<<

http://en.wikipedia.org/wiki/Eigenvector Eigenvalue, eigenvector and eigenspace

FromWikipedia,thefreeencyclopedia (RedirectedfromEigenvector)

In,an eigenvectorofatransformation[1]isa nonnullvectorwhosedirectionisunchangedbythattransformation. Thefactorbywhichthemagnitudeisscalediscalledthe eigenvalueofthatvector.(SeeFig.1.)Often,atransformationis completelydescribedbyitseigenvaluesandeigenvectors.An eigenspaceisaofeigenvectorswithacommoneigenvalue.

Theseconceptsplayamajorroleinseveralbranchesofbothpure andappliedmathematics—appearingprominentlyinlinear, functionalanalysis,andtoalesserextentinnonlinearsituations.

Itiscommontoprefixanynaturalnameforthesolutionwitheigen Fig.1.InthissheartransformationoftheMona insteadofsayingeigenvector.Forexample,eigenfunctionifthe Lisa,thepicturewasdeformedinsuchaway eigenvectorisafunction,eigenmodeiftheeigenvectorisaharmonic thatitscentralverticalaxis(redvector)was notmodified,butthevector(blue)has mode,eigenstateiftheeigenvectorisaquantumstate,andsoon changeddirection.Hencetheredvectorisan (e.g.theeigenfaceexamplebelow).Similarlyfortheeigenvalue,e.g. eigenvectorofthetransformationandtheblue eigenfrequencyiftheeigenvalueis(ordetermines)afrequency. vectorisnot.Sincetheredvectorwasneither stretchednorcompressed,itseigenvalueis1. Allvectorsalongthesameverticallinearealso eigenvectors,withthesameeigenvalue.They formtheeigenspaceforthiseigenvalue.

1 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector

Contents

1History 2Definitions 3Examples 4Eigenvalue 5Spectraltheorem 6Eigenvaluesandeigenvectorsofmatrices 6.1Computingeigenvaluesandeigenvectorsofmatrices 6.1.1Symboliccomputations 6.1.2Numericalcomputations 6.2Properties 6.2.1Algebraicmultiplicity 6.2.2Decompositiontheoremsforgeneralmatrices 6.2.3Someotherpropertiesofeigenvalues 6.3Conjugateeigenvector 6.4Generalizedeigenvalueproblem 6.5Entriesfroma 7Infinitedimensionalspaces 8Applications 9Notes 10References 11Externallinks

History

Nowadays,eigenvaluesareusuallyintroducedinthecontextoftheory.Historically,however,theyarosein thestudyofquadraticformsanddifferential.

Inthefirsthalfofthe18thcentury,JohannandDanielBernoulli,d'Alembert,andEulerencounteredeigenvalue problemswhenstudyingthemotionofarope,whichtheyconsideredtobeaweightlessstringloadedwithanumber ofmasses.LaplaceandLagrangecontinuedtheirworkinthesecondhalfofthecentury.Theyrealizedthatthe eigenvaluesarerelatedtothestabilityofthemotion.Theyalsousedeigenvaluemethodintheirstudyofthesolar system.[2]

Eulerhadalsostudiedtherotationalmotionofarigidbodyanddiscoveredtheimportanceoftheprincipalaxes.As Lagrangerealized,theprincipalaxesaretheeigenvectorsoftheinertiamatrix.[3]Intheearly19thcentury,Cauchy sawhowtheirworkcouldbeusedtoclassifythequadricsurfaces,andgeneralizedittoarbitrary.[4] Cauchyalsocoinedthetermracinecaractéristique(characteristicroot)forwhatisnowcalledeigenvalue;histerm survivesincharacteristicequation.[5]

FourierusedtheworkofLaplaceandLagrangetosolvetheheatequationbyseparationofvariablesinhisfamous 1822bookThéorieanalytiquedelachaleur.[6]SturmdevelopedFourier'sideasfurtherandhebroughtthemtothe attentionofCauchy,whocombinedthemwithhisownideasandarrivedatthefactthatsymmetricmatriceshave realeigenvalues.[4]ThiswasextendedbyHermitein1855towhatarenowcalledHermitianmatrices.[5]Aroundthe sametime,Brioschiprovedthattheeigenvaluesoforthogonalmatriceslieontheunitcircle,[4]andClebschfound thecorrespondingresultforskewsymmetricmatrices.[5]Finally,Weierstrassclarifiedanimportantaspectinthe

