Electrophysiological Effects of Repeated Administration of Agomelatine on the Dopamine, Norepinephrine, and Serotonin Systems in the Rat Brain

Total Page:16

File Type:pdf, Size:1020Kb

Electrophysiological Effects of Repeated Administration of Agomelatine on the Dopamine, Norepinephrine, and Serotonin Systems in the Rat Brain Neuropsychopharmacology (2013) 38, 275–284 & 2013 American College of Neuropsychopharmacology. All rights reserved 0893-133X/13 www.neuropsychopharmacology.org Electrophysiological Effects of Repeated Administration of Agomelatine on the Dopamine, Norepinephrine, and Serotonin Systems in the Rat Brain Franck Chenu1, Mostafa El Mansari1 and Pierre Blier*,1,2 1 2 Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada Agomelatine is a melatonergic MT1/MT2 agonist and a serotonin (5-HT) 5-HT antagonist. The effects of 2-day and 14-day 2C administration of agomelatine were investigated on the activity of ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) 5-HT neurons using in vivo electrophysiology in rats. The 5-HT1A transmission was assessed at hippocampus CA3 pyramidal neurons. After a 2-day regimen of agomelatine (40 mg/kg/day, i.p.), an increase in the number of spontaneously active VTA-DA neurons (po0.001) and in the firing rate of LC-NE neurons (po0.001) was observed. After 14 days, the administration of agomelatine induced an increase in: (1) the number of spontaneously active DA neurons (po0.05), (2) the bursting activity of DA neurons (bursts/min, po0.01 and percentage of spikes occurring in bursts, po0.05), (3) the firing rate of DRN-5-HT neurons (po0.05), and (4) the tonic activation of postsynaptic 5-HT1A receptors located in the hippocampus. The increase in 5-HT firing rate was D2 dependent, as it was antagonized by the D2 receptor antagonist paliperidone. The enhancement of NE firing was restored by the 5-HT2A receptor antagonist MDL-100,907 after the 14-day regimen. All the effects of agomelatine were antagonized by a single administration of the melatonergic antagonist S22153 (except for the increase in the percentage of spikes occurring in burst for DA neurons). The present results suggest that (1) agomelatine exerts direct (2 days) and indirect (14 days) modulations of monoaminergic neuronal activity and (2) the melatonergic agonistic activity of agomelatine contributes to the enhancement of DA and 5-HT neurotransmission. Neuropsychopharmacology (2013) 38, 275–284; doi:10.1038/npp.2012.140; published online 8 August 2012 Keywords: agomelatine; antidepressant; electrophysiology; dopamine; norepinephrine; serotonin INTRODUCTION CMS-induced reduction in sucrose consumption, suggesting a reduction of anhedonia in stressed animals (Papp et al, Agomelatine is an antidepressant with a novel mechanism 2003). This effect is, at least in part, related to the of action. It is a melatonergic agonist for MT1 and MT2 melatonergic component of the drug as it is blocked by a receptors and a serotonin (5-HT) receptor antagonist 2C single administration of the MT1/MT2 receptor antagonist (Millan et al, 2003; Audinot et al, 2003; de Bodinat et al, S22153. In the learned helplessness (LH) model, agomela- 2010; Kasper and Hamon, 2009; Ying et al, 1996). The tine induces an antidepressant-like activity after chronic antidepressant-like effect of agomelatine has been demon- administration, which was abolished by pretreatment with strated in different animal models. In the forced swimming the MT1/MT2 receptor antagonist S22153 (Bertaina-An- test, acute and repeated administration of agomelatine glade et al, 2006), suggesting the involvement of the induces an antidepressant-like effect in rats (Bourin et al, melatonergic receptors. These behavioral data results are 2004), whereas in mice only the long-term administration supported by studies showing that the administration of the induces a significant increase in swimming duration. In the melatonergic receptor antagonist S22153 antagonized the chronic mild stress (CMS), repeated administration of increase in brain-derived neurotrophic factor (BDNF) agomelatine in the evening dose-dependently reverses the mRNA levels in rat prefrontal cortex (Racagni et al, 2011). As both the 5-HT2C receptor antagonist SB-242084 and *Correspondence: Dr P Blier, Institute of Mental Health Research melatonin are devoid of effect by themselves in the CMS and (IMHR), 1145 Carling Avenue, University of Ottawa, Room 6412, LH, these preclinical data suggest that the antidepressant- Ottawa K1Z 7K4, ON, Canada, Tel: + 1 