A Short Introduction to Topological Quantum Computation

Total Page:16

File Type:pdf, Size:1020Kb

A Short Introduction to Topological Quantum Computation SciPost Phys. 3, 021 (2017) A short introduction to topological quantum computation Ville T. Lahtinen1 and Jiannis K. Pachos2? 1 Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany 2 School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom ? [email protected] Abstract This review presents an entry-level introduction to topological quantum computation – quantum computing with anyons. We introduce anyons at the system-independent level of anyon models and discuss the key concepts of protected fusion spaces and statisti- cal quantum evolutions for encoding and processing quantum information. Both the encoding and the processing are inherently resilient against errors due to their topolog- ical nature, thus promising to overcome one of the main obstacles for the realisation of quantum computers. We outline the general steps of topological quantum computa- tion, as well as discuss various challenges faced by it. We also review the literature on condensed matter systems where anyons can emerge. Finally, the appearance of anyons and employing them for quantum computation is demonstrated in the context of a sim- ple microscopic model – the topological superconducting nanowire – that describes the low-energy physics of several experimentally relevant settings. This model supports lo- calised Majorana zero modes that are the simplest and the experimentally most tractable types of anyons that are needed to perform topological quantum computation. Copyright V.T. Lahtinen and J. K. Pachos. Received 12-05-2017 This work is licensed under the Creative Commons Accepted 24-08-2017 Check for Attribution 4.0 International License. Published 09-09-2017 updates Published by the SciPost Foundation. doi:10.21468/SciPostPhys.3.3.021 Contents 1 Introduction2 1.1 Topology, stability and anyons3 2 Topological order and anyons in condensed matter systems6 2.1 Topological states that support anyons7 2.2 Manifestations of anyons in microscopic many-body systems9 2.2.1 Degeneracy and Berry phases9 2.2.2 Topological degeneracy and entanglement entropy 11 3 Anyon models 12 3.1 Fusion channels - Decoherence-free subspaces 13 3.2 Braiding anyons - Statistical quantum evolutions 15 3.3 Example 1: Fibonacci anyons 15 3.4 Example 2: Ising anyons 17 1 SciPost Phys. 3, 021 (2017) 4 Quantum computation with anyons 19 4.1 Initialization of a topological quantum computer 19 4.2 Quantum gates – Braiding anyons 20 4.3 Measurements – Fusing anyons 21 4.4 Possible error sources 22 5 Topological quantum computation with superconducting nanowires 24 5.1 Majorana zero modes in a superconducting nanowire 25 5.2 The Majorana qubit 27 5.3 Manipulating and reading out the Majorana qubit 29 5.4 Challenges with Majorana-based topological quantum computation 30 6 Outlook 30 References 31 1 Introduction Topological quantum computation is an approach to storing and manipulating quantum infor- mation that employs exotic quasiparticles, called anyons. Anyons are interesting on their own right in fundamental physics, as they generalise the statistics of the commonly known bosons and fermions. Due to this exotic statistical behaviour, they exhibit non-trivial quantum evo- lutions that are described by topology, i.e. they are abstracted from local geometrical details. When anyons are used to encode and process quantum information, this topological behaviour provides a much desired resilience against control errors and perturbations. To be more pre- cise, the presence of certain kinds of anyons gives rise to a degenerate decoherence-free sub- space, in which the state can only be evolved by moving the anyons adiabatically around each other. While from the first sight anyons appear to be an over-complicated method for per- forming quantum computation, they are profoundly linked to quantum error correction [1], the algorithmic means we have in dealing with errors during quantum computation. In a sense, anyonic quantum computers implement quantum error-correction at the hardware level, thus becoming resilient to control errors and erroneous perturbations. This has augmented topo- logical quantum computation from a niche field of research to a methodology that permeates much of the research efforts in realising fault-tolerant quantum computation. In this review we present a non-technical introduction to anyons and to the framework for performing fault-tolerant quantum computation with them. The emphasis will be on the key properties that define anyons and how they enable protected encoding and processing of quantum information. As anyons can emerge in numerous microscopically distinct systems, we discuss these concepts primarily at a platform-independent level of anyon models and provide an extensive list of references for the interested reader to go deeper. Our aim is to provide a clear and concise introduction to the underlying principles of topological quantum computation without expertise in condensed matter theory. When condensed matter concepts are needed, we introduce them in a heuristic level to give the