2 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector stabilitytheorystartedbyLaplacebyrealizingthatdefectivematricescancauseinstability.[4]

Inthemeantime,LiouvillehadstudiedsimilareigenvalueproblemsasSturm;thedisciplinethatgrewoutoftheir workisnowcalledSturmLiouvilletheory.[7]SchwarzstudiedthefirsteigenvalueofLaplace'sequationongeneral domainstowardstheendofthe19thcentury,whilePoincaréstudiedPoisson'sequationafewyearslater.[8]

Atthestartofthe20thcentury,Hilbertstudiedtheeigenvaluesofintegraloperatorsbyconsideringthemtobe infinitematrices.[9]HewasthefirsttousetheGermanwordeigentodenoteeigenvaluesandeigenvectorsin1904, thoughhemayhavebeenfollowingarelatedusagebyHelmholtz."Eigen"canbetranslatedas"own","peculiarto", "characteristic"or"individual"—emphasizinghowimportanteigenvaluesaretodefiningtheuniquenatureofa specifictransformation.Forsometime,thestandardterminEnglishwas"propervalue",butthemoredistinctive term"eigenvalue"isstandardtoday.[10]

Thefirstnumericalalgorithmforcomputingeigenvaluesandeigenvectorsappearedin1929,whenVonMises publishedthepowermethod.Oneofthemostpopularmethodstoday,theQRalgorithm,wasproposed independentlybyFrancisandKublanovskayain1961.[11]

Definitions

Seealso:Eigenplane

Transformationsofspace—suchastranslation(orshiftingtheorigin),,reflection,stretching,compression, oranycombinationofthese—maybevisualizedbytheeffecttheyproduceonvectors.Vectorscanbevisualisedas arrowspointingfromonepointtoanother.

Eigenvectorsoftransformationsarevectors[12]whichareeitherleftunaffectedorsimplymultipliedbya scalefactorafterthetransformation. Aneigenvector'seigenvalueisthescalefactorbywhichithasbeenmultiplied. Aneigenspaceisaspaceconsistingofalleigenvectorswhichhavethesameeigenvalue,alongwiththezero (null)vector,whichitselfisnotaneigenvector. Theprincipal eigenvectorofatransformationistheeigenvectorwiththelargestcorrespondingeigenvalue. Thegeometric multiplicityofaneigenvalueistheoftheassociatedeigenspace. Thespectrumofatransformationonfinitedimensionalvectorspacesisthesetofallitseigenvalues.

Forinstance,aneigenvectorofarotationinthreedimensionsisavectorlocatedwithintheaxisaboutwhichthe rotationisperformed.Thecorrespondingeigenvalueis1andthecorrespondingeigenspacecontainsallthevectors alongtheaxis.Asthisisaonedimensionalspace,itsgeometricmultiplicityisone.Thisistheonlyeigenvalueofthe spectrum(ofthisrotation)thatisarealnumber.

Examples

AstheEarthrotates,everyarrowpointingoutwardfromthecenteroftheEarthalsorotates,exceptthosearrows thatlieontheaxisofrotation.ConsiderthetransformationoftheEarthafteronehourofrotation:Anarrowfromthe centeroftheEarthtotheGeographicSouthPolewouldbeaneigenvectorofthistransformation,butanarrowfrom thecenteroftheEarthtoanywhereontheequatorwouldnotbeaneigenvector.Sincethearrowpointingatthe poleisnotstretchedbytherotationoftheEarth,itseigenvalueis1.

Anotherexampleisprovidedbyathinmetalsheetexpandinguniformlyaboutafixedpointinsuchawaythatthe distancesfromanypointofthesheettothefixedpointaredoubled.Thisexpansionisatransformationwith eigenvalue2.Everyvectorfromthefixedpointtoapointonthesheetisaneigenvector,andtheeigenspaceisthe setofallthesevectors.