613 722 6521 (ext 6944), like effect of agomelatine requires both the activation of Fax: + 1 613 761 3610, E-mail: [email protected] melatonergic receptors and the blockade of 5-HT2C Received 16 March 2012; revised 26 June 2012; accepted 28 June 2012 receptors. This is in line with clinical studies showing that Effects of agomelatine on monoaminergic systems F Chenu et al 276 melatonin by itself does not have any antidepressant effect 1700 h. 5-HT, quisqualic acid, and WAY-100,635 were in patients suffering from major depressive disorder (MDD; bought from Sigma (Oakville, ON, Canada). Paliperidone Dalton et al, 2000; Dolberg et al, 1998). In contrast, the was provided by Janssen (Titusville, NJ). efficacy of agomelatine in MDD has been demonstrated in clinical trials vs placebo (Kennedy and Emsley, 2006) and In Vivo Electrophysiological Recordings using active comparators such as venlafaxine (Lemoine et al, 2007), sertraline (Kasper et al, 2010), and fluoxetine Rats were anesthetized with chloral hydrate (400 mg/kg, i.p.) (Hale et al, 2010). and placed into a stereotaxic frame. The extracellular Regarding its putative mechanism of action, agomelatine recordings of 5-HT, DA, and NE neurons in the DR, the induces a dose-dependent enhancement of extracellular VTA, and the LC, respectively, were carried out using frontocortical dopamine (DA) and norepinephrine (NE) single-barrelled glass micropipettes (Stoelting, Spencerville, transmission measured by microdialysis (Millan et al, MD) preloaded with a 2 M NaCl solution (impedance 4– 2003). These increases are unaffected by the melatonin 7MO). The extracellular recordings of pyramidal neurons in receptor antagonist S22153 and cannot be mimicked by the CA3 region of the hippocampus were carried out using melatonin. However, previous results showed that 5-HT2C multi-barrelled glass micropipettes (impedances: central receptor antagonists induce an increase in extracellular barrel: 2–5MO, side barrels: 20–30MO). The central barrel levels of NE and DA in the prefrontal cortex of freely used for extracellular unitary recording and one side barrel moving rats (Gobert et al, 2000). Therefore, this effect is (automatic current balancing) were filled with 2 M NaCl likely associated with the 5-HT2C receptor antagonist solution. The three other side barrels were filled with 5-HT property of agomelatine. A dose-dependent increase in (25 mM in 0.2 M NaCl, pH ¼ 4) and quisqualate (1.5 mM in extracellular levels of NE was also found in the dorsal 0.2 M NaCl; pH ¼ 8). 5-HT was ejected as cations and hippocampus of freely moving rats following an acute retained with currents of À10 to À8 nA. Quisqualate was administration of agomelatine (Millan et al, 2005). These ejected as an anion and retained with a current of + 5 nA. findings are supported by electrophysiology results showing a dose-dependent increase in the firing rate of locus Recording of DRN-5-HT Neurons coeruleus (LC) NE neurons (Millan et al, 2003) following acute administration of incremental doses of agomelatine. The single-barrelled glass micropipettes were positioned Unexpectedly, the electrical activity of ventral tegmental using the following coordinates (in mm from l): AP: + 1.0 area (VTA) DA neurons was unchanged. to 1.2; L: 0±0.1; and V: 5 to 7. The presumed 5-HT neurons Based on all these previous preclinical studies, it seems that were then identified using the following criteria: a slow (0.5– there is a discrepancy between the behavioral and the 2.5 Hz) and regular firing rate and long-duration (2–5 ms) neurobiochemical effects of agomelatine. Indeed, the anti- bi- or tri-phasic extracellular waveform (Aghajanian and depressant-like effect of agomelatine cannot be fully ex- Vandermaelen, 1982). It is important to mention that there plained by the increase in extracellular levels of NE and DA are slow firing neurons in the DRN that are not serotonergic because this increase is not antagonized by the melatonergic (Allers and Sharp, 2003). However, these neurons have receptor antagonist S22153, whereas its antidepressant-like shorter-duration spikes and do not fire as regularly as 5-HT effect is. The aim of this study was to investigate the effects of neurons. It was deemed that few, if any, such neurons were short (2 days) and long-term (14 days) administration of accidentally introduced in our tally of 5-HT neurons by agomelatine on the electrical activity of VTA-DA neurons, adhering to the above-mentioned criteria. As previously LC-NE neurons, and dorsal raphe nuclei (DRN) 5-HT demonstrated, some 5-HT neurons display a bursting neurons in order to have a better understanding of its activity (Hajos et al, 1995). This occasional firing pattern mechanism of action. of 5-HT neurons was analyzed by spike interval burst analysis. The onset of a burst was defined as the occurrence of two spikes with an interspike interval (ISI) of o10 ms. MATERIALS AND METHODS Animals Recording of VTA-DA Neurons Male Sprague-Dawley rats (Charles River, St Constant, QC, The single-barrelled glass micropipettes were positioned Canada) weighing 250 to 330 g, were used for the experi- using the following coordinates (in mm from bregma): AP: ments. They were kept under standard laboratory condi- À6toÀ5.4; L: 0.6 to 1; and V: 7 to 9. The presumed DA tions (12 : 12 h light/dark cycle, free access to food and neurons were identified according to well-established water). All animals were handled according to the guide- electrophysiological properties in vivo: a typical triphasic lines of the Canadian Council on Animal Care. Protocols in action potential with a marked negative deflection, a this study were approved by the local Animal Care characteristic long duration (42.5 ms) often with an Committee (IMHR, Ottawa, ON, Canada).
Recommended publications
  • Homology Models of Melatonin Receptors: Challenges and Recent Advances
    Int. J. Mol. Sci. 2013, 14, 8093-8121; doi:10.3390/ijms14048093 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Homology Models of Melatonin Receptors: Challenges and Recent Advances Daniele Pala 1, Alessio Lodola 1, Annalida Bedini 2, Gilberto Spadoni 2 and Silvia Rivara 1,* 1 Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; E-Mails: [email protected] (D.P.); [email protected] (A.L.) 2 Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy; E-Mails: [email protected] (A.B.); [email protected] (G.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-0521-905-061; Fax: +39-0521-905-006. Received: 7 March 2013; in revised form: 28 March 2013 / Accepted: 28 March 2013 / Published: 12 April 2013 Abstract: Melatonin exerts many of its actions through the activation of two G protein-coupled receptors (GPCRs), named MT1 and MT2. So far, a number of different MT1 and MT2 receptor homology models, built either from the prototypic structure of rhodopsin or from recently solved X-ray structures of druggable GPCRs, have been proposed. These receptor models differ in the binding modes hypothesized for melatonin and melatonergic ligands, with distinct patterns of ligand-receptor interactions and putative bioactive conformations of ligands. The receptor models will be described, and they will be discussed in light of the available information from mutagenesis experiments and ligand-based pharmacophore models.
    [Show full text]
  • The Neuroprotective Effects of Melatonin: Possible Role in the Pathophysiology of Neuropsychiatric Disease
    brain sciences Perspective The Neuroprotective Effects of Melatonin: Possible Role in the Pathophysiology of Neuropsychiatric Disease Jung Goo Lee 1,2 , Young Sup Woo 3, Sung Woo Park 2,4, Dae-Hyun Seog 5, Mi Kyoung Seo 6 and Won-Myong Bahk 3,* 1 Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan 47392, Korea; [email protected] 2 Paik Institute for Clinical Research, Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea; [email protected] 3 Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea; [email protected] 4 Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea 5 Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea; [email protected] 6 Paik Institute for Clinical Research, Inje University, Busan 47392, Korea; [email protected] * Correspondence: [email protected] Received: 16 September 2019; Accepted: 19 October 2019; Published: 21 October 2019 Abstract: Melatonin is a hormone that is secreted by the pineal gland. To date, melatonin is known to regulate the sleep cycle by controlling the circadian rhythm. However, recent advances in neuroscience and molecular biology have led to the discovery of new actions and effects of melatonin. In recent studies, melatonin was shown to have antioxidant activity and, possibly, to affect the development of Alzheimer’s disease (AD). In addition, melatonin has neuroprotective effects and affects neuroplasticity, thus indicating potential antidepressant properties. In the present review, the new functions of melatonin are summarized and a therapeutic target for the development of new drugs based on the mechanism of action of melatonin is proposed.