reader a general understanding without referring to the mathematical details. In doing so, we aim this review to be accessible to anyone with a solid undergraduate understanding of quantum mechanics and the basics of quantum information. While several reviews have already been written on the topic, we aim this review to serve as 2 SciPost Phys. 3, 021 (2017) an accessible starting point. Topological quantum computation with fractional quantum Hall States is reviewed extensively by Nayak et al. [2], while Das Sarma et al. focus on quantum computation with Majorana zero modes [3]. The book by Pachos can be viewed as an extended version of the present review that goes deeper into the condensed matter topics [4], while the book by Wang focuses on the more mathematical aspects and their connections to knot theory [5]. The reader may also find useful the lecture notes by Roy and DiVincenzo [6] and the classic lecture notes by Preskill [7]. This review concerns only topological quantum computation where both the encoding and processing of quantum information is topologically protected. Anyons have applications also to quantum memories and quantum error correction, i.e. when only the encoding is topologically protected. For reviews on topological quantum memories, we refer the interested reader to the reviews by Terhal [8] and Brown et al. [9]. This review is structured as follows. We begin in Section 1.1 by describing at a heuristic level why topology can increase fault-tolerance and why the dimension of space is paramount when looking for systems that support anyons. In Section2 we discuss the different types of topological order and the conditions under which they can support anyons. An extensive list of known systems of anyons is provided and we also outline how the defining properties of anyons manifest themselves in microscopic systems. In Section3 we turn to the system independent discussion of anyon models and describe how a minimal set of data captures all the dynamics associated with a given anyon model. As examples we consider both Fibonacci anyons (what we would like to have for topological quantum computation) and Ising anyons (what we have so far). Section4 is the core of the review where we explicitly discuss how Ising anyons can be used to encode and process quantum information in a topologically protected manner, while in Section5 we illustrate how such quantum computation could be carried out in a specific microscopic system. As an example we employ superconducting nanowire arrays that support Majorana zero modes and that are currently the experimentally most promising direction. We conclude with Section6. 1.1 Topology, stability and anyons In mathematics, topology is the study of the global properties of manifolds that are insensitive to local smooth deformations. The overused, but still illustrative example is the topological equivalence between a donut and a coffee cup. Regardless of the local details that give them rather different everyday practicalities, both are mathematically described by genus one man- ifolds meaning that there is a single hole in both. Small smooth deformations, such as taking a bite on the side of the donut or chipping away a piece of the cup will change the object locally, but the topology remains unchanged. Only global violent deformations, such as cutting the donut in half or breaking the cup handle, will change the topology by removing the hole. However, in real world small deformations matter. Quite spectacular salesmanship is re- quired to sell a donut from which someone has already taken a bite. Something similar occurs also in quantum mechanics. To store and evolve a pure quantum state coherently, one must take exceptional care that no outside noise interferes and that the evolution is precisely the desired one. This is the key fundamental challenge in quantum computation: to robustly store quantum states for long times and evolve them according to specific quantum gates. Were quantum information encoded in topological properties of matter, and were the quan- tum gates dependent only on the topology of the evolutions, then both should be inherently protected from local perturbations. Such topological quantum computation would exhibit in- herent hardware-level stability that ideally would make elaborate schemes of quantum error- correction redundant. This idea was first floated by Kitaev in connection to surface codes for quantum error correction [1,10]. He realized that certain codes could be viewed as spin lattice models, where the elementary excitations are anyons – quasiparticles with statistics interpolating between 3 SciPost Phys. 3, 021 (2017) � � � � 3D 2D Figure 1: Exchange statistics in 2D vs. 3D. In 3D the path λ2 describing two particle exchanges is continuously deformable to λ1 by taking it behind or front of the right-most particle, and in turn λ1 is contractible to a point. Hence, all the paths have the same topology and thus correspond to the same statistical quantum evolution. In 2D, however, the paths λ2 and λ1 are topologically inequivalent since λ2 can not be deformed through the right-most particle, while λ1 is still contractible to a point.
