Microrna and Gene Networks in Human Laryngeal Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Microrna and Gene Networks in Human Laryngeal Cancer EXPERIMENTAL AND THERAPEUTIC MEDICINE 10: 2245-2252, 2015 microRNA and gene networks in human laryngeal cancer FENGYU ZHANG1,2, ZHIWEN XU1,2*, KUNHAO WANG1,2, LINLIN SUN1,2, GENGHE LIU1,2 and BAIXU HAN1,2 1College of Computer Science and Technology; 2Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China Received May 30, 2014; Accepted March 25, 2015 DOI: 10.3892/etm.2015.2825 Abstract. Genes and microRNAs (miRNAs) are considered is involved in the regulation of cellular differentiation and to be key biological factors in human carcinogenesis. To development and metabolic processes (2). date, considerable data have been obtained regarding genes Transcription factors (TFs) and microRNAs (miRNAs) and miRNAs in cancer; however, the regulatory mechanisms have crucial roles in the regulation of gene expression (3). TFs associated with the genes and miRNAs in cancer have yet to are proteins that bind to cis-regulatory elements located in be fully elucidated. The aim of the present study was to use the upstream regions of genes in order to activate or suppress the key genes and miRNAs associated with laryngeal cancer transcription, thereby acting to regulate gene expression at the (LC) to construct three regulatory networks (differentially transcriptional level. TFs may function alone or in combination expressed, LC-related and global). A network topology of with other proteins (4). miRNAs are evolutionarily conserved, the development of LC, involving 10 differentially expressed endogenous, non-coding RNAs that post-transcriptionally miRNAs and 55 differentially expressed genes, was obtained. modulate gene expression and are associated with tumori- These genes exhibited multiple identities, including target genesis (5). Differentially expressed genes and miRNAs are genes of miRNA, transcription factors (TFs) and host genes. significant factors in the development, metastasis and therapy The key regulatory interactions were determined by comparing of LC. miR-21, for example, has been suggested to play an the similarities and differences among the three networks. The oncogenic role in the cellular processes of LC (6), and c-Myc nodes and pathways in LC, as well as the association between is highly expressed at the protein level in LC (7). each pair of factors within the networks, such as TFs and miRNAs target thousands of human genes, known as target miRNA, miRNA and target genes and miRNA and its host genes; knowledge of these target genes is important for the gene, were discussed. The mechanisms of LC involved certain analysis of the biological functions of miRNAs (8). A number key pathways featuring self-adaptation regulation and nodes of databases, including those that are computationally (9) and without direct predecessors or successors. The findings of the experimentally (10,11) validated, provide an adequate resource present study have further elucidated the pathogenesis of LC to facilitate an understanding of the associations between and are likely to be beneficial for future research into LC. miRNAs and their targets. Certain miRNAs are located within genes known as host genes, and these miRNAs are transcribed Introduction in parallel with their host transcripts. Two different transcrip- tion classes of miRNAs have been identified: Exonic and Laryngeal cancer (LC) is one of the most common types of intronic (12). Baskerville and Bartel (13) indicated that a close head and neck cancer. A large number of protein-coding and association exists between intronic miRNA and its host gene. non-coding genes are known to be differentially expressed Intronic miRNA and its host gene are usually expressed in a in LC cells, indicating a functional switch (1). This gene coordinated manner in biological progression, and typically expression is regulated at the post-transcriptional level, and work in combination to effect a biological function and the alteration of signaling pathways (14). The host gene is consid- ered in the network of differentially expressed factors when its corresponding miRNA is differentially expressed. The findings of the above studies suggest that miRNAs can either work together with or separately from their host genes in the Correspondence to: Miss. Fengyu Zhang, College of Computer progression of cancer. Science and Technology, Jilin University, 2699 Qianjin Street, The aim of the present study was to focus on the associations Changchun, Jilin 130012, P.R. China among the elements in LC by collecting information on the E-mail: [email protected] differentially expressed and cancer-related genes and miRNAs *Deceased involved in LC from databases and literature