS Introduction Perception of Absolute Range Perception of Relative Range Range Rate Brightness as a Source of Range Information References VISUALAIDS FOR SPACE NAVIGATION CONCLUSIONS AND RECOMMENDATIONS 128 APPENDIXES A Symbols 239 R ConversionFactors 243 iv TABLES Table -Page I Range of Parameters for Selected Guidance Schemes I1 Equations of Motion for Selected Guidance Schemes I11 Techniques for Obtaining Selected Guidance Schemes Typical BackgroundLuminance Sources and Their Luminance V Stellar Magnitudesand their Corresponding Earth Sea Level Illuminance VI The Photometric Characteristics of Plates or Discs,Spheres, Cylinders andCones VI I Space Vehicle Surface Coatings and their Approximate Reflectivities VI11 Running Light Characteristics for Apollo and Gemini Vehicles 141 IX Gemini and Apollo Vehicles Acquisition Beacon Characteristics 142 x Spacecraft Window Characteristics 143 XI Guidance and Navigation Subsystem Optics and LM Alignment Optical Telescope (AOT) Optical Characteristics 144 XI I Operational Flight Experience Data 145 XI11 Functional Characteristics of the Retina 147 XN Changes in Absolute Threshold of the Dark- AdaptedEye as a Function of Illumination Transients 148 V TABLES (Cont I d) Table -Page xv Effects of Pre-exposure Conditions on the Course of Subsequent Dark Adaptation 149 XVI AbsoluteThresholds forthe Detection of AngularMotion; Basic Studies XVII AbsoluteThresholds for theDetection of Angular Motion; Applied Studies XVIII StimulusConditions Present in Measurements of Au 152 XIX Methodologyused inthe Measurements of 1.53 xx Angular Rate Thresholdsfor Two Stimuli Moving in Opposing Directions XXI DifferentialAngular Rate Thresholds as a Function of Method of Presentation XXII DifferenceThresholds for Velocity XXIII Delineation of the Cues of Distance XXIV ErrorsinEstimates of AbsoluteDistance XXV SupplementalConditions Investigationsin of Estimated Absolute Distance 161 XXVI Terms usedfor Distance and Size 162 XXVII Sub-Problems inInvestigations in Movement Parallax XXVIII Equivalenceof Symbols in Diagrams for Parallax and Stereopsis 164 xxlx ParallaxRatioThresholds 165 xxx' ParallaxDifferential Angular Velocity Thresholds (w) 166 XXXI Change inParallax Thresholds with Increase in Magnitude of Independent Variable vi TAXES (Cont 1 d) -Table Page XXXII Linear Depth IntervalsCalculated for Different Disparity Angles and Repre- sentative Fixation Distances 168 XXXIII StereopticThresholds: Magnitude of vt 169 XXXIV Stimulus-ParametersEffecting Stereoptic Threshold (qt) Icxxv Receptor-ParametersEffecting Stereoptic Thresholds (qt) vii ILLUSTRATIONS Figure 1. Pitch Plane Geometry for Guidance SchemeNo.1: Inertial Line-of-Sight Collision Course 2. Pitch Plane Geometry for Guidance SchemeNO. 2: Rotating Line-of-Sight Collision Course 3- Line-of-Sight Relations BetweenComanded Module and Spacecraft 4. Physical Environment Parameters and Their Relationships 5. Typical Spacecraft Illumination Environmentas a Function of Mission and/or its Orbit Position 6. Maximum Lineof Sight Distance and Time in Dark for Earth Orbiting Spacecraft 177 7. Star Density Versus Magnitude for Three OfSizes Field of View 178 8. Minimum Visual Acuityas a Function of Contrast Ratio and Background Luminance 179 9. Surface Brightness of Spacecraft Corona as a Function ofMass Ejecti0.n Rate 180 10 Critical Visual Angle for Point Sources as a Function of Background Luminance 181 11. Distance Beyond Whicha Target isa Point Source 182 12. Illumination at the Eye Versus Rangefor a Sunlit Diffuse Flat Plateor Disc of Area (A) 18 3 13 Target Brightness Versus Range afor Sunlit Diff'use Flat Plate or Disc of (A)Area 18 4 14. Illumination at the