Bacillus Subtilis

Total Page:16

File Type:pdf, Size:1020Kb

Bacillus Subtilis This article was downloaded by: 10.3.98.104 On: 24 Sep 2021 Access details: subscription number Publisher: CRC Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK The Biological Resources of Model Organisms Robert L. Jarret, Kevin McCluskey The Bacillus Genetic Stock Center/ Bacillus subtilis Publication details https://www.routledgehandbooks.com/doi/10.1201/9781315100999-3 Daniel R. Zeigler Published online on: 02 Aug 2019 How to cite :- Daniel R. Zeigler. 02 Aug 2019, The Bacillus Genetic Stock Center/ Bacillus subtilis from: The Biological Resources of Model Organisms CRC Press Accessed on: 24 Sep 2021 https://www.routledgehandbooks.com/doi/10.1201/9781315100999-3 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. The Bacillus Genetic 3 Stock Center/Bacillus subtilis Daniel R. Zeigler CONTENTS Introduction ..............................................................................................................36 The Genus Bacillus and the Bacillus Lifestyle ........................................................36 A Taxonomic Explosion ......................................................................................38 A Taxon with Many Dimensions ........................................................................38 The Bacillus subtilis Group .................................................................................39 The Bacillus cereus Group ..................................................................................39 Geobacillus ..........................................................................................................39 Bacillus subtilis, a Model Organism ........................................................................40 The Eras of Bacillus Biology ...................................................................................40 The “Classical Era” ............................................................................................40 The “Genetics Era” ............................................................................................40 The “Recombinant DNA Era” ............................................................................ 41 The “Post-Genome Era” ..................................................................................... 41 Advantages of Bacillus subtilis as a Model Organism.............................................42 The Bacillus Genetic Stock Center .......................................................................... 43 Establishment ...................................................................................................... 43 Mission Statement ............................................................................................... 43 Scope ...................................................................................................................44 Maintenance and Distribution .............................................................................45 Use of the Collection ...........................................................................................46 Databases.............................................................................................................48 Conclusions ..............................................................................................................49 References ................................................................................................................49 Abstract: Bacillus, a large and phylogenetically diverse group of rod-shaped bacteria, have been isolated from virtually every conceivable environment on this planet. Their unique life cycle and other characteristics have made them valuable in industrial, agricultural, and medical research. In response to their widespread use, the Bacillus Genetic Stock Center was initiated in the 1970s. Its main collection now contains more than 11,000 accessions that includes 35 Downloaded By: 10.3.98.104 At: 04:17 24 Sep 2021; For: 9781315100999, chapter3, 10.1201/9781315100999-3 36 The Biological Resources of Model Organisms 67 species in 12 genera of Bacillus. Isolates can usually be easily propagated and stored under conditions that maintain their long-term viability. Strains of Bacillus, sets of phages and plasmid tools, and associated resources are avail- able from the collection, on request. INTRODUCTION Bacillus sensu lato comprises an enormous and phylogenetically diverse group of organisms that have adopted a common lifestyle. When conditions are favorable for growth, cells propagate rapidly. When nutrient sources are depleted, Bacillus popula- tions differentiate into subpopulations of different cell types, many of them showing a high degree of multicellularity. One specialized type, the endospore, is a metabolically inert resting cell that is highly resistant to most environmental insults. When condi- tions are once again favorable for growth, spores germinate and grow out to establish new populations. This developmental suite has been termed the Bacillus Lifestyle (Zeigler and Nicholson 2017) and is not only a highly successful adaptation but also has practical consequences, many of them potentially beneficial, for human beings. Modern sequence-based taxonomic methods have revealed that Bacillus sensu lato comprises at least three bacterial families and