Recommended publications
  • What Is Quantum Information?
    What Is Quantum Information? Robert B. Griffiths Carnegie-Mellon University Pittsburgh, Pennsylvania Research supported by the National Science Foundation References (work by R. B. Griffiths) • \Nature and location of quantum information." Ph◦ys. Rev. A 66 (2002) 012311; quant-ph/0203058 \Channel kets, entangled states, and the location of quan◦ tum information," Phys. Rev. A 71 (2005) 042337; quant-ph/0409106 Consistent Quantum Theory (Cambridge 2002) http://quan◦ tum.phys.cmu.edu/ What Is Quantum Information? 01. 100.01.tex Introduction What is quantum information? Precede by: • What is information? ◦ What is classical information theory? ◦ What is information? Example, newspaper • Symbolic representation of some situation ◦ Symbols in newspaper correlated with situation ◦ Information is about that situation ◦ What Is Quantum Information? 04. 100.04.tex Classical Information Theory Shannon: • \Mathematical Theory of Communication" (1948) ◦ One of major scientific developments of 20th century ◦ Proposed quantitative measure of information ◦ Information entropy • H(X) = p log p − X i i i Logarithmic measure of missing information ◦ Probabilistic model: pi are probabilities ◦ Applies to classical (macroscopic)f g signals ◦ Coding theorem: Bound on rate of transmission of information• through noisy channel What Is Quantum Information? 05. 100.05.tex Quantum Information Theory (QIT) Goal of QIT: \Quantize Shannon" • Extend Shannon's ideas to domain where quantum effects◦ are important Find quantum counterpart of H(X) ◦ We live in a quantum world, so • QIT should be the fundamental info theory ◦ Classical theory should emerge from QIT ◦ Analogy: relativity theory Newton for v c ◦ ! What Is Quantum Information? 06. 100.06.tex QIT: Current Status Enormous number of published papers • Does activity = understanding? ◦ Some topics of current interest: • Entanglement ◦ Quantum channels ◦ Error correction ◦ Quantum computation ◦ Decoherence ◦ Unifying principles have yet to emerge • At least, they are not yet widely recognized ◦ What Is Quantum Information? 07.
    [Show full text]
  • Anyon Theory in Gapped Many-Body Systems from Entanglement
    Anyon theory in gapped many-body systems from entanglement Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Bowen Shi, B.S. Graduate Program in Department of Physics The Ohio State University 2020 Dissertation Committee: Professor Yuan-Ming Lu, Advisor Professor Daniel Gauthier Professor Stuart Raby Professor Mohit Randeria Professor David Penneys, Graduate Faculty Representative c Copyright by Bowen Shi 2020 Abstract In this thesis, we present a theoretical framework that can derive a general anyon theory for 2D gapped phases from an assumption on the entanglement entropy. We formulate 2D quantum states by assuming two entropic conditions on local regions, (a version of entanglement area law that we advocate). We introduce the information convex set, a set of locally indistinguishable density matrices naturally defined in our framework. We derive an isomorphism theorem and structure theorems of the information convex sets by studying the internal self-consistency. This line of derivation makes extensive usage of information-theoretic tools, e.g., strong subadditivity and the properties of quantum many-body states with conditional independence. The following properties of the anyon theory are rigorously derived from this framework. We define the superselection sectors (i.e., anyon types) and their fusion rules according to the structure of information convex sets. Antiparticles are shown to be well-defined and unique. The fusion rules are shown to satisfy a set of consistency conditions. The quantum dimension of each anyon type is defined, and we derive the well-known formula of topological entanglement entropy.