    [Show full text]
  • Pharmacometabolomics of Response to Sertraline and to Placebo in Major Depressive Disorder – Possible Role for Methoxyindole Pathway
    Pharmacometabolomics of Response to Sertraline and to Placebo in Major Depressive Disorder – Possible Role for Methoxyindole Pathway Hongjie Zhu1., Mikhail B. Bogdanov2., Stephen H. Boyle1, Wayne Matson3, Swati Sharma3, Samantha Matson3,4, Erik Churchill1, Oliver Fiehn5, John A. Rush6, Ranga R. Krishnan1,6, Eve Pickering7, Marielle Delnomdedieu8, Rima Kaddurah-Daouk1*, Pharmacometabolomics Research Network 1 Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, United States of America, 2 Department of Neurology and Neuroscience Weill Cornell Medical College, New York, New York, United States of America, 3 Department of Systems Biochemistry, Bedford VA Medical Center, Bedford, Massachusetts, United States of America, 4 Massachusetts General Hospital, Boston, Massachusetts, United States of America, 5 Genome Center, University of California Davis, Davis, California, United States of America, 6 Duke-NUS Graduate Medical School, Singapore, Singapore, 7 Pfizer Global R&D, Clinical Research Statistics, Groton, Connecticut, United States of America, 8 Pfizer Global R&D, Neuroscience Clinical Research, Groton, Connecticut, United States of America Abstract Therapeutic response to selective serotonin (5-HT) reuptake inhibitors in Major Depressive Disorder (MDD) varies considerably among patients, and the onset of antidepressant therapeutic action is delayed until after 2 to 4 weeks of treatment. The objective of this study was to analyze changes within methoxyindole and kynurenine (KYN) branches of tryptophan pathway to determine whether differential regulation within these branches may contribute to mechanism of variation in response to treatment. Metabolomics approach was used to characterize early biochemical changes in tryptophan pathway and correlated biochemical changes with treatment outcome. Outpatients with MDD were randomly assigned to sertraline (n = 35) or placebo (n = 40) in a double-blind 4-week trial; response to treatment was measured using the 17-item Hamilton Rating Scale for Depression (HAMD17).
    [Show full text]
  • Drug Repurposing for the Management of Depression: Where Do We Stand Currently?
    life Review Drug Repurposing for the Management of Depression: Where Do We Stand Currently? Hosna Mohammad Sadeghi 1,†, Ida Adeli 1,† , Taraneh Mousavi 1,2, Marzieh Daniali 1,2, Shekoufeh Nikfar 3,4,5 and Mohammad Abdollahi 1,2,* 1 Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] (H.M.S.); [email protected] (I.A.); [email protected] (T.M.); [email protected] (M.D.) 2 Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran 3 Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] 4 Pharmaceutical Sciences Research Center (PSRC) and the Pharmaceutical Management and Economics Research Center (PMERC), Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran 5 Department of Pharmacoeconomics and Pharmaceutical Administration, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran * Correspondence: [email protected] † Equally contributed as first authors. Citation: Mohammad Sadeghi, H.; Abstract: A slow rate of new drug discovery and higher costs of new drug development attracted Adeli, I.; Mousavi, T.; Daniali, M.; the attention of scientists and physicians for the repurposing and repositioning of old medications. Nikfar, S.; Abdollahi, M. Drug Experimental studies and off-label use of drugs have helped drive data for further studies of ap- Repurposing for the Management of proving these medications.