3 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector However,threedimensionalgeometricspaceisnottheonly.Forexample,considerastressedropefixedatbothends,like thevibratingstringsofastringinstrument(Fig.2).Thedistancesof atomsofthevibratingropefromtheirpositionswhentheropeisat restcanbeseenasthecomponentsofavectorinaspacewithas Fig.2.Astandingwaveinaropefixedatits boundariesisanexampleofaneigenvector,or manydimensionsasthereareatomsintherope. moreprecisely,aneigenfunctionofthe transformationgivingtheacceleration.Astime Assumetheropeisacontinuousmedium.Ifoneconsidersthe passes,thestandingwaveisscaledbya equationfortheaccelerationateverypointoftherope,its sinusoidaloscillationwhosefrequencyis eigenvectors,oreigenfunctions,arethestandingwaves.The determinedbytheeigenvalue,butitsoverall standingwavescorrespondtoparticularoscillationsoftheropesuch shapeisnotmodified. thattheaccelerationoftheropeissimplyitsshapescaledbya factor—thisfactor,theeigenvalue,turnsouttobe−ω2whereωistheangularfrequencyoftheoscillation.Each componentofthevectorassociatedwiththeropeismultipliedbyatimedependentfactorsin(ωt).Ifdampingis considered,theamplitudeofthisoscillationdecreasesuntiltheropestopsoscillating,correspondingtoacomplex ω.Onecanthenassociatealifetimewiththeimaginarypartofω,andrelatetheconceptofaneigenvectortothe conceptofresonance.Withoutdamping,thefactthattheaccelerationoperator(assumingauniformdensity)is Hermitianleadstoseveralimportantproperties,suchasthatthestandingwavepatternsareorthogonalfunctions.

Eigenvalue equation

Mathematically,vλisaneigenvectorandλthecorrespondingeigenvalueofatransformationTiftheequation:

istrue,whereT(vλ)isthevectorobtainedwhenapplyingthetransformationTtovλ.

SupposeTisalineartransformation(whichmeansthat forallscalarsa,b,

andvectorsv,w).Considerainthatvectorspace.Then,Tandvλcanberepresentedrelativetothatbasisby amatrixAT—atwodimensionalarray—andrespectivelyacolumnvectorvλ—aonedimensionalverticalarray.The eigenvalueequationinitsmatrixrepresentationiswritten

wherethejuxtapositionismatrixmultiplication.SinceinthiscircumstancethetransformationTanditsmatrix representationATareequivalent,wecanoftenusejustTforthematrixrepresentationandthetransformation.This isequivalenttoasetofnlinearequations,wherenisthenumberofbasisvectorsinthebasisset.Inthisequation boththeeigenvalueλandthencomponentsofvλareunknowns.

However,itissometimesunnaturalorevenimpossibletowritedowntheeigenvalueequationinamatrixform.This occursforinstancewhenthevectorspaceisinfinitedimensional,forexample,inthecaseoftheropeabove. DependingonthenatureofthetransformationTandthespacetowhichitapplies,itcanbeadvantageousto representtheeigenvalueequationasasetofdifferentialequations.IfTisadifferentialoperator,theeigenvectors arecommonlycalledeigenfunctionsofthedifferentialoperatorrepresentingT.Forexample,differentiationitselfis alineartransformationsince

(f(t)andg(t)aredifferentiablefunctions,andaandbareconstants).

Considerdifferentiationwithrespecttot.Itseigenfunctionsh(t)obeytheeigenvalueequation:

4 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector

,

whereλistheeigenvalueassociatedwiththefunction.Suchafunctionoftimeisconstantifλ=0,grows proportionallytoitselfifλispositive,anddecaysproportionallytoitselfifλisnegative.Forexample,anidealized populationofrabbitsbreedsfasterthemorerabbitsthereare,andthussatisfiestheequationwithapositive lambda.

Thesolutiontotheeigenvalueequationisg(t)=exp(λt),theexponentialfunction;thusthatfunctionisan eigenfunctionofthedifferentialoperatord/dtwiththeeigenvalueλ.Ifλisnegative,wecalltheevolutionofgan exponentialdecay;ifitispositive,anexponentialgrowth.Thevalueofλcanbeanycomplexnumber.Thespectrum ofd/dtisthereforethewholecomplex.Inthisexamplethevectorspaceinwhichtheoperatord/dtactsisthe spaceofthedifferentiablefunctionsofonevariable.Thisspacehasaninfinitedimension(becauseitisnotpossible toexpresseverydifferentiablefunctionasalinearcombinationofafinitenumberofbasisfunctions).However,the eigenspaceassociatedwithanygiveneigenvalueλisonedimensional.Itisthesetofallfunctionsg(t)=Aexp(λt), whereAisanarbitraryconstant,theinitialpopulationatt=0.

