The Landfall of Hurricane Erin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear
1290 MONTHLY WEATHER REVIEW VOLUME 142 Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear ERIC W. UHLHORN NOAA/AOML/Hurricane Research Division, Miami, Florida BRADLEY W. KLOTZ Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida TOMISLAVA VUKICEVIC,PAUL D. REASOR, AND ROBERT F. ROGERS NOAA/AOML/Hurricane Research Division, Miami, Florida (Manuscript received 6 June 2013, in final form 19 November 2013) ABSTRACT Wavenumber-1 wind speed asymmetries in 35 hurricanes are quantified in terms of their amplitude and phase, based on aircraft observations from 128 individual flights between 1998 and 2011. The impacts of motion and 850–200-mb environmental vertical shear are examined separately to estimate the resulting asymmetric structures at the sea surface and standard 700-mb reconnaissance flight level. The surface asymmetry amplitude is on average around 50% smaller than found at flight level, and while the asymmetry amplitude grows in proportion to storm translation speed at the flight level, no significant growth at the surface is observed, contrary to conventional assumption. However, a significant upwind storm-motion- relative phase rotation is found at the surface as translation speed increases, while the flight-level phase remains fairly constant. After removing the estimated impact of storm motion on the asymmetry, a significant residual shear direction-relative asymmetry is found, particularly at the surface, and, on average, is located downshear to the left of shear. Furthermore, the shear-relative phase has a significant downwind rotation as shear magnitude increases, such that the maximum rotates from the downshear to left-of-shear azimuthal location. -
Factors Affecting the Evolution of Hurricane Erin (2001) and the Distributions of Hydrometeors: Role of Microphysical Processes Ϩ GREG M
JANUARY 2006 M CFARQUHAR ET AL. 127 Factors Affecting the Evolution of Hurricane Erin (2001) and the Distributions of Hydrometeors: Role of Microphysical Processes ϩ GREG M. MCFARQUHAR,* HENIAN ZHANG,* GERALD HEYMSFIELD, ROBBIE HOOD,# JIMY DUDHIA,@ ϩ JEFFREY B. HALVERSON, AND FRANK MARKS JR.& *Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois ϩNASA Goddard Space Flight Center, Greenbelt, Maryland #NASA Marshall Space Flight Center, Huntsville, Alabama @National Center for Atmospheric Research, Boulder, Colorado &NOAA/Hurricane Research Division, Miami, Florida (Manuscript received 11 November 2003, in final form 8 March 2005) ABSTRACT Fine-resolution simulations of Hurricane Erin are conducted using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to investigate roles of thermodynamic, boundary layer, and microphysical processes on Erin’s structure and evolution. Choice of boundary layer scheme has the biggest impact on simulations, with the minimum surface pressure (Pmin) averaged over the last 18 h (when Erin is relatively mature) varying by over 20 hPa. Over the same period, coefficients used to describe graupel fall speeds (Vg) affect Pmin by up to 7 hPa, almost equivalent to the maximum 9-hPa difference between microphysical parameterization schemes; faster Vg and schemes with more hydrometeor categories generally give lower Pmin. Compared to radar reflectivity factor (Z) observed by the NOAA P-3 lower fuselage radar and the NASA ER-2 Doppler radar (EDOP) in Erin, all simulations overpredict the nor- malized frequency of occurrence of Z larger than 40 dBZ and underpredict that between 20 and 40 dBZ near the surface; simulations overpredict Z larger than 25 to 30 dBZ and underpredict that between 15 and 25 or 30 dBZ near the melting layer, the upper limit depending on altitude. -
Hurricane Outer Rainband Mesovortices
Presented at the 24th Conference on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, May 31 2000 EXAMINING THE PRE-LANDFALL ENVIRONMENT OF MESOVORTICES WITHIN A HURRICANE BONNIE (1998) OUTER RAINBAND 1 2 2 1 Scott M. Spratt , Frank D. Marks , Peter P. Dodge , and David W. Sharp 1 NOAA/National Weather Service Forecast Office, Melbourne, FL 2 NOAA/AOML Hurricane Research Division, Miami, FL 1. INTRODUCTION Tropical Cyclone (TC) tornado environments have been studied for many decades through composite analyses of proximity soundings (e.g. Novlan and Gray 1974; McCaul 1986). More recently, airborne and ground-based Doppler radar investigations of TC rainband-embedded mesocyclones have advanced the understanding of tornadic cell lifecycles (Black and Marks 1991; Spratt et al. 1997). This paper will document the first known dropwindsonde deployments immediately adjacent to a family of TC outer rainband mesocyclones, and will examine the thermodynamic and wind profiles retrieved from the marine environment. A companion paper (Dodge et al. 2000) discusses dual-Doppler analyses of these mesovortices. On 26 August 1998, TC Bonnie made landfall as a category two hurricane along the North Carolina coast. Prior to landfall, two National Oceanographic and Atmospheric Administration (NOAA) Hurricane Research Division (HRD) aircraft conducted surveillance missions offshore the Carolina coast. While performing these missions near altitudes of 3.5 and 2.1 km, both aircraft were required to deviate around intense cells within a dominant outer rainband, 165 to 195 km northeast of the TC center. On-board radars detected apparent mini-supercell signatures associated with several of the convective cells along the band. -