dozens of genera. One species (Bacillus subtilis) and one particular laboratory strain (B. subtilis 168) have emerged as an important model organism. Thousands of useful genetic mutants and strain libraries have been developed over the past 70 years of B. subtilis research, especially during the 20 years since the genome sequence of strain 168 was determined. The Bacillus Genetic Stock Center (BGSC) exists as a steward of this legacy. It collects, maintains, distributes, and assembles data regarding these mutants and genetic tools, so that they will remain available in perpetuity for members of the research community. THE GENUS BACILLUS AND THE BACILLUS LIFESTYLE “The genus Bacillus,” wrote Ruth Gordon and colleagues in their authoritative hand- book, “encompasses the rod-shaped bacteria capable of aerobically forming refractile endospores that are more resistant than vegetative cells to heat, drying, and other destructive agencies” (Gordon et al. 1973). More than four decades later, despite the revolution ushered in by recent technological and theoretical advances in biology, the definition remains essentially the same: Bacillus bacteria have cells that are “rod‐shaped, straight or slightly curved, occurring singly and in pairs, some in chains, and occasionally as long filaments. Endospores are formed, no more than one to a cell; these spores are very resistant to many adverse conditions” (Logan and De Vos 2015). This definition, while accurate for the purposes of taxonomy, needs to be placed in a much larger framework. Endospores are far more than a morphological feature or taxonomic trait. They are the centerpiece of a diverse range of developmental options, many of them requiring a remarkable degree of multicellular cooperation, which have allowed these bacteria to survive and thrive on a global scale (Figure 3.1). Most isolates of the genus Bacillus and its closest phylogenetic relatives have sim- ple nutritional requirements. Under ideal conditions, they proliferate rapidly, divid- ing by binary fission. Generation times for many species may be as short as a half Downloaded By: 10.3.98.104 At: 04:17 24 Sep 2021; For: 9781315100999, chapter3, 10.1201/9781315100999-3 The Bacillus Genetic Stock Center/Bacillus subtilis 37 FIGURE 3.1 The Bacillus Lifestyle. Bacillus may proliferate rapidly when environmental conditions permit. Under unfavorable conditions, subpopulations differentiate into a variety of cell types. hour or less in the laboratory (Zeigler, unpublished observations). In nature, however, conditions approximating the ideal occur only sporadically. When a population of Bacillus experiences nutrient depletion and enters stationary phase, several subpopu- lations emerge, each pursuing a different developmental path (Figure 3.1). This suite of options has been seen as a bet-hedging strategy, increasing the likelihood that at least part of the population survives the environmental challenge (Norman et al. 2015, Veening et al. 2008b). In B. subtilis cultures, for example, subpopulations of motile single cells and sessile chains quickly appear (Mukherjee and Kearns 2014). The motile cells may be able to locate microenvironments that are more favorable for growth. The sessile chains differentiate further, with one subpopulation secreting massive quantities of degradative enzymes and antimicrobials, perhaps converting potential nutritional sources in the environment into sugars, nucleotides, and amino acids for the benefit
Recommended publications
  • Biosynthesis in Vitro of Bacillamide Intermediate-Heterocyclic Alacysthiazole by Heterologous Expression of Nonribosomal Peptide Synthetase (NRPS) T
    Journal of Biotechnology 292 (2019) 5–11 Contents lists available at ScienceDirect Journal of Biotechnology journal homepage: www.elsevier.com/locate/jbiotec Biosynthesis in vitro of bacillamide intermediate-heterocyclic AlaCysthiazole by heterologous expression of nonribosomal peptide synthetase (NRPS) T Fengli Zhang, Nayila Mulati, Yukun Wang, Yingxin Li, Sanqiang Gong, Loganathan Karthik, ⁎ Wei Sun, Zhiyong Li Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China ARTICLE INFO ABSTRACT Keywords: Bacillamide C, a potential natural antialgae active compound, is produced by Bacillus atrophaeus C89 derived Bacillus atrophaeus from marine sponge Dysidea avara. A nonribosomal peptide synthetase (NRPS) cluster is hypothesized to be Bacillamides involved in the biosynthesis of bacillamide C. The NRPS with a domain string of A1-PCP1-Cy-A2-PCP2-C can be Heterologous expression divided into three functional modules. After heterologous expression and purification of module A1-PCP1 and Nonribosomal peptide synthetase (NRPS) module Cy-A2-PCP2, their catalytic activities were biochemically proven in vitro by the reaction with the apo- Thiazole PCP domain transformed to the holo-PCP domain through a phosphopantetheinyl transferase, ATP, and substrate amino acids. Five– membered heterocyclic AlaCysthiazole with molecular weight of 172.0389 was detected. This proved the formation of the heterocyclic dipeptide AlaCysthiazole, which is considered to be a building block for the biosynthesis of bacillamide. This study provides a basis for further biosynthesis of bacillamides. 1. Introduction et al., 2017). Even though the biosynthesis of bacillamide C was opti- mized, the yield was very low (Jin et al., 2011; Yu et al., 2015).