Eye Versus Range for a Sunlit Diffuse Sphere 18 5 15 Target Brightness Versus Range for a Sunlit Dif- fuse Sphere 186 16. Illumination at the Eye Versus Rangefor a Sunlit Diffuse Cylinder of Radius (r) and Length (h) 187 viii Figure Page 1-7 Target Brightness Versus Rangefor a Sunlit Dif- fuse Cylinderof Radius (r) and Length (h) 188 Illumination at the Eye Versus Range for a Sunlit Diffuse Cone of Height(h) and Cone Half Angle( ) 19 Target Brightness Versus Rnage for a Sunlit.Dif- fuse Cone of Height(h) and Cone Half 20. Reflection of Collimated Light by a Specular and a Diffuse Sphere 21. Relative Visibility Versus Wavelength for the Light Adapted Eye 192. 22. Intensity Variation asa Function of Viewing Angle for a Typical Xenon Flash Lamp 19 3 23. Relative Intensityof a Justvisible Flash aas Function of Flash Duration - 194 24. Spacecraft Internal Illumination 195 (a) Gemini V Inflight Measurements (b) Gemini VI Postflight Simulationof Inflight Conditions 25. Threshold Illuminationfrom a Fixed Achromatic Point Sourceas a Fynction of Background 'Brightness Inflight Target Visibility Datafor Gemini Flights "he Relationship of Pupil Size to Adapting Luminance Pupil Responses to a Short ofFlash Light Amplitude, Duration and Latencyof Pupil Responses to 1 Second Light Flashes 2 01 30 Pupil Responses to a Seriesof Light Flashes 201 31 Pupil Responses to a Stepfunction Changein Luminance 202 32 Distribution of Rods and Cones in the Retina 203 33. The General Course of Dark Adaptation 204 ix I Figure Page 34. Variation in Dark-Adaptation Over Repeated Measures on the Same Observers 205 35. Luminance in the Light-Adapted Right Eye Necessary for a Constant Levelof Subjective Brightness as a Function 07 Time in Dark 206 36. Subjective Brightnessof Different Luminances in a Light-Adapted Eye as a Functionof Time in Dark 207 37 - Adaptation to Non-Zero Luminance Fields 208 38. The General Courseof Light Adaptation 209 39. Immediate Responsesto Illumination Transientsin the Dark-Adapted Eye 21 0 40. Instantaneous Thresholdof the Eye 211 41. Operating Characteristics Produced by Different Levels of Light Adaptation 212 42 The Perceptionof Acuity Targets by the Dark- Adapted Eye After Exposure to Brief Flashesof Light 43. Dark-Adaptation as a Functionof Pre-Exposure Intensity 44. Dark-Adaptation as a Functionof Pre-Exposure Duration 45. Equivalent Steady State Adaptation Levels After Exposure to Short Duration Illumination 216 46. Luminance Thresholds for Different AcuitiesDur- ing Dark-Adaptation 47. Luminance Thresholds for Different Acuities After One Secondof Dark-Adaptation 218 48. Dark-Adaptation Measured by Test Flashesof Dif- ferent Wavelengths 49. Threshold Target Angular Size as a Functionof Contrast Ratio and Background Luminance 220 X , Figure Page 50 Luminance Threshold for Visibilityand Discri- mination of Motion as a Functionof Stimulus Speed 221 51. The Upper Speed Threshold as a Functionof Luminance 2.22 52 0 Threshold Luminance as a Functionof Speed 223 53. Isochronal Threshold Velocityas a Function of Dur- ation of Exposure with Luminance as a Parameter 224 54 - Isochronal Threshold Velocityas a Functionof Lum- inance with Durationof Exposure as a Parameter 55. Time to Identia a Moving Point as Functionof Rrte of Motion, Directionof Motion and Presenceof Reference Points 226 56. Energy Required for the Visibilityof a Moving Test Spot as a Functionof its Exposure Time 227 57 * Threshold Velocity asa Function of Practice with Duration of Exposure, Luminance, and Reference Points as Parameters 228 58. The Differential Angular Speed Threshold(A U) as a Functionof Angular Speed(u) 59. The Weber Ratio(AU/U) as a Functionof Angular Speed for Discriminating Adjacent, Separate and Superimposed Stimuli 60. The Instantaneous Threshold for elocity 61. Dynamic Visual Acuity as a Functionof the Angular Velocityof the Test Ojbect 62. The Effectof