P2.4 Remote Sensing of Microphysical Particles in Hurricanes from Aircraft Observations
P2.4 REMOTE SENSING OF MICROPHYSICAL PARTICLES IN HURRICANES FROM AIRCRAFT OBSERVATIONS Cerese M. Albers and Dr. Gail Skofronick-Jackson Florida State University, Tallahassee, FL and NASA Goddard Space Flight Center Code 970 Remote Sensing Branch, Greenbelt, MD I. Abstract This observed data will be helpful in In an effort to better understand the understanding whether the model slice is number concentration characteristics and particle appropriate and if the accompanying size distributions of frozen hydrometeors in parameterization is useful for these types of hurricanes, brightness temperatures were hydrometeors. There is a correlation between high compared with observations of Hurricane Erin frequencies (>= 85 GHz) and the accurate (2001) from CAMEX-4 radiometers on the ER-2 detection of frozen particles’ radiative signatures in aircraft. Frozen hydrometeors and hurricane storms. Higher frequencies are particularly sensitive particle microphysics play a large role in the to the frozen hydrometeors, and finding a multi- development and strength of tropical cyclones frequency retrieval algorithm for ice particle through the convective processes in the rain bands characteristics is the goal. present. Previous studies have proven that it is difficult to select proper ice particle parameterizations and that in situ measurements and additional studies are key to defining appropriate parameterizations. II. Introduction The observations from the Fourth Scientists often seek to refine their Convection and Moisture Experiment (CAMEX-4) observations to obtain more precise measurements and ER-2 Doppler reflectivities were co-located with of their desired distributions. In a time when the brightness temperatures from the High Altitude remote sensing of microphysical particles from MIMC Sounding Radiometer (HAMSR) and the aircraft and satellite has become increasingly Advanced Precipitation Microwave Radiometer (see important this is certainly a priority. -
Orlando FL Area Purchasing Offices
FLORIDA PROCUREMENT TECHNICAL ASSISTANCE CENTER PROGRAM UNIVERSITY of CENTRAL FLORIDA PURCHASING CONTACTS ORANGE COUNTY 1 Orange County Government Johnny Richardson 400 E. South Street, 2nd Floor Purchasing & Contracts Manager Orlando, FL 32802-1393 407 -836-5635 E-mail: [email protected] Web Site: www.orangecountyfl.net Elaine Walker Administrator 407 -836-5664 E-mail: [email protected] Charlotte Walker Buyer Supervisor 407 -836-5897 E-mail: [email protected] 2 City of Orlando Jon Mead, C.P.M. 400 S. Orange Avenue Director of Purchasing P.O. Box 4990 Fourth Floor 407 -246-2291 Orlando, FI 32802-4990 E-mail: [email protected] Web Site: 3 City of Winter Garden Brian Strobeck 251 West Palm Street Finance Director Winter Garden, FI 34787 407 -656-4111 ext.2278 E-mail: bstrobeck @wintergarden-fl.gov Web Site: 4 City of Ocoee Joyce Tolbert 150 N. Lakeshore Drive Purchasing Agent Ocoee, FI 34761 407 -905-31 OOext 1516 E-mail: [email protected] Web Site: www.cityofpensacola.com (lists bid opportunities over $10,000) 5 Orange County Public Schools Vacant 445 W. Amelia Street Procurement Services Director Orlando, Florida 32801-1129 407-317-3218 E-mail: Web Site: www.ocps.net Page 1 FLORIDA PROCUREMENT TECHNICAL ASSISTANCE CENTER PROGRAM UNIVERSITY of CENTRAL FLORIDA PURCHASING CONTACTS ORANGE COUNTY 6 Orlando Utilities Commission Vacant P.O Box 3193 Purchasing Manager Orlando, Florida 32801 407 -384-4077 E-mail: Web Site: WWW.ouc.com 7 Orange County Sheriff's Office P. 0 Box 1440 Orlando, Florida 32802 407 -
US Landfalling and North Atlantic Hurricanes