searches. Three types of association were considered: miRNAs targeting their Key words: transcription factors, microRNA, target genes, network, targets, TFs regulating their miRNAs and miRNAs locating laryngeal cancer within their host genes. Three networks (differentially expressed, LC-related and global) were built with the obtained data. Following network construction, comparisons were 2246 ZHANG et al: miRNA AND GENES IN LARYNGEAL CANCER made to find the similarities and differences among the three sequences [1,000 nucleotide (nt)] of the targets of differentially networks, and the regulatory pathways involving the differen- expressed genes were downloaded from the UCSC genome tially expressed elements and common TFs were separately browser database (20). The P-Match algorithm was used to extracted. We hypothesized that the pathways involving the identify the TFBSs in the 1,000-nt promoter region sequences, differentially expressed elements would have the most signifi- and these TFBSs were mapped onto the promoter region of the cant influence on the progression of LC, with the abnormal targets. The matrix library utilized by P-Match contains sets of modulation of these pathways promoting LC development. known TFBSs collected from the TRANSFAC database, and thus enables a wide range of TFBSs to be searched for. The Materials and methods vertebrate matrix and restricted high-quality criterion were used. The differentially expressed genes that were obtained Dataset of experimentally validated target associations were included in the LC-related gene set. The collected results between miRNAs and target genes. The experimentally vali- are referred to as dataset U5. dated dataset of the gene targets of each specific miRNA was extracted based on the data provided by Tarbase 5.0 (10) and Network construction at three levels. Three regulatory miRTarBase (11). The official symbols used in this study to networks were constructed to discuss the regulatory interac- unify all miRNAs and genes were obtained from the National tions between the genes and miRNAs in LC. The regulatory Center for Biotechnology Information (NCBI) database associations for the TFs, miRNAs, targets and host genes from (http://www.ncbi.nlm.nih.gov/gene/). The inclusion of these datasets U1, U2 and U3 were extracted. Following the combina- experimental data provides strong evidence to support the tion of the associations in these datasets, the global network study. The collected results are referred to as dataset U1. was derived. Differentially expressed and LC-related elements were separately extracted from U4 and U5, and then separately Dataset of experimentally validated regulatory associations mapped onto the global network. The differentially expressed between TFs and corresponding miRNAs. The dataset of the and LC-related networks were separately derived following interaction between the TFs and miRNAs was collected from the combination of the associations. TransmiR (15), which is a manually extracted database. The results from this process are referred to as dataset U2. Results Dataset of miRNAs and host genes. The host genes of Differentially expressed network in LC. Fig. 1 shows numerous respective miRNAs were manually established based on the important regulatory interactions among the differentially data obtained from miRBase (16) and the NCBI. Official expressed elements in LC. Each node displayed in the figure symbols and IDs were used to represent each host gene and represents a differentially expressed gene or miRNA. This miRNA. The collected results are referred to as dataset U3. network is composed of five TFs (TP53, PTEN, MYC, EGFR and NFKB1), the targets of miRNAs, miRNAs and their Differentially expressed miRNAs in LC and LC‑related host genes. With the exception of the host genes, all the other miRNAs. The differentially expressed miRNAs (overex- elements are differentially expressed in LC. There are three pressed, downregulated, and upregulated) in LC were mainly types of associations between the elements in LC: miRNAs extracted from mir2Disease (17), which is a manually created targeting genes, host genes containing miRNAs and genes database of differentially expressed miRNAs in various regulating miRNAs. Several types of the regulatory interac- human diseases. In addition, relevant literature was mined tions between miRNAs and genes are shown in Fig. 1. Most using PubMed (http://www.ncbi.nlm.nih.gov/pubmed) to notable are the five TF-related pathways. hsa-miR-106b identify differentially expressed miRNAs associated with LC, and hsa-miR-21 target PTEN, which regulates hsa-miR-21. the miRNAs involved in LC progression, and differentially hsa-miR-21 targets EGFR in LC. It is suggested that PTEN expressed and non-differentially expressed miRNAs. The could indirectly influence EGFR through
