A New Family of Vombatomorphian Marsupial from the Late Oligocene Of

Total Page:16

File Type:pdf, Size:1020Kb

A New Family of Vombatomorphian Marsupial from the Late Oligocene Of Maradidae: a new family of vombatomorphian marsupial from the late Oligocene of Riversleigh, northwestern Queensland KAREN BLACK BLACK, K., March 2007. Maradidae: a new family of vombatomorphian marsupial from the late Oligocene of Riversleigh, northwestern Queensland. Alcheringa 31, 17-32. ISSN 0311-5518. Marada arcanum gen. et sp. nov. is described from the late Oligocene Hiatus Site, Riversleigh World Heritage Property, northwestern Queensland. Although known from only a single dentary, it is assigned to a new family Maradidae, based on a unique combination of both plesiomorphic and apomorphic features. Of the known vombatomorphians, Marada is most similar to primitive wynyardiids and diprotodontoids (palorchestids and diprotodontids). Further clarification of the phylogenetic position of Maradidae within Vombatomorphia requires discovery of upper dentitions and crania. Karen Black [[email protected]], Vertebrate Palaeontology Laboratory, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia; received 17.1.2005, revised 1.6.2005. Key words: Maradidae, Marada arcanum, Vombatomorphia, Vombatiformes, Marsupialia, Riversleigh. Downloaded By: [University of New South Wales] At: 04:45 25 May 2007 SIX FAMILIES are recognized within the unique combination of primitive and de- infraorder Vombatomorphia: Ilariidae, Wy- rived features and cannot be assigned to any nyardiidae, Thylacoleonidae, Vombatidae, known vombatomorphian family. Conse- Palorchestidae, and Diprotodontidae. Of quently, a new family, Maradidae, has been these, five families are extinct, two families established. (Wynyardiidae and Ilariidae) are not known Material is deposited in the palaeonto- from deposits younger than early Miocene, logical collection of the Queensland Mu- and all exhibit highly autapomorphic denti- seum (QMF). Cusp nomenclature follows tions. Aplin & Archer (1987) noted that Rich et al. (1978) and Archer (1984). Molar known vombatomorphian families repre- homology follows Luckett (1993). Premolar sent the remnants of a far more diverse homology follows Flower (1867). Mandib- pre-Oligocene radiation. Although mono- ular terminology follows Stirton (1967). phyly of the infraorder is strongly supported Higher-level systematic nomenclature fol- by cranial and postcranial morphology, lows Aplin & Archer (1987). resolution of phylogenetic relationships based solely on dental morphology has proven difficult. Marada gen. nov., de- scribed herein, is known from a single right Systematic palaeontology dentary from the late Oligocene Hiatus Site, Superorder MARSUPIALIA Illiger, 1811 Riversleigh World Heritage Property, Order DIPROTODONTIA Owen, 1866 northwestern Queensland. It expresses a Suborder VOMBATIFORMES Wood- burne, 1984 Infraorder VOMBATOMORPHIA Aplin ISSN 0311-5518 (print)/ISSN 1752-0754 (online) Ó 2007 Association of Australasian Palaeontologists & Archer, 1987 DOI: 10.1080/03115510601123601 Family MARADIDAE new family 18 KAREN BLACK ALCHERINGA Diagnosis. Maradidae differs from all other Marada differs from all other vombato- vombatomorphian families in the following morphians except diprotodontids and pa- combination of features: Dentary gracile, lorchestids in having an elongate diastema narrow, elongate and mediolaterally com- and a simple, bicuspid P3. Marada differs pressed; less posteriorly extensive mandibu- from all other vombatomorphians except lar symphysis; non crest-like or inflated wynyardiids, in having a posterolingual ascending ramus at its point of origin; pocket between the entoconid, posthypo- ascending ramus originates more posteriorly cristid, and posterior cingulum. Marada and at a point behind and less lateral to differs from diprotodontids, palorchestids, the molar row; less extensive post-alveolar and wynyardiids in having an M1/M4 length shelf and weak post-alveolar process; lower less than 1. crowned cheek teeth; short molar row Marada differs from diprotodontids and length (50% length of horizontal ramus); a palorchestids (i.e. diprotodontoids) in hav- well-developed cristid obliqua; and a well- ing: smaller teeth; an anteriorly convex developed cuspate lingual cingulum on M1. rather than concave ‘hypolophid’ and ‘pro- tolophid’; a better-defined paraconid on M1; Marada gen. nov. reduced posterior molars (i.e. M4/M1 length 51); less well-developed preprotoconid Type and only species. Marada arcanum gen. crests on P3; a reduced posterior cingulum et sp. nov. on the molars; a better-defined paraconid Downloaded By: [University of New South Wales] At: 04:45 25 May 2007 and paracristid on M1 (except Raemeother- Generic diagnosis. The generic diagnosis is ium Rich et al. 1978); and a well-developed that for the family until additional taxa are postmetacristid, postentocristid, posthypo- known. cristid, preentocristid, and preprotocristid (in M2-4). Etymology. Marada is the Waanyi (the local Marada differs from palorchestids in: Aboriginal language of Riversleigh) word lacking a well-developed posterior cingulum for flat in reference to the narrow, medio- on P3; and lacking the posterior, buccal, and laterally compressed dentary and the shal- lingual crests of the protoconid on P3. low fossae for muscle attachment. Gender is Marada differs from diprotodontids in hav- masculine. ing: less lophodont molars; a longitudinal wear pattern along the buccal cuspids on Remarks. Distinctions from all other vom- lower molars (rather than a transverse batomorphian taxa are previously listed in pattern of wear across the lophids); a more the familial diagnosis. Further differences lingually positioned protoconid on M1 (ex- from more specific groups are listed below. cept Raemeotherium); a proportionately (Note that comparisons are made using the larger P3 relative to M1; and a distinct primitive members of the respective groups, posterior cuspid at the terminus of the which are detailed in the proceeding char- postprotocristid on P3. Marada differs from acter anaylsis.) ilariids and wynyardiids in lacking the Marada differs from all other vombati- neomorph cuspid (Pledge 1987a, Tedford forms (except Wakaleo Clemens & Plane, & Woodburne 1987) on M1. Marada differs 1974, 508;andWarendja wakefieldi Hope & from wynyardiids in that the P3 is not bladed Wilkinson, 1982, 56-598) in having a poster- and is considerably shorter than M1;andin iorly inclined ascending ramus where the having more open, U-shaped transverse angle of the anterior border of the ascending valleys on the lower molars. Marada differs ramus (Fig. 1C) is less than 608 (relative to from ilariids in: lacking a tricuspid, bulbous the plane of the horizontal ramus). P3 and a well-developed anterior cingulum ALCHERINGA NEW VOMBATOMORPHIAN FAMILY 19 Downloaded By: [University of New South Wales] At: 04:45 25 May 2007 Fig. 1. Marada arcanum gen. et sp. nov. Holotype QMF42738. A, buccal view of right dentary; B, lingual view; C, schematic diagram of right dentary of M. arcanum showing measurements used in Table 4 and throughout the text. Abbreviations: AAR, angle of anterior border of ascending ramus; DL, diastema length; HRL, horizontal ramus length; MRL, molar row length; SL, symphysis length. Hatching represents broken areas on dentary. Bar ¼ 50 mm. 20 KAREN BLACK ALCHERINGA on the lower molars; and in having less Holotype. QMF42738, right dentary with complex molars. Marada differs from thyla- P3,M1-4.I1 crown broken. Dental formula coleonids in lacking: an elongate, bladed P3; I1,C0,P3,M1-4. The posterior area of the a well-developed, deep masseteric fossa; a dentary is damaged and missing the coro- deep, rounded symphysis; a highly inclined noid process, articular condyle, and angular caniniform I1; and in having a single lower process. premolar. Type locality. Hiatus Site, Riversleigh World Heritage Fossil Property, northwes- Marada arcanum sp. nov. (Figs 1-2, Tables tern Queensland (see Creaser 1997). 1-4) Distribution and age. Hiatus Site is a System A deposit (Creaser 1997) which, on the basis of stratigraphy and contained faunas, is interpreted to be of late Oligocene age. Species diagnosis. The diagnosis for the species is that for the family until additional taxa are known. Downloaded By: [University of New South Wales] At: 04:45 25 May 2007 Specific etymology. Arcanum, meaning mys- tery in Latin, alludes to the unknown taxonomic position of the species and the strange combination of primitive and de- rived features exhibited by the single known specimen. Description Dentary (Fig. 1). Right dentary with P3, M1-4.I1 crown broken. The posterior area of the dentary is poorly