Recommended publications
  • Evolution of the Rendezvous-Maneuver Plan for Lunar-Landing Missions
    NASA TECHNICAL NOTE NASA TN D-7388 00 00 APOLLO EXPERIENCE REPORT - EVOLUTION OF THE RENDEZVOUS-MANEUVER PLAN FOR LUNAR-LANDING MISSIONS by Jumes D. Alexunder und Robert We Becker Lyndon B, Johnson Spuce Center ffoaston, Texus 77058 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. AUGUST 1973 1. Report No. 2. Government Accession No, 3. Recipient's Catalog No. NASA TN D-7388 4. Title and Subtitle 5. Report Date APOLLOEXPERIENCEREPORT August 1973 EVOLUTIONOFTHERENDEZVOUS-MANEUVERPLAN 6. Performing Organizatlon Code FOR THE LUNAR-LANDING MISSIONS 7. Author(s) 8. Performing Organization Report No. James D. Alexander and Robert W. Becker, JSC JSC S-334 10. Work Unit No. 9. Performing Organization Name and Address I - 924-22-20- 00- 72 Lyndon B. Johnson Space Center 11. Contract or Grant No. Houston, Texas 77058 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Note I National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D. C. 20546 I 15. Supplementary Notes The JSC Director waived the use of the International System of Units (SI) for this Apollo Experience I Report because, in his judgment, the use of SI units would impair the usefulness of the report or I I result in excessive cost. 16. Abstract The evolution of the nominal rendezvous-maneuver plan for the lunar landing missions is presented along with a summary of the significant developments for the lunar module abort and rescue plan. A general discussion of the rendezvous dispersion analysis that was conducted in support of both the nominal and contingency rendezvous planning is included.
    [Show full text]
  • The Nature and Timing of Tele-Pseudoscopic Experiences
    University of Wollongong Research Online Faculty of Social Sciences - Papers Faculty of Social Sciences 2016 The an ture and timing of tele-pseudoscopic experiences Stephen Palmisano University of Wollongong, [email protected] Harold C. Hill University of Wollongong, [email protected] Robert S. Allison York University, [email protected] Publication Details Palmisano, S., Hill, H. & Allison, R. S. (2016). The an ture and timing of tele-pseudoscopic experiences. i-Perception, 7 (1), 1-24. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The an ture and timing of tele-pseudoscopic experiences Abstract Interchanging the left nda right eye views of a scene (pseudoscopic viewing) has been reported to produce vivid stereoscopic effects under certain conditions. In two separate field studies, we examined the experiences of 124 observers (76 in Study 1 and 48 in Study 2) while pseudoscopically viewing a distant natural outdoor scene. We found large individual differences in both the nature and the timing of their pseudoscopic experiences. While some observers failed to notice anything unusual about the pseudoscopic scene, most experienced multiple pseudoscopic phenomena, including apparent scene depth reversals, apparent object shape reversals, apparent size and flatness changes, apparent reversals of border ownership, and even complex illusory foreground surfaces. When multiple effects were experienced, patterns of cooccurrence suggested possible causal relationships between apparent scene depth reversals and several other pseudoscopic phenomena. The al tency for experiencing pseudoscopic phenomena was found to correlate significantly with observer visual acuity, but not stereoacuity, in both studies.