    [Show full text]
  • Key Concepts for Future QIS Learners Workshop Output Published Online May 13, 2020
    Key Concepts for Future QIS Learners Workshop output published online May 13, 2020 Background and Overview On behalf of the Interagency Working Group on Workforce, Industry and Infrastructure, under the NSTC Subcommittee on Quantum Information Science (QIS), the National Science Foundation invited 25 researchers and educators to come together to deliberate on defining a core set of key concepts for future QIS learners that could provide a starting point for further curricular and educator development activities. The deliberative group included university and industry researchers, secondary school and college educators, and representatives from educational and professional organizations. The workshop participants focused on identifying concepts that could, with additional supporting resources, help prepare secondary school students to engage with QIS and provide possible pathways for broader public engagement. This workshop report identifies a set of nine Key Concepts. Each Concept is introduced with a concise overall statement, followed by a few important fundamentals. Connections to current and future technologies are included, providing relevance and context. The first Key Concept defines the field as a whole. Concepts 2-6 introduce ideas that are necessary for building an understanding of quantum information science and its applications. Concepts 7-9 provide short explanations of critical areas of study within QIS: quantum computing, quantum communication and quantum sensing. The Key Concepts are not intended to be an introductory guide to quantum information science, but rather provide a framework for future expansion and adaptation for students at different levels in computer science, mathematics, physics, and chemistry courses. As such, it is expected that educators and other community stakeholders may not yet have a working knowledge of content covered in the Key Concepts.
    [Show full text]
  • Free-Electron Qubits
    Free-Electron Qubits Ori Reinhardt†, Chen Mechel†, Morgan Lynch, and Ido Kaminer Department of Electrical Engineering and Solid State Institute, Technion - Israel Institute of Technology, 32000 Haifa, Israel † equal contributors Free-electron interactions with laser-driven nanophotonic nearfields can quantize the electrons’ energy spectrum and provide control over this quantized degree of freedom. We propose to use such interactions to promote free electrons as carriers of quantum information and find how to create a qubit on a free electron. We find how to implement the qubit’s non-commutative spin-algebra, then control and measure the qubit state with a universal set of 1-qubit gates. These gates are within the current capabilities of femtosecond-pulsed laser-driven transmission electron microscopy. Pulsed laser driving promise configurability by the laser intensity, polarizability, pulse duration, and arrival times. Most platforms for quantum computation today rely on light-matter interactions of bound electrons such as in ion traps [1], superconducting circuits [2], and electron spin systems [3,4]. These form a natural choice for implementing 2-level systems with spin algebra. Instead of using bound electrons for quantum information processing, in this letter we propose using free electrons and manipulating them with femtosecond laser pulses in optical frequencies. Compared to bound electrons, free electron systems enable accessing high energy scales and short time scales. Moreover, they possess quantized degrees of freedom that can take unbounded values, such as orbital angular momentum (OAM), which has also been proposed for information encoding [5-10]. Analogously, photons also have the capability to encode information in their OAM [11,12].
    [Show full text]
  • Arxiv:2007.11161V3 [Cond-Mat.Str-El] 13 Mar 2021
    Topological phase transition and single/multi anyon dynamics of /2 spin liquid Zheng Yan,1 Yan-Cheng Wang,2 Nvsen Ma,3 Yang Qi,4, 5, 6, ∗ and Zi Yang Meng1, y 1Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong 2School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China 3School of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Beihang University, Beijing 100191, China 4State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China 5Center for Field Theory and Particle Physics, Department of Physics, Fudan University, Shanghai 200433, China 6Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China Among the quantum many-body models that host anyon excitation and topological orders, quantum dimer models (QDM) provide a unique playground for studying the relation between single-anyon and multi-anyon continuum spectra. However, as the prototypical correlated system with local constraints, the generic solution of QDM at different lattice geometry and parameter regimes is still missing due to the lack of controlled methodologies. Here we obtain, via the newly developed sweeping cluster quantum Monte Carlo algorithm, the excitation spectra in different phases of the triangular lattice QDM. Our resultsp revealp the single vison excitations inside the /2 quantum spin liquid (QSL) and its condensation towards the 12 × 12 valence bond solid (VBS), and demonstrate the translational symmetry fractionalization and emergent O(4) symmetry at the QSL-VBS transition. We find the single vison excitations, whose convolution qualitatively reproduces the dimer spectra, are not free but subject to interaction effects throughout the transition.