preserved and missing the coronoid process, articular condyle, and Fig. 2. Marada arcanum gen. et sp. nov. occlusal angular process. The dentary is very gracile stereopair of QMF42738. Bar ¼ 10 mm. and slender with a narrow horizontal ramus. It is unlike the characteristically more robust vombatomorphian dentaries with the exception of the relatively delicate P3 M1 M2 M3 M4 primitive ?diprotodontid Raemeotherium L 8.7 11.4 10.9 10.8 10.0 yatkolai Rich et al. 1978. The lingual AW 7.4 8.0 8.4 7.2 (medial) surface of the horizontal ramus is PW 5.2* 7.3 7.5 7.3 6.3 flat and straight, as is the ventral border. DR 27.4 27.4 26.3 25.9 26.1 The maximum depth of the horizontal ramus is 27.9 mm below the anterior base Table 1. Measurements (mm) of dentition of of M1. The horizontal ramus thickens Marada arcanum. *Maximum width of P3. DR, depth of horizontal ramus below respective tooth opposite M3 with a maximum width of taken between the roots. 14.6 mm. The diastema is
Recommended publications
  • SUPPLEMENTARY INFORMATION for a New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution
    Title A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Authors Beck, RMD; Louys, J; Brewer, Philippa; Archer, M; Black, KH; Tedford, RH Date Submitted 2020-10-13 SUPPLEMENTARY INFORMATION FOR A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2*, Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2, Richard H. Tedford5 (deceased) 1Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK 2PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia 3Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Queensland, Australia 4Department of Earth Sciences, Natural History Museum, London, United Kingdom 5Division of Paleontology, American Museum of Natural History, New York, USA Correspondence and requests for materials should be addressed to R.M.D.B (email: [email protected]) This pdf includes: Supplementary figures Supplementary tables Comparative material Full description Relevance of Marada arcanum List of morphological characters Morphological matrix in NEXUS format Justification for body mass estimates References Figure S1. Rostrum of holotype and only known specimen of Mukupirna nambensis gen. et. sp. nov. (AMNH FM 102646) in ventromedial (a) and anteroventral (b) views. Abbreviations: C1a, upper canine alveolus; I1a, first upper incisor alveolus; I2a, second upper incisor alveolus; I1a, third upper incisor alveolus; P3, third upper premolar. Scale bar = 1 cm.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • Revision of Basal Macropodids from the Riversleigh World Heritage Area with Descriptions of New Material of Ganguroo Bilamina Cooke, 1997 and a New Species
    Palaeontologia Electronica palaeo-electronica.org Revision of basal macropodids from the Riversleigh World Heritage Area with descriptions of new material of Ganguroo bilamina Cooke, 1997 and a new species K.J. Travouillon, B.N. Cooke, M. Archer, and S.J. Hand ABSTRACT The relationship of basal macropodids (Marsupialia: Macropodoidea) from the Oligo-Miocene of Australia have been unclear. Here, we describe a new species from the Bitesantennary Site within the Riversleigh’s World Heritage Area (WHA), Ganguroo bites n. sp., new cranial and dental material of G. bilamina, and reassess material pre- viously described as Bulungamaya delicata and ‘Nowidgee matrix’. We performed a metric analysis of dental measurements on species of Thylogale which we then used, in combination with morphological features, to determine species boundaries in the fossils. We also performed a phylogenetic analysis to clarify the relationships of basal macropodid species within Macropodoidea. Our results support the distinction of G. bil- amina, G. bites and B. delicata, but ‘Nowidgee matrix’ appears to be a synonym of B. delicata. The results of our phylogenetic analysis are inconclusive, but dental and cra- nial features suggest a close affinity between G. bilamina and macropodids. Finally, we revise the current understanding of basal macropodid diversity in Oligocene and Mio- cene sites at Riversleigh WHA. K.J. Travouillon. School of Earth Sciences, University of Queensland, St Lucia, Queensland 4072, Australia and School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales 2052, Australia. [email protected] B.N. Cooke. Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia.