    [Show full text]
  • The Nature and Timing of Tele-Pseudoscopic
    Article i-Perception The Nature and Timing January-February 2016: 1–24 ! The Author(s) 2016 DOI: 10.1177/2041669515625793 of Tele-Pseudoscopic ipe.sagepub.com Experiences Stephen Palmisano Centre for Psychophysics, Psychophysiology and Psychopharmacology, School of Psychology, University of Wollongong, NSW, Australia Harold Hill School of Psychology, University of Wollongong, NSW, Australia Robert S Allison Centre for Vision Research, York University, Ontario, Canada Abstract Interchanging the left and right eye views of a scene (pseudoscopic viewing) has been reported to produce vivid stereoscopic effects under certain conditions. In two separate field studies, we examined the experiences of 124 observers (76 in Study 1 and 48 in Study 2) while pseudoscopically viewing a distant natural outdoor scene. We found large individual differences in both the nature and the timing of their pseudoscopic experiences. While some observers failed to notice anything unusual about the pseudoscopic scene, most experienced multiple pseudoscopic phenomena, including apparent scene depth reversals, apparent object shape reversals, apparent size and flatness changes, apparent reversals of border ownership, and even complex illusory foreground surfaces. When multiple effects were experienced, patterns of co- occurrence suggested possible causal relationships between apparent scene depth reversals and several other pseudoscopic phenomena. The latency for experiencing pseudoscopic phenomena was found to correlate significantly with observer visual acuity, but not stereoacuity, in both studies. Keywords Stereopsis, pseudoscopic viewing, depth perception, space perception Introduction Our laterally separated eyes receive different perspective views of the same scene. One direct consequence of this horizontal eye arrangement is that the angular subtense between Corresponding author: Stephen Palmisano, Centre for Psychophysics, Psychophysiology and Psychopharmacology, School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia.
    [Show full text]
  • The Following Are Edited Excerpts from Two Interviews Conducted with Dr
    Interviews with Dr. Wernher von Braun Editor's note: The following are edited excerpts from two interviews conducted with Dr. Wernher von Braun. Interview #1 was conducted on August 25, 1970, by Robert Sherrod while Dr. von Braun was deputy associate administrator for planning at NASA Headquarters. Interview #2 was conducted on November 17, 1971, by Roger Bilstein and John Beltz. These interviews are among those published in Before This Decade is Out: Personal Reflections on the Apollo Program, (SP-4223, 1999) edited by Glen E. Swanson, whick is vailable on-line at http://history.nasa.gov/SP-4223/sp4223.htm on the Web. Interview #1 In the Apollo Spacecraft Chronology, you are quoted as saying "It is true that for a long time we were not in favor of lunar orbit rendezvous. We favored Earth orbit rendezvous." Well, actually even that is not quite correct, because at the outset we just didn't know which route [for Apollo to travel to the Moon] was the most promising. We made an agreement with Houston that we at Marshall would concentrate on the study of Earth orbit rendezvous, but that did not mean we wanted to sell it as our preferred scheme. We weren't ready to vote for it yet; our study was meant to merely identify the problems involved. The agreement also said that Houston would concentrate on studying the lunar rendezvous mode. Only after both groups had done their homework would we compare notes. This agreement was based on common sense. You don't start selling your scheme until you are convinced that it is superior.
    [Show full text]
  • Closed-Form Optimal Impulsive Control of Spacecraft Relative Motion Using Reachable Set Theory
    Closed-Form Optimal Impulsive Control of Spacecraft Relative Motion Using Reachable Set Theory Michelle Chernick ∗ and Simone D’Amico † Stanford University, Stanford, California, 94305 This paper addresses the spacecraft relative orbit reconfiguration problem of minimizing the delta-v cost of impulsive control actions while achieving a desired state in fixed time. The problem is posed in relative orbit element (ROE) space, which yields insight into relative motion geometry and allows for the straightforward inclusion of perturbations in linear time- variant form. Reachable set theory is used to translate the cost-minimization problem into a geometric path-planning problem and formulate the reachable delta-v minimum, a new metric to assess optimality and quantify reachability of a maneuver scheme. Next, this paper presents a methodology to compute maneuver schemes that meet this new optimality criteria and achieve a prescribed reconfiguration. Though the methodology is applicable to any linear time-variant system, this paper leverages a state representation in ROE to derive new globally optimal maneuver schemes in orbits of arbitrary eccentricity. The methodology is also used to generate quantifiably sub-optimal solutions when the optimal solutions are unreachable. Further, this paper determines the mathematical impact of uncertainties on achieving the desired end state and provides a geometric visualization of those effects on the reachable set. The proposed algorithms are tested in realistic reconfiguration scenarios and validated in a high-fidelity simulation environment. I. Introduction istributed space systems enable advanced missions in fields such as astronomy and astrophysics, planetary science, Dand space infrastructure by employing the collective usage of two or more cooperative spacecraft.