    [Show full text]
  • Us 2008/0280991 A1 8, 2007. Pdco
    US 20080280991A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0280991 A1 Gant et al. (43) Pub. Date: Nov. 13, 2008 (54) SUBSTITUTED NAPHTHALENES (52) U.S. Cl. ......................................... 514/630; 564/219 (75) Inventors: Thomas G. Gant, Carlsbad, CA (US); Sepehr Sarshar, Cardiff by the Sea, CA (US) (57) ABSTRACT Correspondence Address: Disclosed herein are substituted naphthalene-based melato GLOBAL PATENT GROUP - APX nin (MT) receptor modulators and/or 5-HT receptor modula Ms. LaVern Hall tors of Formula I, process of preparation thereof, pharmaceu 10411 Clayton Road, Suite 304 tical compositions thereof, and methods of use thereof. ST. LOUIS, MO 63131 (US) (73) Assignee: AUSPEX O Formula I PHARMACEUTICALS, INC., Vista, CA (US) Ran R15 (21) Appl. No.: 12/116,636 R R16 R11 R13 7 (22) Filed: May 7, 2008 R12 R16 Related U.S. Application Data Ro (60) Provisional application No. 60/928,343, filed on May R O Rs 2 R3 8, 2007. Publication Classification PDCOR R (51) Int. Cl. Rs R6 A6 IK3I/I65 (2006.01) C07C 23.3/05 (2006.01) US 2008/0280991 A1 Nov. 13, 2008 SUBSTITUTED NAPHTHALENES nant metabolite is a naphthol. “S 21517. that has 100-fold less potency for the melatonin receptor than the parent com pound. Long term toxicology studies of these metabolites are 0001. This application claims the benefit of priority of lacking. All of these transformations, among other potential U.S. provisional application No. 60/928,343, filed May 8, transformations, can and do occur through polymorphically 2007, the disclosure of which is hereby incorporated by ref expressed enzymes thus exacerbating interpatient variability.
    [Show full text]
  • Npp200972.Pdf
    Neuropsychopharmacology (2009) 34, 2390–2403 & 2009 Nature Publishing Group All rights reserved 0893-133X/09 $32.00 www.neuropsychopharmacology.org Mechanisms Contributing to the Phase-Dependent Regulation of Neurogenesis by the Novel Antidepressant, Agomelatine, in the Adult Rat Hippocampus Ame´lie Soumier1, Mounira Banasr1, Sylviane Lortet1, Fre´de´rique Masmejean1, Nathalie Bernard1, Lydia Kerkerian-Le-Goff1, Cecilia Gabriel2, Mark J Millan3, Elisabeth Mocaer2 and Annie Daszuta*,1 1 2 3 IC2N, IBDML, UMR 6216, Marseille, France; IRIS, Courbevoie, France; IDR Servier, Croissy-sur-Seine, France Agomelatine is a novel antidepressant acting as a melatonergic receptor agonist and serotonergic (5-HT ) receptor antagonist. In adult 2C rats, chronic agomelatine treatment enhanced cell proliferation and neurogenesis in the ventral hippocampus (VH), a region pertinent to mood disorders. This study compared the effects of agomelatine on cell proliferation, maturation, and survival and investigated the cellular mechanisms underlying these effects. Agomelatine increased the ratio of mature vs immature neurons and enhanced neurite outgrowth of granular cells, suggesting an acceleration of maturation. The influence of agomelatine on maturation and survival was accompanied by a selective increase in the levels of BDNF (brain-derived neurotrophic factor) vs those of VEGF (vascular endothelial factor) and IGF-1 (insulin-like growth factor 1), which were not affected. Agomelatine also activated several cellular signals (extracellular signal-regulated kinase1/2, protein kinase B, and glycogen synthase kinase 3b) known to be modulated by antidepressants and implicated in the control of proliferation/survival. Furthermore, as agomelatine possesses both melatonergic agonist and serotonergic (5-HT2C) antagonist properties, we determined whether melatonin and 5-HT2C receptor antagonists similarly influence cell proliferation and survival.
    [Show full text]
  • ANTIDEPRESSANTS in USE in CLINICAL PRACTICE Mark Agius1 & Hannah Bonnici2 1Clare College, University of Cambridge, Cambridge, UK 2Hospital Pharmacy St
    Psychiatria Danubina, 2017; Vol. 29, Suppl. 3, pp 667-671 Conference paper © Medicinska naklada - Zagreb, Croatia ANTIDEPRESSANTS IN USE IN CLINICAL PRACTICE Mark Agius1 & Hannah Bonnici2 1Clare College, University of Cambridge, Cambridge, UK 2Hospital Pharmacy St. James Hospital Malta, Malta SUMMARY The object of this paper, rather than producing new information, is to produce a useful vademecum for doctors prescribing antidepressants, with the information useful for their being prescribed. Antidepressants need to be seen as part of a package of treatment for the patient with depression which also includes psychological treatments and social interventions. Here the main Antidepressant groups, including the Selective Serotonin uptake inhibiters, the tricyclics and other classes are described, together with their mode of action, side effects, dosages. Usually antidepressants should be prescribed for six months to treat a patient with depression. The efficacy of anti-depressants is similar between classes, despite their different mechanisms of action. The choice is therefore based on the side-effects to be avoided. There is no one ideal drug capable of exerting its therapeutic effects without any adverse effects. Increasing knowledge of what exactly causes depression will enable researchers not only to create more effective antidepressants rationally but also to understand the limitations of existing drugs. Key words: antidepressants – depression - psychological therapies - social therapies * * * * * Introduction Monoamine oxidase (MAO) inhibitors í Non-selective Monoamine Oxidase Inhibitors Depression may be defined as a mood disorder that í Selective Monoamine Oxidase Type A inhibitors negatively and persistently affects the way a person feels, thinks and acts. Common signs include low mood, Atypical Anti-Depressants and other classes changes in appetite and sleep patterns and loss of inte- rest in activities that were once enjoyable.