    [Show full text]
  • Surface Characteristics of Bacillus Spores
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2004 Surface Characteristics of Bacillus Spores Darlene Danette Sabio Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Biology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/1056 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. College of Humanities and Sciences Virginia Commonwealth University This is to certify that the thesis prepared by Darlene Sabio entitled Surface Characteristics of Bacillus Spores has been approved by her committee as satisfactory completion of the thesis requirement for the degree of Master of Science. Dr. Stanley R. Webb, Department of Biology, Director of Thesis Dr. John E. Anderson, Department of Biology Dr. Gregory C. Garman, Director, Center for Environmental Studies Dr. Joseph H. Porter, Department of Psychology Dr. Leonard A. Smock, Chairman, Department of Biology Dr. Stephen D. Gottfredson, Dean, College of Humanities and Sciences Dr. F. Douglas Boudinot, Dean, School of Graduate Studies Date Surface Characteristics of Bacillus Spores A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by Darlene Danette Sabio B.S. Eastern Mennonite University, 2002 B.A. University of South Florida, 1990 Director: Dr. Stanley R. Webb Associate Professor Department of Biology Virginia Commonwealth University Richmond, Virginia May, 2004 ii Acknowledgement First I would like to thank the LORD for giving me the strength to bring this to fruition.
    [Show full text]
  • Detection and Differentiation of Bacterial Spores in a Mineral Matrix by Fourier Transform Infrared Spectroscopy (FTIR) and Chem
    Detection and differentiation of bacterial spores in a mineral matrix by Fourier transform infrared spectroscopy (FTIR) and chemometrical data treatment Brandes Ammann and Brandl Brandes Ammann and Brandl BMC Biophysics 2011, 4:14 http://www.biomedcentral.com/2046-1682/4/14 (14 July 2011) Brandes Ammann and Brandl BMC Biophysics 2011, 4:14 http://www.biomedcentral.com/2046-1682/4/14 METHODOLOGY ARTICLE Open Access Detection and differentiation of bacterial spores in a mineral matrix by Fourier transform infrared spectroscopy (FTIR) and chemometrical data treatment Andrea Brandes Ammann and Helmut Brandl* Abstract Background: Fourier transform infrared spectroscopy (FTIR) has been used as analytical tool in chemistry for many years. In addition, FTIR can also be applied as a rapid and non-invasive method to detect and identify microorganisms. The specific and fingerprint-like spectra allow - under optimal conditions - discrimination down to the species level. The aim of this study was to develop a fast and reproducible non-molecular method to differentiate pure samples of Bacillus spores originating from different species as well as to identify spores in a simple matrix, such as the clay mineral, bentonite. Results: We investigated spores from pure cultures of seven different Bacillus species by FTIR in reflection or transmission mode followed by chemometrical data treatment. All species investigated (B. atrophaeus, B. brevis, B. circulans, B. lentus, B. megaterium, B. subtilis, B. thuringiensis) are typical aerobic soil-borne spore formers. Additionally, a solid matrix (bentonite) and mixtures of benonite with spores of B. megaterium at various wt/wt ratios were included in the study. Both hierarchical cluster analysis and principal component analysis of the spectra along with multidimensional scaling allowed the discrimination of different species and spore-matrix-mixtures.