    [Show full text]
  • Download This Article in PDF Format
    A&A 574, A123 (2015) Astronomy DOI: 10.1051/0004-6361/201423830 & c ESO 2015 Astrophysics Pre-hibernation performances of the OSIRIS cameras onboard the Rosetta spacecraft S. Magrin1;2, F. La Forgia2, V. Da Deppo3, M. Lazzarin2, I. Bertini1, F. Ferri1, M. Pajola1, M. Barbieri1, G. Naletto1;4, C. Barbieri1;2, C. Tubiana5, M. Küppers6, S. Fornasier7;8, L. Jorda9, and H. Sierks5 1 Centro di Ateneo di Studi e Attivitá Spaziali “Giuseppe Colombo”, University of Padova, via Venezia 15, 35131 Padova, Italy e-mail: [email protected] 2 Department of Physics and Astronomy, University of Padova, vicolo dell’Osservatorio 3, 35122 Padova, Italy 3 CNR-IFN UOS Padova LUXOR, via Trasea 7, 35131 Padova, Italy 4 Department of Information Engineering, University of Padova, via Gradenigo 6, 35131 Padova, Italy 5 Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany 6 European Space Astronomy Centre, ESA, Villanueva de la Cañada, 28691 Madrid, Spain 7 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 8 Université Paris Diderot, Sorbonne Paris Cité, 4 rue Elsa Morante, 75205 Paris, France 9 Laboratoire d’Astrophysique de Marseille, CNRS and Université de Provence, 38 rue Frédéric Joliot-Curie, 13388 Marseille, France Received 18 March 2014 / Accepted 6 December 2014 ABSTRACT Context. The ESA cometary mission Rosetta was launched in 2004. In the past years and until the spacecraft hibernation in June 2011, the two cameras of the OSIRIS imaging system (Narrow Angle and Wide Angle Camera, NAC and WAC) observed many different sources.
    [Show full text]
  • University of Dundee the Disparate Histories of Binocular Vision And
    University of Dundee The disparate histories of binocular vision and binaural hearing Wade, Nicholas J. Published in: Journal of the History of the Neurosciences DOI: 10.1080/0964704X.2017.1347389 Publication date: 2018 Document Version Peer reviewed version Link to publication in Discovery Research Portal Citation for published version (APA): Wade, N. J. (2018). The disparate histories of binocular vision and binaural hearing. Journal of the History of the Neurosciences, 27(1), 10-35. https://doi.org/10.1080/0964704X.2017.1347389 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 29. Sep. 2021 1 The disparate histories of binocular vision and binaural hearing Running head: Binocular vision and binaural hearing Nicholas J. Wade, Psychology, University of Dundee, Nethergate, Dundee DD1 4HN, UK Tel: +44 1382384616 E-mail: [email protected] This is the accepted manuscript version.