    [Show full text]
  • Design of a Qubit and a Decoder in Quantum Computing Based on a Spin Field Effect
    Design of a Qubit and a Decoder in Quantum Computing Based on a Spin Field Effect A. A. Suratgar1, S. Rafiei*2, A. A. Taherpour3, A. Babaei4 1 Assistant Professor, Electrical Engineering Department, Faculty of Engineering, Arak University, Arak, Iran. 1 Assistant Professor, Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran. 2 Young Researchers Club, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran. *[email protected] 3 Professor, Chemistry Department, Faculty of Science, Islamic Azad University, Arak Branch, Arak, Iran. 4 faculty member of Islamic Azad University, Khomein Branch, Khomein, ABSTRACT In this paper we present a new method for designing a qubit and decoder in quantum computing based on the field effect in nuclear spin. In this method, the position of hydrogen has been studied in different external fields. The more we have different external field effects and electromagnetic radiation, the more we have different distribution ratios. Consequently, the quality of different distribution ratios has been applied to the suggested qubit and decoder model. We use the nuclear property of hydrogen in order to find a logical truth value. Computational results demonstrate the accuracy and efficiency that can be obtained with the use of these models. Keywords: quantum computing, qubit, decoder, gyromagnetic ratio, spin. 1. Introduction different hydrogen atoms in compound applied for the qubit and decoder designing. Up to now many papers deal with the possibility to realize a reversible computer based on the laws of 2. An overview on quantum concepts quantum mechanics [1]. In this chapter a short introduction is presented Modern quantum chemical methods provide into the interesting field of quantum in physics, powerful tools for theoretical modeling and Moore´s law and a summary of the quantum analysis of molecular electronic structures.
    [Show full text]
  • Introduction to Abelian and Non-Abelian Anyons
    Introduction to abelian and non-abelian anyons Sumathi Rao Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India. In this set of lectures, we will start with a brief pedagogical introduction to abelian anyons and their properties. This will essentially cover the background material with an introduction to basic concepts in anyon physics, fractional statistics, braid groups and abelian anyons. The next topic that we will study is a specific exactly solvable model, called the toric code model, whose excitations have (mutual) anyon statistics. Then we will go on to discuss non-abelian anyons, where we will use the one dimensional Kitaev model as a prototypical example to produce Majorana modes at the edge. We will then explicitly derive the non-abelian unitary matrices under exchange of these Majorana modes. PACS numbers: I. INTRODUCTION The first question that one needs to answer is why we are interested in anyons1. Well, they are new kinds of excitations which go beyond the usual fermionic or bosonic modes of excitations, so in that sense they are like new toys to play with! But it is not just that they are theoretical constructs - in fact, quasi-particle excitations have been seen in the fractional quantum Hall (FQH) systems, which seem to obey these new kind of statistics2. Also, in the last decade or so, it has been realised that if particles obeying non-abelian statistics could be created, they would play an extremely important role in quantum computation3. So in the current scenario, it is clear that understanding the basic notion of exchange statistics is extremely important.