    [Show full text]
  • Marsupialia: Ektopodontidae): Including a New Species Ektopodon Litolophus
    Records of the Western Australian Museum Supplement No. 57: 255-264 (1999). Additions to knowledge about ektopodontids (Marsupialia: Ektopodontidae): including a new species Ektopodon litolophus Neville S. Pledge!, Michael Archer, Suzanne J. Hand2and Henk Godthelp2 1 South Australian Museum, North Terrace, Adelaide, SA 5000; email: [email protected] 2 School of Biological Science, University of New South Wales, Sydney, NSW 2052 Abstract - Information about the extinct phalangeroid family Ektopodontidae has been increased following the discovery of new material from several localities. A new species, Ektopodon litolophus, described on the basis of an Ml from the Leaf Locality, Lake Ngapakaldi, Lake Eyre Basin, is characterized by the extremely simple structure of the crests. Ektopodontids are recorded for the first time from the northern half of the Australian continent through discovery of a tooth fragment at Wayne's Wok Site, Riversleigh World Heritage area, northwestern Queensland. Comparisons of Ml of Olllnia and Ektopodon species now allow evolutionary trends of simplification to be discerned. INTRODUCTION million years; Woodburne et al. 1985), following Ektopodon is a genus of extinct possum-like preliminary analyses by W.K. Harris of pollen from marsupials established by Stirton et al. (1967) on the Etadunna Formation at Mammalon Hill, Lake isolated teeth found at the Early to Middle Miocene Palankarinna. Subsequent work with Leaf Locality (Kutjamarpu Local Fauna) at Lake Ngapakaldi, northeastern South Australia (Figure 1). Further specimens from this locality were described and interpreted by Woodburne and Clemens (1986b), together with new, slightly older Oligocene species in the plesiomorphic genus CJmnia (c. illuminata, C. sp. cf. C.
    [Show full text]
  • PRIMITIVE MARS UPIAL TAPIRS ( P RO P ALO RCH ESTE~ NOV ACULACEPHALUS MURRA Y and P
    The Beagle, Records of the Northern Territory Museum of Arts and Sciences, 19907(2):39-51 PRIMITIVE MARS UPIAL TAPIRS ( p RO p ALO RCH ESTE~ NOV ACULACEPHALUS MURRA y AND P. PONTICULUS SP . NOV .) FROM THE MID-MIOCENE OF NORTH AUSTRALIA (MAR;SUPIALIA: PALORCHESTIDAE). PETER MURRA y Northern Territory Museum of Arts and Sciences, GPO Box 2109, Alice Springs NT 0871, Australia. ABS'iRACT The upper molar dentition of Propalorchestes novaculacephalus demonstrates a transitional state between the bilophodont marsupial tapirs and the selenodont wynyardiids. Although Propalorchestes had developed bilophodont crowns, the metacone and stylar cusp D remained sufficiently differentiated to verify the development of bilophodonty in diprotodontoid (vombatimorphian) marsupials from a selenodont condition, in which the primary buccal cusp is formed by stylar cusp D rather than the metacone. KEYWORDS:Palorchestinae, Wynyardiidae, molar evolution, diprotodontoid sys- tematics, Bullock Creek Local Fauna, Riversleigh "Systems" Fauna. INTRODUCTION ments, a maxilla, a cranial fragment and three isolated teeth. Despite the sparseness and frag- A cranial fragment from the Bullock Creek mentary condition of the sample, it substan- Local Fauna indicated that tapir-Iike marsupi- tially improves our resolution of the sys- als £Palorchestinae) were already highly tematics of the marsupial tapirs and moreover , modified forms by mid- Miocene times and adds a previously unknown transitional ele- that they differed in many significant respects ment to the interpretation of the phylogeny of from the palorchestid Ngapakaldia tedfordi bilophodont dentitions within the Vombati- Stirton (Murray 1986). Several years had morphia. elapsed since the cranium of Propalorchestes The "diprotodontoid" (vombatimorphian) was described before any palorchestine denti- affinity as opposed to a macropodoid (Owen tions from the Camfield Beds came to light.