44 MONTHLY WEATHER REVIEW VOLUME 140 U.S. Landfalling and North Atlantic Hurricanes: Statistical Modeling of Their Frequencies and Ratios GABRIELE VILLARINI Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, and Willis Research Network, London, United Kingdom GABRIEL A. VECCHI NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey JAMES A. SMITH Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey (Manuscript received 10 March 2011, in final form 11 July 2011) ABSTRACT Time series of U.S. landfalling and North Atlantic hurricane counts and their ratios over the period 1878– 2008 are modeled using tropical Atlantic sea surface temperature (SST), tropical mean SST, the North At- lantic Oscillation (NAO), and the Southern Oscillation index (SOI). Two SST input datasets are employed to examine the uncertainties in the reconstructed SST data on the modeling results. Because of the likely un- dercount of recorded hurricanes in the earliest part of the record, both the uncorrected hurricane dataset (HURDAT) and a time series with a recently proposed undercount correction are considered. Modeling of the count data is performed using a conditional Poisson regression model, in which the rate of occurrence can depend linearly or nonlinearly on the climate indexes. Model selection is performed following a stepwise approach and using two penalty criteria. These results do not allow one to identify a single ‘‘best’’ model because of the different model configurations (different SST data, corrected versus uncorrected datasets, and penalty criteria). Despite the lack of an objectively identified unique final model, the authors recommend a set of models in which the parameter of the Poisson distribution depends linearly on tropical Atlantic and tropical mean SSTs. -
East Winter Garden Plan
EAST WINTER GARDEN PLAN 3.7.18 EAST WINTER GARDEN PLAN was created by: Mayor John Rees, District 5 Commissioner Dover, Kohl & Partners Victor Dover City Council Jason King Commissioner Lisa Bennett, District 1 Pamela Stacy Commissioner Bob Buchanan, District 2 Kenneth Garcia Commissioner Mark A. Maciel, District 3 Luiza Leite Commissioner Colin Sharman, District 4 Robert Piatkowski James Dougherty City Staff Michael Bollhoefer, City Manager Tanja Gerhartz, Economic Development Director Stephen Pash, Community Development Director Kelly Carson, Urban Designer Community Redevelopment Advisory Board Nick Asma Derek Blakeslee Tim Keating George Spigener Larry Cappleman Tara Moore Daniel Starks Donald Wingate ... and Hundreds of Winter Garden Citizens March 2018 EAST WINTER GARDEN PLAN TABLE OF CONTENTS Big Ideas 1 Background 2 Process 3 The Plan 4 Implementation 5 TABLE OF CONTENTS March 2018 big ideas 1 AN OPTIMISTIC MOMENT This report will help city leaders, the business community, non-profit organizations, and residents, ensure that change in East Winter Garden diversifies the neighborhood’s economy, increases employment opportunities, improves the health of residents, improves homeownership and housing conditions, and upgrades the quality of life. Five “Big Ideas” form the key recommendations of this plan. The five ideas (and many others) came from conversations held in East Winter Garden. Although specific details may change as the plan is implemented, the “Big Ideas” should remain intact. This section provides short summaries of the Big Ideas. The report then describes the public process that generated the goals of the plan, the opportunities and threats the community faces, and a detailed implementation strategy for making the plan a reality. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Downloaded 10/01/21 04:51 PM UTC JULY 2003 ANNUAL SUMMARY 1455
1454 MONTHLY WEATHER REVIEW VOLUME 131 ANNUAL SUMMARY Atlantic Hurricane Season of 2001 JOHN L. BEVEN II, STACY R. STEWART,MILES B. LAWRENCE,LIXION A. AVILA,JAMES L. FRANKLIN, AND RICHARD J. PASCH NOAA/NWS/Tropical Prediction Center/National Hurricane Center, Miami, Florida (Manuscript received 19 July 2002, in ®nal form 9 December 2002) ABSTRACT Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities to the 2000 season include overall activity much above climatological levels and most of the cyclones occurring over the open Atlantic north of 258N. The overall ``lateness'' of the season was notable, with 11 named storms, including all the hurricanes, forming after 1 September. There were no hurricane landfalls in the United States for the second year in a row. However, the season's tropical cyclones were responsible for 93 deaths, including 41 from Tropical Storm Allison in the United States, and 48 from Hurricanes Iris and Michelle in the Caribbean. 1. Overview of the 2001 season cycleÐsimultaneously exhibiting characteristics of both tropical and extratropical cyclones (Hebert 1973). The National Hurricane Center (NHC) tracked 15 No hurricanes struck the United States during 2001. tropical cyclones (TCs) that achieved tropical storm or The season thus joins the 2000, 1990, and 1951 seasons hurricane strength in the Atlantic basin during 2001 as years in which eight or more hurricanes occurred (Table 1). Nine of these became hurricanes and four without a U.S. -
Service Assessment Hurricane Irene, August