    [Show full text]
  • Depth Inversion Despite Stereopsis: the Appearance of Random-Dot Stereograms on Surfaces Seen in Reverse Perspective
    Perception, 1979, volume 8, pages 135-142 Depth inversion despite stereopsis: the appearance of random-dot stereograms on surfaces seen in reverse perspective John I Yellott, Jr, Jerry L Kaiwi Cognitive Science Group, School of Social Sciences, University of California at Irvine, Irvine, California 92717, USA Received 20 October 1977, in revised form 18 October 1978 Abstract. Inside-out relief masks of faces can be depth-inverted (i.e. seen in reverse perspective) during close-up binocular viewing. If a random-dot stereogram is projected onto such a mask, stereopsis can be achieved for the stereogram, and its depth planes are correctly seen while the mask itself, including the region covered by the stereogram, is simultaneously perceived as depth- inverted. This demonstration shows that binocular depth inversion cannot be explained by a complete loss of stereoscopic information (e.g. through monocular suppression), or by a process analogous to pseudoscopic viewing whereby retinal disparities are incorporated into perception, but with their signs uniformly reversed. 1 Introduction Reversible perspective is probably most often thought of in connection with ambiguous pictures like the Necker cube (figure la), but it is also well-known that depth reversals can sometimes be experienced with solid objects, and with far more dramatic perceptual consequences. [Gregory (1970) describes these in detail; Helmholtz (1925) reviews references back to 1712, and Hochberg (1972) and Robinson (1972) review the modern literature, which is surprisingly thin.] In this note we use 'depth inversion' to refer specifically to this second kind of reversible perspective, in which real objects (rather than depicted ones) are perceived, from the standpoint of depth, as inside-out, so that their concave surfaces appear convex and vice versa.
    [Show full text]
  • The Apollo Lunar Orbit Rendezvous Architecture Decision Revisited
    Student Session II Paper No. GT-SSEC.E.2 The Apollo Lunar Orbit Rendezvous Architecture Decision Revisited David M. Reeves1 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, 23666 Michael D. Scher2 University of Maryland National Institute of Aerospace, Hampton, VA, 23666 Dr. Alan W. Wilhite3 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, 23666 Dr. Douglas O. Stanley4 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, ABSTRACT The 1962 Apollo architecture mode decision process was revisited with modern analysis and systems engineer tools to determine driving selection criteria and technology/operational mode design decisions that may be used for NASA’s current Space Exploration program. Results of the study agreed with the Apollo selection of the Lunar Orbit Rendezvous mode based on the technology maturity and politics in 1962. Using today’s greater emphasis on human safety and improvements in technology and design maturity, a slight edge may be given to the direct lunar mode over lunar orbit rendezvous. Also, the NOVA direct mode and Earth orbit rendezvous mode are not competitive based any selection criteria. Finally, reliability and development, operations, and production costs are major drivers in today’s decision process. 1Graduate Research Assistant, Georgia Institute of Technology, 100 Exploration Way, AIAA Student Member. 2 Graduate Research Assistant, University of Maryland, 100 Exploration Way, AIAA Student Member. 3 Langley Professor, Georgia Institute of Technology, 100 Exploration Way, AIAA Associate Fellow. 4 Langley Professor, Georgia Institute of Technology, 100 Exploration Way, AIAA Member. Page 1 of 12 Pages Student Session II Paper No.
    [Show full text]
  • Simulation Framework for Orbit Propagation and Space Trajectory Visualization
    Simulation Framework for Orbit Propagation and Space Trajectory Visualization 1 Abolfazl Shirazi Basque Center for Applied Mathematics BCAM, Bilbao, 48009, Spain University of the Basque Country UPV/EHU, Donostia, 20018, Spain 2 Josu Ceberio Intelligent Systems Group, University of the Basque Country UPV/EHU, Donostia, 20018, Spain 3 Jose A. Lozano Basque Center for Applied Mathematics BCAM, Bilbao, 48009, Spain University of the Basque Country UPV/EHU, Donostia, 20018, Spain Abstract In this paper, an interactive tool for simulation of satellites dynamics and autonomous spacecraft guidance is presented. Different geopotential models for orbit propagation of Earth-orbiting satellites are provided, which consider Earth’s gravitational field with var- ious accuracies. The presented software is a 3D visualization platform for space orbit simulation with analytical capabilities through various modules. Taking advantage of a graphical user interface, it can evaluate, analyze and illustrate the motion of satellite based on different orbit propagation schemes. Several cases of satellites and autonomous space- craft in the space rendezvous mission are simulated regarding different propagation models to demonstrate the performance of the application in space mission analysis, ground track visualization and trajectory optimization. Results are validated by comparing with other state-of-the-art tools, such as AGI System Toolkit (STK). Keywords: Orbit Simulation, Software Development, Visualization, Modeling, Spacecraft Dynamics 1. Introduction Modeling and simulation of autonomous spacecraft have made momentous strides in recent years, and the space industry, and other aerospace professions are on the verge of being able to use computing power. The aim of this usage is to simulate reality for all kinds of applications in space engineering such as autonomy of nanosatellites [1], flight simulation [2], space object registration [3], and orbit propagation [4].