    [Show full text]
  • A Evolução Dos Metatheria: Sistemática, Paleobiogeografia, Paleoecologia E Implicações Paleoambientais
    UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS ESPECIALIZAÇÃO EM GEOLOGIA SEDIMENTAR E AMBIENTAL LEONARDO DE MELO CARNEIRO A EVOLUÇÃO DOS METATHERIA: SISTEMÁTICA, PALEOBIOGEOGRAFIA, PALEOECOLOGIA E IMPLICAÇÕES PALEOAMBIENTAIS RECIFE 2017 LEONARDO DE MELO CARNEIRO A EVOLUÇÃO DOS METATHERIA: SISTEMÁTICA, PALEOBIOGEOGRAFIA, PALEOECOLOGIA E IMPLICAÇÕES PALEOAMBIENTAIS Dissertação de Mestrado apresentado à coordenação do Programa de Pós-graduação em Geociências, da Universidade Federal de Pernambuco, como parte dos requisitos à obtenção do grau de Mestre em Geociências Orientador: Prof. Dr. Édison Vicente Oliveira RECIFE 2017 Catalogação na fonte Bibliotecária: Rosineide Mesquita Gonçalves Luz / CRB4-1361 (BCTG) C289e Carneiro, Leonardo de Melo. A evolução dos Metatheria: sistemática, paleobiogeografia, paleoecologia e implicações paleoambientais / Leonardo de Melo Carn eiro . – Recife: 2017. 243f., il., figs., gráfs., tabs. Orientador: Prof. Dr. Édison Vicente Oliveira. Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG. Programa de Pós-Graduação em Geociências, 2017. Inclui Referências. 1. Geociêcias. 2. Metatheria . 3. Paleobiogeografia. 4. Paleoecologia. 5. Sistemática. I. Édison Vicente Oliveira (Orientador). II. Título. 551 CDD (22.ed) UFPE/BCTG-2017/119 LEONARDO DE MELO CARNEIRO A EVOLUÇÃO DOS METATHERIA: SISTEMÁTICA, PALEOBIOGEOGRAFIA, PALEOECOLOGIA E IMPLICAÇÕES PALEOAMBIENTAIS Dissertação de Mestrado apresentado à coordenação do Programa de Pós-graduação
    [Show full text]
  • Timing and Dynamics of Late Pleistocene Mammal Extinctions in Southwestern Australia
    Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia Gavin J. Prideauxa,1, Grant A. Gullya, Aidan M. C. Couzensb, Linda K. Ayliffec, Nathan R. Jankowskid, Zenobia Jacobsd, Richard G. Robertsd, John C. Hellstrome, Michael K. Gaganc, and Lindsay M. Hatcherf aSchool of Biological Sciences, Flinders University, Bedford Park, South Australia 5042, Australia; bSchool of Earth and Environment, University of Western Australia, Crawley, Western Australia 6009, Australia; cResearch School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia; dCentre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; eSchool of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; and fAugusta–Margaret River Tourism Association, Margaret River, Western Australia 6285, Australia Edited by Paul L. Koch, University of California, Santa Cruz, CA, and accepted by the Editorial Board November 1, 2010 (received for review July 27, 2010) Explaining the Late Pleistocene demise of many of the world’s larger tims, falling in alongside sediments and charcoal that were washed terrestrial vertebrates is arguably the most enduring and debated in via now-blocked solution pipes, although tooth marks on some topic in Quaternary science. Australia lost >90% of its larger species bones suggest that the carnivores Sarcophilus and Thylacoleo by around 40 thousand years (ka) ago, but the relative importance played a minor accumulating role. of human impacts and increased aridity remains unclear. Resolving To establish an environmental background against which TEC the debate has been hampered by a lack of sites spanning the last faunal changes could be analyzed, we investigated stratigraphic glacial cycle.