Service Assessment Hurricane Irene, August 21–30, 2011 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland Cover Photographs: Top Left - NOAA GOES 13 visible image of Hurricane Irene taken at 12:32 UTC (8:32 a.m. EDT) on August 27, 2011, as it was moving northward along the east coast. Map of total storm rainfall for Hurricane Irene (NCEP/HPC) overlaid with photos of Hurricane Irene’s impacts. Clockwise from top right: • Damage to bridge over the Pemigewasset River/East Branch in Lincoln, NH (NH DOT) • Trees across road and utility lines in Guilford, CT (CT DEP) • Damage to homes from storm surge at Cosey Beach, East Haven, CT (CT DEP) • Flooding of Delaware River closes Rt. 29 in Trenton, NJ (State of New Jersey, Office of the Governor) • Damage from storm surge on North Carolina’s Outer Banks (USGS) • Damage to home from an EF1 tornado in Lewes, DE (Sussex County, DE EOC) • River flooding on Schoharie Creek near Lexington, NY (USGS) • Flood damage to historic covered bridge and road in Quechee, VT (FEMA) ii Service Assessment Hurricane Irene, August 21–30, 2011 September 2012 National Oceanic and Atmospheric Administration Dr. Jane Lubchenco, Administrator National Weather Service Laura Furgione, Acting Assistant Administrator for Weather Services iii Preface On August 21-29, 2011, Hurricane Irene left a devastating imprint on the Caribbean and U.S. East Coast. The storm took the lives of more than 40 people, caused an estimated $6.5 billion in damages, unleashed major flooding, downed trees and power lines, and forced road closures, evacuations, and major rescue efforts. -
Evaluation of Storm Tide Measurements at Panama City Beach, FL 1993-2007
Evaluation of Storm Tide Measurements at Panama City Beach, FL 1993-2007 Prepared by Mark E. Leadon Beaches and Shores Resource Center Florida State University May 2009 Prepared for Florida Department of Environmental Protection Division of Water Resource Management Bureau of Beaches and Coastal Systems Evaluation of Storm Tide Measurements at Panama City Beach, FL 1993-2007 TABLE OF CONTENTS 1.0 Introduction .............................................................................................1 2.0 Tide Gage Data Measurements .............................................................. 1 2.1 Tide Gage Location and Information ..........................................2 2.2 Storm Tide Measurements and Evaluation ................................ 4 3.0 Conclusions and Recommendations .......................................................7 4.0 References ............................................................................................. 8 Evaluation of Storm Tide Measurements at Panama City Beach, FL 1993-2007 1.0 Introduction An evaluation of available Gulf of Mexico open coast tide gage data for the Florida Panhandle Region was performed in order to obtain storm tide hydrograph information. The measured hydrograph data was compiled and evaluated to assist in providing documented field data support for computer model-generated storm hydrographs. The primary intent for conducting this work was to provide field data to support model- generated storm tide hydrographs for high-frequency storm events for the Gulf shoreline -
Hurricane Surface Wind Model for Risk Management Lizabeth Marie Axe
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2003 Hurricane Surface Wind Model for Risk Management Lizabeth Marie Axe Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES HURRICANE SURFACE WIND MODEL FOR RISK MANAGEMENT By LIZABETH MARIE AXE A Thesis submitted to the Department of Meteorology in partial fulfillment of the requirements for the degree of Masters of Science Degree Awarded: Fall Semester, 2003 The members of the committee approve the thesis of Lizabeth Marie Axe defended on September 23, 2003. ____________________________________ T. N. Krishnamurti Professor Directing Thesis ____________________________________ Paul H. Ruscher Committee Member ____________________________________ Philip Cunningham Committee Member ____________________________________ Steven Cocke Committee Member The Office of Graduate Studies has verified and approved the above named committee members. ii To my parents whose enduring and insurmountable love, encouragement, and support made this study and my entire academic career possible. iii ACKNOWLEDGEMENTS First and foremost, I would like to thank God, for I am nothing without him. I give many thanks and appreciation to my major professor, Dr. T. N. Krishnamurti, for all of his support and encouragement. I would also like to thank my committee members, Dr. Paul H. Ruscher and Dr. Philip Cuningham, for their comments and suggestions. Thank you to everyone in the Dr. Krishnamurti’s lab for their assistance and advice, especially Dr. Steve Cocke for patience and the know-how, Brian Mackey for his never-ending help and advice, and Andy Schwartz for keeping the experience real.