    [Show full text]
  • Association of Selective Serotonin Reuptake Inhibitors with the Risk for Spontaneous Intracranial Hemorrhage
    Supplementary Online Content Renoux C, Vahey S, Dell’Aniello S, Boivin J-F. Association of selective serotonin reuptake inhibitors with the risk for spontaneous intracranial hemorrhage. JAMA Neurol. Published online December 5, 2016. doi:10.1001/jamaneurol.2016.4529 eMethods 1. List of Antidepressants for Cohort Entry eMethods 2. List of Antidepressants According to the Degree of Serotonin Reuptake Inhibition eMethods 3. Potential Confounding Variables Included in Multivariate Models eMethods 4. Sensitivity Analyses eFigure. Flowchart of Incident Antidepressant (AD) Cohort Definition and Case- Control Selection eTable 1. Crude and Adjusted Rate Ratios of Intracerebral Hemorrhage Associated With Current Use of SSRIs Relative to TCAs eTable 2. Crude and Adjusted Rate Ratios of Subarachnoid Hemorrhage Associated With Current Use of SSRIs Relative to TCAs eTable 3. Crude and Adjusted Rate Ratios of Intracranial Extracerebral Hemorrhage Associated With Current Use of SSRIs Relative to TCAs. eTable 4. Crude and Adjusted Rate Ratios of Intracerebral Hemorrhage Associated With Current Use of Antidepressants With Strong Degree of Inhibition of Serotonin Reuptake Relative to Weak eTable 5. Crude and Adjusted Rate Ratios of Subarachnoid Hemorrhage Associated With Current Use of Antidepressants With Strong Degree of Inhibition of Serotonin Reuptake Relative to Weak eTable 6. Crude and Adjusted Rate Ratios of Intracranial Extracerebral Hemorrhage Associated With Current Use of Antidepressants With Strong Degree of Inhibition of Serotonin Reuptake Relative to Weak This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/02/2021 eMethods 1.
    [Show full text]
  • Tumour Microenvironment: Roles of the Aryl Hydrocarbon Receptor, O-Glcnacylation, Acetyl-Coa and Melatonergic Pathway in Regulat
    International Journal of Molecular Sciences Review Tumour Microenvironment: Roles of the Aryl Hydrocarbon Receptor, O-GlcNAcylation, Acetyl-CoA and Melatonergic Pathway in Regulating Dynamic Metabolic Interactions across Cell Types—Tumour Microenvironment and Metabolism George Anderson Clinical Research Communications (CRC) Scotland & London, Eccleston Square, London SW1V 6UT, UK; [email protected] Abstract: This article reviews the dynamic interactions of the tumour microenvironment, highlight- ing the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven ‘backward’ conversion of mela- tonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a cru- Citation:
    [Show full text]
  • Novel Melatonin MT1 Receptor Agonists As Antidepressants
    Novel melatonin MT1 receptor agonists as antidepressants: In vivo electrophysiological and behavioural characterization Ada R. Posner Degree of Master of Science Neurobiological Psychiatry Unit Department of Psychiatry Faculty of Medicine McGill University Montreal, Quebec, Canada April, 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science in Psychiatry Copyright Ada R. Posner, 2015 Table of Contents Table of Contents ................................................................................................ 2 Abstract ............................................................................................................... 3 Résumé ............................................................................................................... 5 Acknowledgements ............................................................................................. 7 Preface & Contribution of Authors ...................................................................... 8 Abbreviations ...................................................................................................... 9 Introduction ....................................................................................................... 14 Melatonin ...................................................................................................... 14 Sites and mechanisms of melatonin action: receptors ................................. 17 Localization and distribution of melatonin receptors in the brain