    [Show full text]
  • Identification of Beneficial Microbial Consortia and Bioactive
    microorganisms Article Identification of Beneficial Microbial Consortia and Bioactive Compounds with Potential as Plant Biostimulants for a Sustainable Agriculture Silvia Tabacchioni 1,†, Stefania Passato 2, Patrizia Ambrosino 2, Liren Huang 3, Marina Caldara 4 , Cristina Cantale 1,†, Jonas Hett 5, Antonella Del Fiore 1, Alessia Fiore 1, Andreas Schlüter 3 , Alexander Sczyrba 3 , Elena Maestri 4 , Nelson Marmiroli 4, Daniel Neuhoff 5 , Joseph Nesme 6 , Søren Johannes Sørensen 6 , Giuseppe Aprea 1, Chiara Nobili 1 , Ombretta Presenti 1, Giusto Giovannetti 7, Caterina Giovannetti 7, Anne Pihlanto 8, Andrea Brunori 1 and Annamaria Bevivino 1,* 1 Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy; [email protected] (S.T.); [email protected] (C.C.); antonella.delfi[email protected] (A.D.F.); alessia.fi[email protected] (A.F.); [email protected] (G.A.); [email protected] (C.N.); [email protected] (O.P.); [email protected] (A.B.) 2 AGRIGES srl, 82035 San Salvatore Telesino, Italy; [email protected] (S.P.); [email protected] (P.A.) 3 Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany; [email protected] (L.H.); [email protected] (A.S.); [email protected] (A.S.) 4 SITEIA.PARMA, Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-Food and Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Citation: Tabacchioni, S.; Passato, S.; 43124 Parma, Italy; [email protected] (M.C.); [email protected] (E.M.); [email protected] (N.M.) Ambrosino, P.; Huang, L.; Caldara, 5 Department of Agroecology & Organic Farming, Rheinische Friedrich-Wilhelms-Universität Bonn, M.; Cantale, C.; Hett, J.; Del Fiore, A.; 53121 Bonn, Germany; [email protected] (J.H.); [email protected] (D.N.) Fiore, A.; Schlüter, A.; et al.
    [Show full text]
  • Bacillus Subtilis
    The ISME Journal (2020) 14:2703–2714 https://doi.org/10.1038/s41396-020-0721-4 ARTICLE A spore quality–quantity tradeoff favors diverse sporulation strategies in Bacillus subtilis 1,2,3 1,2 2,4 1,2,3 Alper Mutlu ● Charlotte Kaspar ● Nils Becker ● Ilka B. Bischofs Received: 4 September 2019 / Revised: 5 July 2020 / Accepted: 15 July 2020 / Published online: 28 July 2020 © The Author(s) 2020. This article is published with open access Abstract Quality–quantity tradeoffs govern the production of propagules across taxa and can explain variability in life-history traits in higher organisms. A quality–quantity tradeoff was recently discovered in spore forming bacteria, but whether it impacts fitness is unclear. Here we show both theoretically and experimentally that the nutrient supply during spore revival determines the fitness advantage associated with different sporulation behaviors in Bacillus subtilis. By tuning sporulation rates we generate spore-yield and spore-quality strategists that compete with each other in a microscopic life-cycle assay. The quality (yield) strategist is favored when spore revival is triggered by poor (rich) nutrients. We also show that natural isolates from the gut and soil employ different life-cycle strategies that result from genomic variations in the number of – 1234567890();,: 1234567890();,: rap-phr signaling systems. Taken together, our results suggest that a spore quality quantity tradeoff contributes to the evolutionary adaptation of sporulating bacteria. Introduction variable [4, 7, 8]. This suggests that sporulation timing is an evolvable and highly variable life-cycle trait. Endospores of the model organism Bacillus subtilis have By making spores, B.