Recommended publications
  • Analyses of Allele-Specific Gene Expression in Highly Divergent
    ARTICLES Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance James J Crowley1,10, Vasyl Zhabotynsky1,10, Wei Sun1,2,10, Shunping Huang3, Isa Kemal Pakatci3, Yunjung Kim1, Jeremy R Wang3, Andrew P Morgan1,4,5, John D Calaway1,4,5, David L Aylor1,9, Zaining Yun1, Timothy A Bell1,4,5, Ryan J Buus1,4,5, Mark E Calaway1,4,5, John P Didion1,4,5, Terry J Gooch1,4,5, Stephanie D Hansen1,4,5, Nashiya N Robinson1,4,5, Ginger D Shaw1,4,5, Jason S Spence1, Corey R Quackenbush1, Cordelia J Barrick1, Randal J Nonneman1, Kyungsu Kim2, James Xenakis2, Yuying Xie1, William Valdar1,4, Alan B Lenarcic1, Wei Wang3,9, Catherine E Welsh3, Chen-Ping Fu3, Zhaojun Zhang3, James Holt3, Zhishan Guo3, David W Threadgill6, Lisa M Tarantino7, Darla R Miller1,4,5, Fei Zou2,11, Leonard McMillan3,11, Patrick F Sullivan1,5,7,8,11 & Fernando Pardo-Manuel de Villena1,4,5,11 Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Because regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in further characterizing these mechanisms. Here we provide a detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater than 80% of mouse genes have cis regulatory variation. Effects from these variants influence complex traits and usually extend to the human ortholog. Further, we estimate that at least one in every thousand SNPs creates a cis regulatory effect.
    [Show full text]
  • Revostmm Vol 10-4-2018 Ingles Maquetaciûn 1
    108 ORIGINALS / Rev Osteoporos Metab Miner. 2018;10(4):108-18 Roca-Ayats N1, Falcó-Mascaró M1, García-Giralt N2, Cozar M1, Abril JF3, Quesada-Gómez JM4, Prieto-Alhambra D5,6, Nogués X2, Mellibovsky L2, Díez-Pérez A2, Grinberg D1, Balcells S1 1 Departamento de Genética, Microbiología y Estadística - Facultad de Biología - Universidad de Barcelona - Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - Instituto de Salud Carlos III (ISCIII) - Instituto de Biomedicina de la Universidad de Barcelona (IBUB) - Instituto de Investigación Sant Joan de Déu (IRSJD) - Barcelona (España) 2 Unidad de Investigación en Fisiopatología Ósea y Articular (URFOA); Instituto Hospital del Mar de Investigaciones Médicas (IMIM) - Parque de Salud Mar - Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES); Instituto de Salud Carlos III (ISCIII) - Barcelona (España) 3 Departamento de Genética, Microbiología y Estadística; Facultad de Biología; Universidad de Barcelona - Instituto de Biomedicina de la Universidad de Barcelona (IBUB) - Barcelona (España) 4 Unidad de Metabolismo Mineral; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC); Hospital Universitario Reina Sofía - Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES); Instituto de Salud Carlos III (ISCIII) - Córdoba (España) 5 Grupo de Investigación en Enfermedades Prevalentes del Aparato Locomotor (GREMPAL) - Instituto de Investigación en Atención Primaria (IDIAP) Jordi Gol - Centro de Investigación
    [Show full text]
  • Concordance of Copy Number Loss and Down-Regulation of Tumor Suppressor Genes: a Pan-Cancer Study Min Zhao1 and Zhongming Zhao2,3,4,5*
    The Author(s) BMC Genomics 2016, 17(Suppl 7):532 DOI 10.1186/s12864-016-2904-y RESEARCH Open Access Concordance of copy number loss and down-regulation of tumor suppressor genes: a pan-cancer study Min Zhao1 and Zhongming Zhao2,3,4,5* From The International Conference on Intelligent Biology and Medicine (ICIBM) 2015 Indianapolis, IN, USA. 13-15 November 2015 Abstract Background: Tumor suppressor genes (TSGs) encode the guardian molecules to control cell growth. The genomic alteration of TSGs may cause tumorigenesis and promote cancer progression. So far, investigators have mainly studied the functional effects of somatic single nucleotide variants in TSGs. Copy number variation (CNV) is another important form of genetic variation, and is often involved in cancer biology and drug treatment, but studies of CNV in TSGs are less represented in literature. In addition, there is a lack of a combinatory analysis of gene expression and CNV in this important gene set. Such a study may provide more insights into the relationship between gene dosage and tumorigenesis. To meet this demand, we performed a systematic analysis of CNVs and gene expression in TSGs to provide a systematic view of CNV and gene expression change in TSGs in pan-cancer. Results: We identified 1170 TSGs with copy number gain or loss in 5846 tumor samples. Among them, 207 TSGs tended to have copy number loss (CNL), from which fifteen CNL hotspot regions were identified. The functional enrichment analysis revealed that the 207 TSGs were enriched in cancer-related pathways such as P53 signaling pathway and the P53 interactome.