    [Show full text]
  • Marsupial Lions & Methodological Omnivory
    Marsupial Lions & Methodological Omnivory: Function, Success and Reconstruction in Paleobiology Penultimate Version, published in Biology & Philosophy Abstract Historical scientists frequently face incomplete data, and lack direct experimental access to their targets. This has led some philosophers and scientists to be pessimistic about the epistemic potential of the historical sciences. And yet, historical science often produces plausible, sophisticated hypotheses. I explain this capacity to generate knowledge in the face of apparent evidential scarcity by examining recent work on Thylacoleo carnifex, the ‘marsupial lion’. Here, we see two important methodological features. First, historical scientists are methodological omnivores, that is, they construct purpose-built epistemic tools tailored to generate evidence about highly specific targets. This allows them to produce multiple streams of independent evidence and thus maximize their epistemic reach. Second, investigative scaffolding: research proceeds in a piece-meal fashion, information only gaining evidential relevance once certain hypotheses are well supported. I illustrate scaffolding in a discussion of the nature of functional ascription in paleobiology. Frequently, different senses of ‘function’ are not discriminated during paleobiological investigation—something which can mar adaptationist investigations of extant organisms. However, I argue that, due to scaffolding, conflating senses of ‘function’ can be the right thing to do. Coarse grained functional hypotheses are required before it is clear what evidence could discriminate between more fine-grained ones. I draw on omnivory and scaffolding to argue that pessimists make a bad empirical bet. It is a bad idea to bet against the epistemic fortunes of such opportunistic and resourceful scientists, especially when we have reason to think we will systematically underestimate the amount of evidence ultimately available to them.
    [Show full text]
  • Relative Demographic Susceptibility Does Not Explain the Extinction Chronology of Sahul's Megafauna
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342303; this version posted October 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Full title: Relative demographic susceptibility does not explain the 2 extinction chronology of Sahul’s megafauna 3 Short title: Demographic susceptibility of Sahul’s megafauna 4 5 Corey J. A. Bradshaw1,2,*, Christopher N. Johnson3,2, John Llewelyn1,2, Vera 6 Weisbecker4,2, Giovanni Strona5, and Frédérik Saltré1,2 7 1 Global Ecology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 8 South Australia 5001, Australia, 2 ARC Centre of Excellence for Australian Biodiversity and Heritage, 9 EpicAustralia.org, 3 Dynamics of Eco-Evolutionary Pattern, University of Tasmania, Hobart, Tasmania 10 7001, Australia, 4 College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 11 South Australia 5001, Australia, 5 Research Centre for Ecological Change, University of Helsinki, 12 Viikinkaari 1, Biocentre 3, 00790, Helsinki, Finland 13 14 * [email protected] (CJAB) 15 ORCIDs: C.J.A. Bradshaw: 0000-0002-5328-7741; C.N. Johnson: 0000-0002-9719-3771; J. 16 Llewelyn: 0000-0002-5379-5631; V. WeisbecKer: 0000-0003-2370-4046; F. Saltré: 0000- 17 0002-5040-3911 18 19 Keywords: vombatiformes, macropodiformes, flightless birds, carnivores, extinction 20 Author Contributions: C.J.A.B and F.S. conceptualized the paper, and C.J.A.B.