    [Show full text]
  • Identification and Classification of Known and Putative Antimicrobial Compounds Produced by a Wide Variety of Bacillales Species Xin Zhao1,2 and Oscar P
    Zhao and Kuipers BMC Genomics (2016) 17:882 DOI 10.1186/s12864-016-3224-y RESEARCH ARTICLE Open Access Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species Xin Zhao1,2 and Oscar P. Kuipers1* Abstract Background: Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. Results: We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. Conclusions: Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified. Keywords: Antimicrobials, Bacillales, Bacillus, Genome-mining, Lanthipeptides, Sactipeptides, Thiopeptides, NRPs, PKs Background (bacteriocins) [4], as well as non-ribosomally synthesized Most of the species of the genus Bacillus and related peptides (NRPs) and polyketides (PKs) [5].
    [Show full text]
  • Biodiversity of Bacillus Subtilis Group and Beneficial Traits of Bacillus Species Useful in Plant Protection
    Romanian Biotechnological Letters Vol. 20, No. 5, 2015 Copyright © 2015 University of Bucharest Printed in Romania. All rights reserved REVIEW Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection Received for publication, June 10, 2015 Accepted, September 10, 2015 SICUIA OANA ALINA1,2, FLORICA CONSTANTINSCU2, CORNEA CĂLINA PETRUŢA1,* 1Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăşti Blvd, 011464 Bucharest, Romania 2Research and Development Institute for Plant Protection, 8 Ion Ionescu de la Brad Blvd., 013813 Bucharest, Romania *Corresponding author: Călina Petruţa Cornea, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăşti Blvd, 011464 Bucharest, Romania, phone. 004-021-318.36.40, fax. 004-021-318.25.88, e-mail: [email protected] Abstract Biological control of plant pathogens and plant growth promotion by biological means is the late tendency in biotechnological approaches for agricultural improvement. Such an approach is considering the environmental protection issues without neglecting crop needs. In the present study, we are reviewing Bacillus spp. biocontrol and plant growth promoting activity. As Bacillus genus is a large bacterial taxon, with grate physiological biodiversity, we are describing some inter-grouping, differences and similarities between Bacillus species, especially related to Bacillus subtilis. Keywords: Bacillus subtilis group, beneficial bacteria 1. Introduction Bacillus genus is a heterogeneous taxon, with ubiquitous spread in nature. Bacillus species, such as Bacillus cereus, B. megaterium, B. subtilis, B.circulans and B. brevis group are widely exploited for biotechnological and industrial applications [1, 2]. Their beneficial traits for plant protection and growth promotion comprise the synthesis of broad-spectrum active metabolites, easily adaptation in various environmental conditions, benefic plant- bacterial interaction and advantageous formulation process [3].
    [Show full text]
  • INACTIVATION of Bacillus Atrophaeus SPORES in HEALTHCARE WASTE by UV LIGHT COUPLED with H2O2
    Brazilian Journal of Chemical ISSN 0104-6632 Printed in Brazil Engineering www.abeq.org.br/bjche Vol. 30, No. 03, pp. 507 - 519, July - September, 2013 INACTIVATION OF Bacillus atrophaeus SPORES IN HEALTHCARE WASTE BY UV LIGHT COUPLED WITH H2O2 M. T. Iannotti and R. Pisani Jr.* University of Ribeirão Preto, Postgraduate Program in Environmental Technology, Phone: + (55) (16) 9111-0776, Fax: + (55) (16) 3603-6718, Avenida Costabile Romano 2201, 14096-900, Ribeirânia, Ribeirão Preto - SP, Brazil. E-mail: [email protected] (Submitted: April 24, 2012 ; Revised: July 25, 2012 ; Accepted: August 8, 2012) Abstract - Healthcare waste inoculated with B. atropheaus spores was used to evaluate a treatment process using UV light in combination with H2O2. First, the influence of the waste mass on the spore inactivation fraction was investigated for a constant radiation exposure time of 10 min and power per unit mass of waste (44-237 W/kg). The degree of inactivation of the spores was then determined as a function of exposure time (5-30 min) and power per mass unit (67-178 W/kg) for a constant waste mass. The experimental results were adjusted according to four kinetic models. The Hom and power law models were the most appropriate for the description of the disinfection process. The maximum experimental inactivation fraction (95%) achieved was obtained with 178 W/kg irradiation for 30 min. Keywords: B. atrophaeus spore; Disinfection, Healthcare waste; Ultraviolet; H2O2. INTRODUCTION The thermal treatment of wastes is considered to be one of the most effective methods for inactivating Improper waste disposal has produced environ- microorganisms, and it is one of the most used mental passives that may jeopardize natural resources methods.