    [Show full text]
  • The Influence of Early Research and Development Programs on Apollo, Saturn, and Legacy System Development
    https://ntrs.nasa.gov/search.jsp?R=20200002742 2020-05-24T04:41:34+00:00Z Paving the way: The influence of early research and development programs on Apollo, Saturn, and legacy system development. Charles E. Cockrell, Jr.* and Robert Wyman** NASA Langley Research Center, Hampton, Virginia, USA Introduction As we celebrate the 50th anniversary of the first successful human landings on the surface of the Moon in 1969, it is insightful to review the many historic accomplishments that contributed to this astounding human achievement. While the Apollo Program officially began following the charge by United States President John F. Kennedy in 1961, much of the foundation for Apollo was already underway with early research and development that began as early as the close of the second World War. Innovations and key decisions prior to the formal initiation of the Apollo Program, and even prior to the formation of the National Aeronautics and Space Administration (NASA), enabled the relatively rapid development of the Saturn V rocket, the Apollo capsule, and the Lunar Lander systems needed to achieve the goal of landing humans on the Moon and returning them safely to Earth by the close of the 1960s. The history of aerospace research and development in the United States of America (USA) begins with the establishment of the National Advisory Committee for Aeronautics (NACA) in 1915. At the dawn of World War I, prominent scientists and engineers in the United States became concerned about the lack of advancement in aviation just a few short years following the historic flights of the Wright brothers.
    [Show full text]
  • Next Generation Goniophotometry 75 Sergei A
    ISSN 0236-2945 LIGHT & ENGINEERING Volume 23, Number 4, 2015 LLC œEditorial of Journal œLight TechnikB, Moscow Dear Colleagues, Authors and Co-authors! Dear Friends! Wishing you multiple successes and happiness in a fulfilling and creative new year for 2016! The past year has been filled with many important milestones and passed remarkably quickly. We hope that 2015 will be a year of success for "Light & Engineering", for you and your loved ones, filled with positive experiences and only manageable obstacles. The close and productive relationship between the editorial office and board is a pillar of the journal's success! We always look forward to your papers, feedback and suggestions. With best wishes and warm regards, Your Editorial office LIGHT & ENGINEERING (Svetotekhnika) Editor-in-Chief: Julian B. Aizenberg Associate editor: Sergey G. Ashurkov Editorial board chairman: George V. Boos Editorial Board: Vladimir P. Budak Anna G. Shakhparunyants Alexei A. Korobko Nikolay I. Shchepetkov Dmitry O. Nalogin Alexei K. Solovyov Alexander T. Ovcharov Raisa I. Stolyarevskaya Leonid B. Prikupets Konstantin A. Tomsky Vladimir M. Pyatigorsky Leonid P. Varfolomeev Foreign Editorial Advisory Board: Lou Bedocs, Thorn Lighting Limited, United Kingdom Wout van Bommel, Philips Lighting, the Netherlands Peter R. Boyce, Lighting Research Center, the USA Lars Bylund, Bergen’s School of Architecture, Norway Stanislav Darula, Academy Institute of Construction and Architecture, Bratislava, Slovakia Peter Dehoff, Zumtobel Lighting, Dornbirn, Austria Marc Fontoynont, Ecole Nationale des Travaux Publics de l’Etat (ENTPE), France Franz Hengstberger, National Metrology Institute of South Africa Warren G. Julian, University of Sydney, Australia Zeya Krasko, OSRAM Sylvania, USA Evan Mills, Lawrence Berkeley Laboratory, USA Lucia R.
    [Show full text]