    [Show full text]
  • A Study on the Effects of Agomelatine on Food Intake and Body Weight in Restraint Stress Model in Adult Swiss Albino Mice
    Online - 2455-3891 Vol 10, Issue 9, 2017 Print - 0974-2441 Research Article A STUDY ON THE EFFECTS OF AGOMELATINE ON FOOD INTAKE AND BODY WEIGHT IN RESTRAINT STRESS MODEL IN ADULT SWISS ALBINO MICE SHANMUGAPRIYA S*, NIVEDHITHAA S, BHUVANESWARI K Department of Pharmacology, PSG Institute of Medical Sciences and Research, Peelamedu, Coimbatore, Tamil Nadu, India. Email: [email protected] Received: 01 May 2017, Revised and Accepted: 25 May 2017 ABSTRACT Objectives: Agomelatine is a novel melatonin (MT) receptor agonist at MT 1 and 2, serotonin receptor antagonist and an effective chronobiotic agent. The study was designed to evaluate the effects of agomelatine on body weight and food intake in restraint stress model in adult Swiss albino mice. Methods: After the approval of Institutional Animal Ethics Committee, 40 male Swiss albino mice were randomly divided into four groups of 10 animals each; two were treatment groups which received 25 mg/kg (low dose) agomelatine, 50 mg/kg (high dose) agomelatine, standard group given trazodone and the control group administered the vehicle (1% hydroxyethyl cellulose [HEC]) intraperitoneally for the last 14 days in the 3 weeks study period. Chronic restraint stress was given for 4 hrs per day for all groups starting from day 0 to 21. Results: Using paired t-test, both 12 hrs (p=0.011) and 24 hrs (p<0.001) food intake in the high dose agomelatine group were significantly increased. Between groups using ANOVA test showed a statistically significant increase in food intake for this group when compared to the control group. Unlike the low dose agomelatine group (p=0.205), the mean body weight in the group treated with high dose agomelatine revealed a statistically significant rise compared to that of the control (p=0.001) in ANOVA test.
    [Show full text]
  • Α2 Adrenergic Receptor Trafficking As a Therapeutic Target in Antidepressant Drug Action
    CHAPTER NINE α2 Adrenergic Receptor Trafficking as a Therapeutic Target in Antidepressant Drug Action Christopher Cottingham*,1, Craig J. Ferryman*, Qin Wang†,1 *Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA †Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA 1Corresponding authors: e-mail address: [email protected]; [email protected] Contents 1. Introduction 207 2. Physiological Basis for Studying α2AAR Trafficking in Depression 209 3. Arrestin-Biased Regulation of the α2AAR by the TCA Drug Class 211 4. Therapeutic Implications 216 References 219 Abstract Antidepressant drugs remain poorly understood, especially with respect to pharmaco- logical mechanisms of action. This lack of knowledge results from the extreme complex- ity inherent to psychopharmacology, as well as to a corresponding lack of knowledge regarding depressive disorder pathophysiology. While the final analysis is likely to be multifactorial and heterogeneous, compelling evidence exists for upregulation of brain α2 adrenergic receptors (ARs) in depressed patients. This evidence has sparked a line of research into actions of a particular antidepressant drug class, the tricyclic antidepres- sants (TCAs), as direct ligands at α2AARs. Our findings, as outlined herein, demonstrate that TCAs function as arrestin-biased ligands at α2AARs. Importantly, TCA-induced α2AAR/arrestin recruitment leads to receptor endocytosis and downregulation of α2AAR expression with prolonged exposure. These findings represent a novel mecha- nism linking α2AR trafficking with antidepressant pharmacology. 1. INTRODUCTION Psychopharmacology is an exceedingly intricate discipline, aiming as it does to modulate human emotion, behavior, and other complex cognitive processes. Although our understanding of brain–behavior relationships has # Progress in Molecular Biology and Translational Science, Volume 132 2015 Elsevier Inc.
    [Show full text]