Spectral theorem

Formoredetailsonthistopic,seespectraltheorem.

Accordingtothespectraltheorem,theeigenvaluesandeigenvectorscharacterizealineartransformationina uniqueway.Initssimplestversion,thespectraltheoremstatesthat,underpreciseconditions,alinear transformationofavector canbeexpressedasthelinearcombinationoftheeigenvectors.Thecoefficients characterizingthelinearcombinationareequaltotheeigenvaluestimestheproduct(ordotproduct)ofthe eigenvectorswiththevector .Mathematically,itcanbewrittenas:

where and standfortheeigenvectorsandeigenvaluesof .Thesimplestcaseinwhich thetheoremisvalidisthecasewherethelineartransformationisgivenbyarealsymmetricmatrixorcomplex Hermitianmatrix;moregenerallythetheoremholdsforallnormalmatrices.

Ifonedefinesthenthpowerofatransformationastheresultofapplyingitntimesinsuccession,onecanalso defineoftransformations.AmoregeneralversionofthetheoremisthatanyPof is equalto:

Thetheoremcanbeextendedtootherfunctionsoftransformationslikeanalyticfunctions,themostgeneralcase beingBorelfunctions.

Eigenvalues and eigenvectors of matrices

Computing eigenvalues and eigenvectors of matrices

Supposethatwewanttocomputetheeigenvaluesofagivenmatrix.Ifthematrixissmall,wecancomputethem symbolicallyusingthecharacteristicpolynomial.However,thisisoftenimpossibleforlargermatrices,inwhichcase wemustuseanumericalmethod.

Symbolic computations

Formoredetailsonthistopic,seesymboliccomputationofmatrixeigenvalues. 5 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector Findingeigenvalues

Animportanttoolfordescribingeigenvaluesofsquarematricesisthecharacteristicpolynomial:sayingthatλisan eigenvalueofAisequivalenttostatingthatthesystemoflinearequations(A–λI)v=0(whereIisthe)hasanonzerosolutionv(aneigenvector),andsoitisequivalenttothe:

Thefunctionp(λ)=det(A–λI)isapolynomialinλsincearedefinedassumsofproducts.Thisisthe characteristic polynomialofA:theeigenvaluesofamatrixarethezerosofitscharacteristicpolynomial.

AlltheeigenvaluesofamatrixAcanbecomputedbysolvingtheequationpA(λ)=0.IfAisann×nmatrix,thenpA hasdegreenandAcanthereforehaveatmostneigenvalues.Conversely,thefundamentaltheoremofalgebra saysthatthisequationhasexactlynroots(zeroes),countedwithmultiplicity.Allrealpolynomialsofodddegree havearealnumberasaroot,soforoddn,everyrealmatrixhasatleastonerealeigenvalue.Inthecaseofareal matrix,forevenandoddn,thenonrealeigenvaluescomeinconjugatepairs.

Findingeigenvectors

Oncetheeigenvaluesλareknown,theeigenvectorscanthenbefoundbysolving:

wherevisinthenullspaceofA−λI

Anexampleofamatrixwithnorealeigenvaluesisthe90degreeclockwiserotation:

whosecharacteristicpolynomialisλ2+1andsoitseigenvaluesarethepairofcomplexconjugatesi,i.The associatedeigenvectorsarealsonotreal.

Numerical computations

Formoredetailsonthistopic,seeeigenvaluealgorithm.

Inpractice,eigenvaluesoflargematricesarenotcomputedusingthecharacteristicpolynomial.Computingthe polynomialbecomesexpensiveinitself,andexact(symbolic)rootsofahighdegreepolynomialcanbedifficultto computeandexpress:theAbel–Ruffinitheoremimpliesthattherootsofhighdegree(5andabove)polynomials cannotbeexpressedsimplyusingnthroots.Effectivenumericalalgorithmsforapproximatingrootsofpolynomials exist,butsmallerrorsintheeigenvaluescanleadtolargeerrorsintheeigenvectors.Therefore,generalalgorithms tofindeigenvectorsandeigenvalues,areiterative.Theeasiestmethodisthepowermethod:arandomvectorvis chosenandasequenceofunitvectorsiscomputedas

, , ,...