    [Show full text]
  • Redalyc.Loss of Heterozygosity in the Short Arm of Human Chromosome 3
    Colombia Médica ISSN: 0120-8322 [email protected] Universidad del Valle Colombia BARRERA, LINA MARCELA; ÁLVAREZ, LIZETH MARELLY; ROLDÁN, MIGUEL IGNACIO; ORTEGA, HÉCTOR; TRIANA, OMAR; MARTÍNEZ, ALONSO Loss of heterozygosity in the short arm of human chromosome 3 in sporadic lung cancer Colombia Médica, vol. 41, núm. 4, octubre-diciembre, 2010, pp. 358-366 Universidad del Valle Cali, Colombia Disponible en: http://www.redalyc.org/articulo.oa?id=28315594010 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Colombia Médica Vol. 41 Nº 4, 2010 (Octubre-Diciembre) Loss of heterozygosity in the short arm of human chromosome 3 in sporadic lung cancer* LINA MARCELA BARRERA, BIOL1**, LIZETH MARELLY ÁLVAREZ, BIOL.1**, MIGUEL IGNACIO ROLDÁN, MD2, HÉCTOR ORTEGA, MD3, OMAR TRIANA, PHD4, ALONSO MARTÍNEZ, PHD5 SUMMARY Introduction: Loss of Heterozygocity (LOH) in the short arm of human chromosome 3 (3p) is a frequent event in different types of sporadic tumors, including lung cancer (LC). Aim: To determine 3p LOH in LC samples using 17 microsatellite markers. Methodology: In a pilot study on volunteers, thirteen LC biopsies (tumor tissue) and 4 ml of blood (normal tissue) from the same patient were collected. DNA extraction and Polymerase Chain Reaction (PCR) were performed with 17 microsatellite markers to analyze LOH. Amplified fragments were run on 6% denaturalizing polyacrilamide gels and were visualized by using silver stain.
    [Show full text]
  • Mechanisms of FUS1/TUSC2 Deficiency in Mesothelioma and Its
    Molecular Cancer BioMed Central Research Open Access Mechanisms of FUS1/TUSC2 deficiency in mesothelioma and its tumorigenic transcriptional effects Alla V Ivanova*1, Sergey V Ivanov2, Ljudmila Prudkin3, Daisuke Nonaka2, Zhandong Liu4, Anne Tsao3, Ignacio Wistuba3, Jack Roth5 and Harvey I Pass2 Address: 1Hematology/Oncology Division, Vanderbilt Medical Center, Nashville, TN, USA, 2Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, NY, USA, 3Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd, Unit 432, Houston, TX, USA, 4Genomics and Computational Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA and 5Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA Email: Alla V Ivanova* - [email protected]; Sergey V Ivanov - [email protected]; Ljudmila Prudkin - [email protected]; Daisuke Nonaka - [email protected]; Zhandong Liu - [email protected]; Anne Tsao - [email protected]; Ignacio Wistuba - [email protected]; Jack Roth - [email protected]; Harvey I Pass - [email protected] * Corresponding author Published: 24 October 2009 Received: 6 August 2009 Accepted: 24 October 2009 Molecular Cancer 2009, 8:91 doi:10.1186/1476-4598-8-91 This article is available from: http://www.molecular-cancer.com/content/8/1/91 © 2009 Ivanova et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Stathmin 1 Is a Potential Novel Oncogene in Melanoma
    Oncogene (2013) 32, 1330–1337 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc SHORT COMMUNICATION Stathmin 1 is a potential novel oncogene in melanoma J Chen, M Abi-Daoud, A Wang , X Yang, X Zhang, HE Feilotter and VA Tron In previous studies, we demonstrated that miR-193b expression is reduced in melanoma relative to benign nevi, and also that miR- 193b represses cyclin D1 and Mcl-1 expression. We suggested that stathmin 1 (STMN1) might be a target of miR-193b. STMN1 normally regulates microtubule dynamics either by sequestering free tubulin heterodimers or by promoting microtubule catastrophe. Increased expression of STMN1 has been observed in a variety of human malignancies, but its association with melanoma is unknown. We now report that STMN1 is upregulated during the progression of melanoma relative to benign nevi, and that STMN1 is directly regulated by miR-193b. Using an experimental cell culture approach, overexpression of miR-193b using synthetic microRNAs repressed STMN1 expression, whereas inhibition of miR-193b with anti-miR oligos increased STMN1 expression in melanoma cells. The use of a luciferase reporter assay confirmed that miR-193b directly regulates STMN1 by targeting the 30-untranslated region of STMN1 mRNA. We further demonstrated that STMN1 is overexpressed in malignant melanoma compared with nevi in two independent melanoma cohorts, and that its level is inversely correlated with miR-193b expression. However, STMN1 expression was not significantly associated with patient survival, Breslow depth, mitotic count or patient age. STMN1 knockdown by small-interfering RNA in melanoma cells drastically repressed cell proliferation and migration potential, whereas ectopic expression of STMN1 using lentivirus increased cell proliferation and migration rates.