    [Show full text]
  • THYLACOLEO CARNIFEX and the NARACOORTE CAVES Michael Curry, Liz Reed1,2 and Steve Bourne3
    RESEARCH CATCHING the MARSUPIAL ‘LION’ by the TAIL: THYLACOLEO CARNIFEX and the NARACOORTE CAVES Michael Curry, Liz Reed1,2 and Steve Bourne3 1School of Physical Sciences, The University of Adelaide, Adelaide, SA, Australia; 2School of Biological Sciences, Flinders University, Bedford Park, SA, Australia; 3Naracoorte Lucindale Council, Naracoorte, SA, Australia. “Thylacoleo exemplifies the simplest and most effective dental machinery for predatory life and carnivorous diet known in the Mammalian class. It is the extreme modification, to this end, of the Diprotodont type of Marsupialia.” Owen (1866) Introduction defending Thylacoleo as “A very gentle beast, and of good conscience” (Macleay 1859). Macleay based his Of all the extinct Australian Pleistocene megafauna argument on Thylacoleo’s relationship with other species, Thylacoleo carnifex (the marsupial ‘lion’) has Diprotodont marsupials, most of which are herbivores. captured the imagination and interest of people more Gerard Krefft, Curator of the Australian Museum, was than any other. Perhaps it is the allure of its predatory almost equally as unimpressed with Thylacoleo’s habits, (Australia’s Pleistocene answer to T. rex); or the carnivory, opining that it “…was not much more intriguing notion that it used caves as dens (Lundelius, carnivorous than the Phalangers (possums) of present 1966 ). It is certainly an enigma and, as Owen (1866) time.” (Krefft, 1866). Owen, meanwhile, had received an suggested, an extreme and meat-eating version of the almost complete skull from the Darling Downs, in otherwise herbivorous diprotodont marsupials. Queensland and published a more detailed paper, Spectacular fossil finds over the past few decades have further describing the skull and teeth of Thylacoleo, put to rest much of the speculation regarding its habits acknowledging its diprotodont affiliation but more and morphology.
    [Show full text]
  • Book of Abstracts Australian Mammal Society Conference 2020
    BOOK OF ABSTRACTS Alphabetical author index on page 31 EASTERN GREY KANGAROO POPULATION DYNAMICS Rachel Bergeron1, David Forsyth2,3, Wendy King1,4 and Marco Festa-Bianchet1,4 1 Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada 2 Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, NSW 2800, Australia 3 School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia 4 School of Biological Sciences, Australian National University, Acton, ACT 2601, Australia Email: [email protected] Twitter: @festa_bianchet Recent studies of density-dependence in herbivore population dynamics seek to identify the mechanisms underlying these changes. Kangaroo populations experience large fluctuations in size. Early research suggested that rainfall was a good predictor of population changes through its effect on per capita food availability. Population dynamics of large herbivores, however, are likely influenced by interactions between stochastic environmental variation and density dependence. Vital rates can respond differently to environmental variation and to changes in density. In particular, juvenile survival is most sensitive to harsh conditions, and adult survival rarely affected. Consequently, an improved understanding of population dynamics requires monitoring of individuals of known sex and age under a variety of environmental conditions. I will investigate how density, age structure and environmental conditions affect the population dynamics of eastern grey kangaroos (Macropus giganteus) at Wilsons Promontory National Park, Victoria, where >1200 individuals of known age and sex have been monitored since 2008. I will test the hypothesis that environmental conditions and density dependence have interacting and age-specific roles in generating changes in population size.
    [Show full text]
  • A New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution of Wombats, Koalas, and Their Relatives (Vombatiformes) Robin M
    www.nature.com/scientificreports OPEN A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2 ✉ , Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2 & Richard H. Tedford5,6 We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defned here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition.
    [Show full text]