Thissequencewillalmostalwaysconvergetoaneigenvectorcorrespondingtotheeigenvalueofgreatest magnitude.Thisalgorithmiseasy,butnotveryusefulbyitself.However,popularmethodssuchastheQR algorithmarebasedonit.

Properties

6 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector Algebraic multiplicity

Thealgebraic multiplicityofaneigenvalueλofAistheorderofλasazeroofthecharacteristicpolynomialofA; inotherwords,ifλisonerootofthepolynomial,itisthenumberoffactors(t−λ)inthecharacteristicpolynomial afterfactorization.Ann×nmatrixhasneigenvalues,countedaccordingtotheiralgebraicmultiplicity,becauseits characteristicpolynomialhasdegreen.

Aneigenvalueofalgebraicmultiplicity1iscalleda"simpleeigenvalue".

Inanarticleonmatrixtheory,astatementliketheonebelowmightbeencountered:

"theeigenvaluesofamatrixAare4,4,3,3,3,2,2,1,"

meaningthatthealgebraicmultiplicityof4istwo,of3isthree,of2istwoandof1isone.Thisstyleisused becausealgebraicmultiplicityisthekeytomanymathematicalproofsinmatrixtheory.

Recallthatabovewedefinedthegeometricmultiplicityofaneigenvectortobethedimensionoftheassociated eigenspace,thenullspaceofλI−A.Thealgebraicmultiplicitycanalsobethoughtofasadimension:itisthe dimensionoftheassociatedgeneralizedeigenspace(1stsense),whichisthenullspaceofthematrix(λI−A)kfor anysufficientlylargek.Thatis,itisthespaceofgeneralizedeigenvectors(1stsense),whereaisanyvectorwhicheventuallybecomes0ifλI−Aisappliedtoitenoughtimessuccessively.Any eigenvectorisageneralizedeigenvector,andsoeacheigenspaceiscontainedintheassociatedgeneralized eigenspace.Thisprovidesaneasyproofthatthegeometricmultiplicityisalwayslessthanorequaltothealgebraic multiplicity.Thefirstsenseshouldnottobeconfusedwithgeneralizedeigenvalueproblemasstatedbelow.

Forexample:

Ithasonlyoneeigenvalue,namelyλ=1.Thecharacteristicpolynomialis(λ−1)2,sothiseigenvaluehasalgebraic multiplicity2.However,theassociatedeigenspaceistheaxisusuallycalledthexaxis,spannedbytheunitvector

,sothegeometricmultiplicityisonly1.

GeneralizedeigenvectorscanbeusedtocalculatetheJordannormalformofamatrix(seediscussionbelow).The factthatJordanblocksingeneralarenotdiagonalbutnilpotentisdirectlyrelatedtothedistinctionbetween eigenvectorsandgeneralizedeigenvectors.

Decomposition theorems for general matrices

Thedecomposition theoremisaversionofthespectraltheoremintheparticularcaseofmatrices.Thistheoremis usuallyintroducedintermsofcoordinatetransformation.IfUisaninvertiblematrix,itcanbeseenasa transformationfromonecoordinatesystemtoanother,withthecolumnsofUbeingthecomponentsofthenew basisvectorswithintheoldbasisset.Inthisnewsystemthecoordinatesofthevectorvarelabeledv'.Thelatterare obtainedfromthecoordinatesvintheoriginalcoordinatesystembytherelationv'=Uvand,theotherwayaround, wehavev=U−1v'.Applyingsuccessivelyv'=Uv,w'=UwandU−1U=I,totherelationAv=wdefiningtheprovidesA'v'=w'withA'=UAU−1,therepresentationofAinthenewbasis.Inthissituation,the matricesAandA'aresaidtobesimilar.

Thedecompositiontheoremstatesthat,ifonechoosesascolumnsofU−1nlinearlyindependenteigenvectorsof