    [Show full text]
  • Mouse Tusc2 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Tusc2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Tusc2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tusc2 gene (NCBI Reference Sequence: NM_019742 ; Ensembl: ENSMUSG00000010054 ) is located on Mouse chromosome 9. 3 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 3 (Transcript: ENSMUST00000010198). Exon 2~3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Tusc2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-418E8 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele develop signs of autoimmune disease, such as vasculitis, glomerulonephritis, anemia and circulating autoantibodies, weigh less, and show impaired NK cell maturation, lower IL-15 production, a higher frequency of spontaneous vascular tumors, and premature death. Exon 2~3 covers 55.76% of the coding region. Start codon is in exon 1, and stop codon is in exon 3. The size of intron 1 for 5'-loxP site insertion: 1043 bp. The size of effective cKO region: ~2287 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 1 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Homology arm Exon of mouse Tusc2 cKO region Exon of mouse Hyal2 loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Post-Transcriptional Regulation of Mammalian Gene Expression in Non-Coding Region of Target RNA
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2012 Post-transcriptional Regulation of Mammalian Gene Expression in Non-coding Region of Target RNA Jing Lin Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Medical Genetics Commons, and the Medical Molecular Biology Commons Recommended Citation Lin, Jing, "Post-transcriptional Regulation of Mammalian Gene Expression in Non-coding Region of Target RNA" (2012). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 299. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/299 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. Post-transcriptional Regulation of Mammalian Gene Expression in Non-coding Region of Target RNA By Jing Lin, M.S. APPROVED: ___________________________
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Cancer, Retrogenes, and Evolution
    life Review Cancer, Retrogenes, and Evolution Klaudia Staszak and Izabela Makałowska * Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-61-8295835 Abstract: This review summarizes the knowledge about retrogenes in the context of cancer and evolution. The retroposition, in which the processed mRNA from parental genes undergoes reverse transcription and the resulting cDNA is integrated back into the genome, results in additional copies of existing genes. Despite the initial misconception, retroposition-derived copies can become functional, and due to their role in the molecular evolution of genomes, they have been named the “seeds of evolution”. It is convincing that retrogenes, as important elements involved in the evolution of species, also take part in the evolution of neoplastic tumors at the cell and species levels. The occurrence of specific “resistance mechanisms” to neoplastic transformation in some species has been noted. This phenomenon has been related to additional gene copies, including retrogenes. In addition, the role of retrogenes in the evolution of tumors has been described. Retrogene expression correlates with the occurrence of specific cancer subtypes, their stages, and their response to therapy. Phylogenetic insights into retrogenes show that most cancer-related retrocopies arose in the lineage of primates, and the number of identified cancer-related retrogenes demonstrates that these duplicates are quite important players in human carcinogenesis. Keywords: retrogenes; retroposition; cancer; tumor evolution; species evolution 1. Introduction Citation: Staszak, K.; Makałowska, I. A large part of the eukaryotic genome contains sequences that result from the activity Cancer, Retrogenes, and Evolution.