    [Show full text]
  • Quantum Information Science, NIST, and Future Technological Implications National Institute of Standards & Technology Http
    Quantum Information Science, NIST, and Future Technological Implications Carl J. Williams, Chief Atomic Physics Division National Institute of Standards & Technology http://qubit.nist.gov NIST – Atomic Physics Division Carl J. Williams, Chief What is Quantum Information? “Quantum information is a radical departure in information technology, more fundamentally different from current technology than the digital computer is from the abacus.” W. D. Phillips, 1997 Nobel Prize Winner in Physics A convergence of two of the 20th Century’s great revolutions A new science! Quantum Mechanics Information Science (i.e. computer science, (i.e. atoms, photons, JJ’s, communications, physics of computation) cryptology) The second quantum revolution NIST – Atomic Physics Division Carl J. Williams, Chief Second Quantum Revolution We are witnessing the second quantum revolution • First quantum revolution (1920’s - 1980’s) – Described how nature works at the quantum level – Weirdness of QM discovered and debated – Wave-particle duality -> Wavefunctions – Spooky action at a distance -> Entanglement – Technology uses semiclassical properties – quantization & wave properties • Second quantum revolution (starts ~1980’s - ) – Exploits how nature works at the quantum level – Interactions are how Nature computes! – Weirdness of QM exploited – Information storage capacity of superposed wavefunctions – Information transmittal accomplished by entanglement, teleportation – Information exchange accomplished by interactions – Technology uses the weird properties of quantum mechanics NIST – Atomic Physics Division Carl J. Williams, Chief Classical Bits vs. Quantum Bits • Classical Bits: two-state systems Classical bits: 0 (off) or 1 (on) (switch) • Quantum Bits are also two-level(state) systems ⎜↑〉 ⎜1〉 Atom ⎜0〉 ⎜↓〉 Internal State Motional State Ö But: Quantum Superpositions are possible Ψ= α|↓〉 + β|↑〉 = α|0〉 + β|1〉 NIST – Atomic Physics Division Carl J.
    [Show full text]
  • A Theoretical Study of Quantum Memories in Ensemble-Based Media
    A theoretical study of quantum memories in ensemble-based media Karl Bruno Surmacz St. Hugh's College, Oxford A thesis submitted to the Mathematical and Physical Sciences Division for the degree of Doctor of Philosophy in the University of Oxford Michaelmas Term, 2007 Atomic and Laser Physics, University of Oxford i A theoretical study of quantum memories in ensemble-based media Karl Bruno Surmacz, St. Hugh's College, Oxford Michaelmas Term 2007 Abstract The transfer of information from flying qubits to stationary qubits is a fundamental component of many quantum information processing and quantum communication schemes. The use of photons, which provide a fast and robust platform for encoding qubits, in such schemes relies on a quantum memory in which to store the photons, and retrieve them on-demand. Such a memory can consist of either a single absorber, or an ensemble of absorbers, with a ¤-type level structure, as well as other control ¯elds that a®ect the transfer of the quantum signal ¯eld to a material storage state. Ensembles have the advantage that the coupling of the signal ¯eld to the medium scales with the square root of the number of absorbers. In this thesis we theoretically study the use of ensembles of absorbers for a quantum memory. We characterize a general quantum memory in terms of its interaction with the signal and control ¯elds, and propose a ¯gure of merit that measures how well such a memory preserves entanglement. We derive an analytical expression for the entanglement ¯delity in terms of fluctuations in the stochastic Hamiltonian parameters, and show how this ¯gure could be measured experimentally.
    [Show full text]
  • Fermion Condensation and Gapped Domain Walls in Topological Orders
    Fermion Condensation and Gapped Domain Walls in Topological Orders Yidun Wan1,2, ∗ and Chenjie Wang2, † 1Department of Physics and Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China 2Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada (Dated: September 12, 2018) We propose the concept of fermion condensation in bosonic topological orders in two spatial dimensions. Fermion condensation can be realized as gapped domain walls between bosonic and fermionic topological orders, which are thought of as a real-space phase transitions from bosonic to fermionic topological orders. This generalizes the previous idea of understanding boson conden- sation as gapped domain walls between bosonic topological orders. We show that generic fermion condensation obeys a Hierarchy Principle by which it can be decomposed into a boson condensation followed by a minimal fermion condensation, which involves a single self-fermion that is its own anti-particle and has unit quantum dimension. We then develop the rules of minimal fermion con- densation, which together with the known rules of boson condensation, provides a full set of rules of fermion condensation. Our studies point to an exact mapping between the Hilbert spaces of a bosonic topological order and a fermionic topological order that share a gapped domain wall. PACS numbers: 11.15.-q, 71.10.-w, 05.30.Pr, 71.10.Hf, 02.10.Kn, 02.20.Uw I. INTRODUCTION to condensing self-bosons in a bTO. A particularly inter- esting question is: Is it possible to condense self-fermions, A gapped quantum matter phase with intrinsic topo- which have nontrivial braiding statistics with some other logical order has topologically protected ground state anyons in the system? At a first glance, fermion conden- degeneracy and anyon excitations1,2 on which quantum sation might be counterintuitive; however, in this work, computation may be realized via anyon braiding, which is we propose a physical context in which fermion conden- robust against errors due to local perturbation3,4.