    [Show full text]
  • Identifying Experimental Surrogates for Bacillus Anthracis Spores: a Review David L Greenberg, Joseph D Busch, Paul Keim, David M Wagner*
    Greenberg et al. Investigative Genetics 2010, 1:4 http://www.investigativegenetics.com/content/1/1/4 REVIEW Open Access Identifying experimental surrogates for Bacillus anthracis spores: a review David L Greenberg, Joseph D Busch, Paul Keim, David M Wagner* Abstract Bacillus anthracis, the causative agent of anthrax, is a proven biological weapon. In order to study this threat, a number of experimental surrogates have been used over the past 70 years. However, not all surrogates are appro- priate for B. anthracis, especially when investigating transport, fate and survival. Although B. atrophaeus has been widely used as a B. anthracis surrogate, the two species do not always behave identically in transport and survival models. Therefore, we devised a scheme to identify a more appropriate surrogate for B. anthracis. Our selection cri- teria included risk of use (pathogenicity), phylogenetic relationship, morphology and comparative survivability when challenged with biocides. Although our knowledge of certain parameters remains incomplete, especially with regards to comparisons of spore longevity under natural conditions, we found that B. thuringiensis provided the best overall fit as a non-pathogenic surrogate for B. anthracis. Thus, we suggest focusing on this surrogate in future experiments of spore fate and transport modelling. Background following a terrorist attack or a biological accident. Sce- Bacillus anthracis, the causative agent of anthrax, has narios for intentional release into a civilian area include received much attention in the past decade due to its infecting the water supply or releasing aerosolized use in 2001 as a biological weapon distributed through spores [4,5]. In a 1970 report, the World Health Organi- the USA mail system.
    [Show full text]
  • Diversity and Biocontrol Potential of Cultivable Endophytic Bacteria Associated with Halophytes from the West Aral Sea Basin
    microorganisms Article Diversity and Biocontrol Potential of Cultivable Endophytic Bacteria Associated with Halophytes from the West Aral Sea Basin Lei Gao 1,2, Jinbiao Ma 1 , Yonghong Liu 1 , Yin Huang 1, Osama Abdalla Abdelshafy Mohamad 1 , Hongchen Jiang 1,3 , Dilfuza Egamberdieva 4,5 , Wenjun Li 1,6,* and Li Li 1,* 1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; [email protected] (L.G.); [email protected] (J.M.); [email protected] (Y.L.); [email protected] (Y.H.); [email protected] (O.A.A.M.); [email protected] (H.J.) 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China 3 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China 4 Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan; [email protected] 5 Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany 6 State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China * Correspondence: [email protected] (W.L.); [email protected] (L.L.) Abstract: Endophytes associated with halophytes may contribute to the host’s adaptation to adverse Citation: Gao, L.; Ma, J.; Liu, Y.; environmental conditions through improving their stress tolerance and protecting them from various Huang, Y.; Mohamad, O.A.A.; Jiang, soil-borne pathogens. In this study, the diversity and antifungal activity of endophytic bacteria H.; Egamberdieva, D.; Li, W.; Li, L.