    [Show full text]
  • Sensitizes NSCLC to the AKT Inhibitor MK2206 in LKB1-Dependent Manner
    The Tumor Suppressor Gene TUSC2 (FUS1) Sensitizes NSCLC to the AKT Inhibitor MK2206 in LKB1-dependent Manner Jieru Meng1*, Mourad Majidi1, Bingliang Fang1, Lin Ji1, B. Nebiyou Bekele2, John D. Minna3, Jack A. Roth1 1 Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America, 2 Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America, 3 Hamon Center for Therapeutic Oncology Research and Simmons Cancer Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America Abstract TUSC2-defective gene expression is detected in the majority of lung cancers and is associated with worse overall survival. We analyzed the effects of TUSC2 re-expression on tumor cell sensitivity to the AKT inhibitor, MK2206, and explored their mutual signaling connections, in vitro and in vivo. TUSC2 transient expression in three LKB1-defective non-small cell lung cancer (NSCLC) cell lines combined with MK2206 treatment resulted in increased repression of cell viability and colony formation, and increased apoptotic activity. In contrast, TUSC2 did not affect the response to MK2206 treatment for two LKB1-wild type NSCLC cell lines. In vivo, TUSC2 systemic delivery, by nanoparticle gene transfer, combined with MK2206 treatment markedly inhibited growth of tumors in a human LKB1-defective H322 lung cancer xenograft mouse model. Biochemical analysis showed that TUSC2 transient expression in LKB1-defective NSCLC cells significantly stimulated AMP- activated protein kinase (AMPK) phosphorylation and enzymatic activity. More importantly, AMPK gene knockdown abrogated TUSC2-MK2206 cooperation, as evidenced by reduced sensitivity to the combined treatment.
    [Show full text]
  • Microrna-Mediated Target Mrna Cleavage and 3′-Uridylation in Human Cells Received: 03 December 2015 Kai Xu*, Jing Lin*, Roza Zandi, Jack A
    www.nature.com/scientificreports OPEN MicroRNA-mediated target mRNA cleavage and 3′-uridylation in human cells Received: 03 December 2015 Kai Xu*, Jing Lin*, Roza Zandi, Jack A. Roth & Lin Ji Accepted: 08 June 2016 MicroRNAs (miRNAs) play an important role in targeted gene silencing by facilitating posttranscriptional Published: 21 July 2016 and translational repression. However, the precise mechanism of mammalian miRNA-mediated gene silencing remains to be elucidated. Here, we used a stem-loop array reverse-transcription polymerase chain reaction assay to analyse miRNA-induced mRNA recognition, cleavage, posttranscriptional modification, and degradation. We detected endogenous let-7 miRNA-induced and Argonaute-catalysed endonucleolytic cleavage on target mRNAs at various sites within partially paired miRNA:mRNA sequences. Most of the cleaved mRNA 5′-fragments were 3′-oligouridylated by activities of terminal uridylyl transferases (TUTases) in miRNA-induced silencing complexes and temporarily accumulated in the cytosol for 5′-3′ degradation or other molecular fates. Some 3′-5′ decayed mRNA fragments could also be captured by the miRNA-induced silencing complex stationed at the specific miRNA:mRNA target site and oligouridylated by other TUTases at its proximity without involving Argonaute- mediated RNA cleavage. Our findings provide new insights into the molecular mechanics of mammalian miRNA-mediated gene silencing by coordinated target mRNA recognition, cleavage, uridylation and degradation. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to posttranscriptionally regulate gene expression and protein synthesis, particularly in mammalian cells, by partially base-pairing to complementary sequences in the 3′ -untranslated regions (3′ UTRs) of their target mRNAs1–3. Mature miRNAs are incorporated into Argonaute (Ago) proteins and serve as guide molecules in miRNA-induced silencing complexes (miRISCs) for target-specific gene silencing4,5.
    [Show full text]