    [Show full text]
  • Quantum Computation and Complexity Theory
    Quantum computation and complexity theory Course given at the Institut fÈurInformationssysteme, Abteilung fÈurDatenbanken und Expertensysteme, University of Technology Vienna, Wintersemester 1994/95 K. Svozil Institut fÈur Theoretische Physik University of Technology Vienna Wiedner Hauptstraûe 8-10/136 A-1040 Vienna, Austria e-mail: [email protected] December 5, 1994 qct.tex Abstract The Hilbert space formalism of quantum mechanics is reviewed with emphasis on applicationsto quantum computing. Standardinterferomeric techniques are used to construct a physical device capable of universal quantum computation. Some consequences for recursion theory and complexity theory are discussed. hep-th/9412047 06 Dec 94 1 Contents 1 The Quantum of action 3 2 Quantum mechanics for the computer scientist 7 2.1 Hilbert space quantum mechanics ..................... 7 2.2 From single to multiple quanta Ð ªsecondº ®eld quantization ...... 15 2.3 Quantum interference ............................ 17 2.4 Hilbert lattices and quantum logic ..................... 22 2.5 Partial algebras ............................... 24 3 Quantum information theory 25 3.1 Information is physical ........................... 25 3.2 Copying and cloning of qbits ........................ 25 3.3 Context dependence of qbits ........................ 26 3.4 Classical versus quantum tautologies .................... 27 4 Elements of quantum computatability and complexity theory 28 4.1 Universal quantum computers ....................... 30 4.2 Universal quantum networks ........................ 31 4.3 Quantum recursion theory ......................... 35 4.4 Factoring .................................. 36 4.5 Travelling salesman ............................. 36 4.6 Will the strong Church-Turing thesis survive? ............... 37 Appendix 39 A Hilbert space 39 B Fundamental constants of physics and their relations 42 B.1 Fundamental constants of physics ..................... 42 B.2 Conversion tables .............................. 43 B.3 Electromagnetic radiation and other wave phenomena .........
    [Show full text]
  • Equation of State of an Anyon Gas in a Strong Magnetic Field
    EQUATION OF STATE OF AN ANYON GAS IN A STRONG MAGNETIC FIELD Alain DASNIÊRES de VEIGY and Stéphane OUVRY ' Division de Physique Théorique 2, IPN, Orsay Fr-91406 Abstract: The statistical mechanics of an anyon gas in a magnetic field is addressed. An har- monic regulator is used to define a proper thermodynamic limit. When the magnetic field is sufficiently strong, only exact JV-aiiyon groundstates, where anyons occupy the lowest Landau level, contribute to the equation of state. Particular attention is paid to the inter- \ val of definition of the statistical parameter a 6 [-1,0] where a gap exists. Interestingly J enough, one finds that at the critical filling v = — 1 /a where the pressure diverges, the t external magnetic field is entirely screened by the flux tubes carried by the anyons. PACS numbers: 03.65.-w, 05.30.-d, ll.10.-z, 05.70.Ce IPN0/TH 93-16 (APRIL 1993) "f* ' and LPTPE, Tour 16, Université Paris 6 / electronic e-mail: OVVRYeFRCPNlI I * Unité de Recherche des Univenitéi Paria 11 et Paria 6 associée au CNRS y -Introduction : It is now widely accepted that anyons [1] should play a role in the Quantum Hall effect [2]. In the case of the Fractional Quantum Hall effect, Laughlin wavefunctions for the ground state of N electrons in a strong magnetic field with filling v - l/m provide an interesting compromise between Fermi degeneracy and Coulomb correlations. A physical interpretation is that at the critical fractional filling electrons carry exactly m quanta of flux <j>o (m odd), m - 1 quanta screening the external applied field.
    [Show full text]