    [Show full text]
  • Microbiology in Dairy Processing
    Microbiology in Dairy Processing The IFT Press series reflects the mission of the Institute of Food Technologists—to advance the science of food contributing to healthier people everywhere. Developed in partnership with Wiley, IFT Press books serve as leading - edge handbooks for industrial application and reference and as essential texts for academic programs. Crafted through rigorous peer review and meticulous research, IFT Press publications represent the lat- est, most significant resources available to food scientists and related agriculture profes- sionals worldwide. Founded in 1939, the Institute of Food Technologists is a nonprofit scientific society with 18,000 individual members working in food science, food tech- nology, and related professions in industry, academia, and government. IFT serves as a conduit for multidisciplinary science thought leadership, championing the use of sound science across the food value chain through knowledge sharing, education, and advocacy. IFT Press Advisory Group Baris Ates Nicolas Bordenave Ravi Chermala YiFang Chu Deepti Dabas Chris Doona Chris Findlay Maria Jose Frutos-Fernandez Elsina Hagan Jung Hoon Han Shane McDonald Gordon Robertson Shahin Roohinejad Sam Saguy Fereidoon Shahidi Herbert Stone Yael Vodovotz Jared Willbergh Bob Swientek (IFT) Melanie Bartelme (IFT) David McDade (Wiley) Titles in the IFT Press series ● Accelerating New Food Product Design and Development, second edition (Jacqueline H. Beckley, Leslie J. Herzog and M. Michele Foley) ● Advances in Dairy Ingredients (Geoffrey W. Smithers and Mary Ann Augustin) ● Anti‐Ageing Nutrients: Evidence‐based Prevention of Age‐Associated Diseases (Deliminda Neves) ● Bioactive Compounds from Marine Foods: Plant and Animal Sources (Blanca Hernández‐Ledesma and Miguel Herrero) ● Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals (Yoshinori Mine, Eunice Li ‐ Chan, and Bo Jiang) ● Biofilms in the Food Environment, second Edition (Anthony L.
    [Show full text]
  • Carotenoids Found in Bacillus R
    Journal of Applied Microbiology ISSN 1364-5072 ORIGINAL ARTICLE Carotenoids found in Bacillus R. Khaneja1, L. Perez-Fons2, S. Fakhry3, L. Baccigalupi3, S. Steiger4,E.To1, G. Sandmann4, T.C. Dong5, E. Ricca3, P.D. Fraser2 and S.M. Cutting1 1 School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK 2 Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, Surrey, UK 3 Department of Structural and Functional Biology, Federico II University, Naples, Italy 4 J.W. Goethe Universita¨ t Frankfurt, Frankfurt, Germany 5 University of Medicine & Pharmacy, Ho Chi Minh City, Vietnam Keywords Abstract Bacillus, carotenoids, isoprenoids, spores. Aims: To identify the diversity of pigmented aerobic spore formers found in Correspondence the environment and to characterize the chemical nature of this pigmentation. Simon M. Cutting, School of Biological Materials and Results: Sampling of heat-resistant bacterial counts from soil, Sciences, Royal Holloway, University of sea water and the human gastrointestinal tract. Phylogenetic profiling using London, Egham, Surrey TW20 0EX, UK. analysis of 16S rRNA sequences to define species. Pigment profiling using E-mail: [email protected] high-performance liquid chromatography-photo diode array analysis. 2009 ⁄ 1179: received 30 June 2009, revised Conclusions: The most commonly found pigments were yellow, orange and 10 September 2009 and accepted 2 October pink. Isolates were nearly always members of the Bacillus genus and in most 2009 cases were related with known species such as Bacillus marisflavi, Bacillus indicus, Bacillus firmus, Bacillus altitudinis and Bacillus safensis. Three types of doi:10.1111/j.1365-2672.2009.04590.x carotenoids were found with absorption maxima at 455, 467 and 492 nm, cor- responding to the visible colours yellow, orange and pink, respectively.
    [Show full text]