7 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector A,thenewmatrixA'=UAU−1isdiagonalanditsdiagonalelementsaretheeigenvaluesofA.Ifthisispossiblethe matrixAisdiagonalizable.AnexampleofnondiagonalizablematrixisgivenbythematrixAabove.Thereare severalgeneralizationsofthisdecompositionwhichcancopewiththenondiagonalizablecase,suitedfordifferent purposes:

theSchurtriangularformstatesthatanymatrixisunitarilyequivalenttoanuppertriangularone; thesingularvaluedecomposition,A=UΣV*whereΣisdiagonalwithUandVunitarymatrices.Thediagonal entriesofA=UΣV*arenonnegative;theyarecalledthesingularvaluesofA.Thiscanbedonefor nonsquarematricesaswell; theJordannormalform,whereA=XΛX−1whereΛisnotdiagonalbutblockdiagonal.Thenumberandthe sizesoftheJordanblocksaredictatedbythegeometricandalgebraicmultiplicitiesoftheeigenvalues.The Jordandecompositionisafundamentalresult.Onemightgleanfromitimmediatelythatasquarematrixis describedcompletelybyitseigenvalues,includingmultiplicity,uptosimilarity.Thisshowsmathematicallythe importantroleplayedbyeigenvaluesinthestudyofmatrices; asanimmediateconsequenceofJordandecomposition,anymatrixAcanbewrittenuniquelyasA=S+N whereSisdiagonalizable,Nisnilpotent(i.e.,suchthatNq=0forsomeq),andScommuteswithN(SN=NS).

Some other properties of eigenvalues

Thespectrumisundersimilaritytransformations:thematricesAandP1APhavethesameeigenvaluesfor anymatrixAandanyinvertiblematrixP.Thespectrumisalsoinvariantundertransposition:thematricesAandAT havethesameeigenvalues.

Sincealineartransformationonfinitedimensionalspacesisbijectiveiffitisinjective,amatrixisinvertibleifand onlyifzeroisnotaneigenvalueofthematrix.

SomemoreconsequencesoftheJordandecompositionareasfollows:

amatrixisdiagonalizableifandonlyifthealgebraicandgeometricmultiplicitiescoincideforallits eigenvalues.Inparticular,ann×nmatrixwhichhasndifferenteigenvaluesisalwaysdiagonalizable; thevectorspaceonwhichthematrixactscanbeviewedasadirectsumofitsinvariantsubspacesspanbyits generalizedeigenvectors.Eachblockonthediagonalcorrespondstoasubspaceinthedirectsum.Whena blockisdiagonal,itsinvariantsubspaceisaneigenspace.Otherwiseitisageneralizedeigenspace,defined above; Sincethetrace,orthesumoftheelementsonthemaindiagonalofamatrix,ispreservedbyunitary equivalence,theJordannormalformtellsusthatitisequaltothesumoftheeigenvalues; Similarly,becausetheeigenvaluesofatriangularmatrixaretheentriesonthemaindiagonal,thedeterminant equalstheproductoftheeigenvalues(countedaccordingtoalgebraicmultiplicity).

Thelocationofthespectrumforafewsubclassesofnormalmatricesare:

AlleigenvaluesofaHermitianmatrix(A=A*)arereal.Furthermore,alleigenvaluesofapositive(v*Av>0forallvectorsv)arepositive; AlleigenvaluesofaskewHermitianmatrix(A=−A*)arepurelyimaginary; Alleigenvaluesofaunitarymatrix(A1=A*)haveabsolutevalueone;

SupposethatAisanm×nmatrix,withm≤n,andthatBisann×mmatrix.ThenBAhasthesameeigenvaluesas ABplusn−meigenvaluesequaltozero.

Eachmatrixcanbeassignedanoperator,whichdependsonthenormofitsdomain.Theoperatornormofa

8 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector squarematrixisanupperboundforthemoduliofitseigenvalues,andthusalsoforitsspectralradius.Thisnormis directlyrelatedtothepowermethodforcalculatingtheeigenvalueoflargestmodulusgivenabove.Fornormal matrices,theoperatornorminducedbytheEuclideannormisthelargestmoduliamongitseigenvalues.

Conjugate eigenvector

Aconjugate eigenvectororconeigenvectorisavectorsentaftertransformationtoascalarmultipleofits conjugate,wherethescalariscalledtheconjugate eigenvalueorconeigenvalueofthelineartransformation.The coneigenvectorsandconeigenvaluesrepresentessentiallythesameinformationandmeaningastheregular eigenvectorsandeigenvalues,butarisewhenanalternativecoordinatesystemisused.Thecorresponding equationis

Forexample,incoherentelectromagneticscatteringtheory,thelineartransformationArepresentstheaction performedbythescatteringobject,andtheeigenvectorsrepresentpolarizationstatesoftheelectromagneticwave. Inoptics,thecoordinatesystemisdefinedfromthewave'sviewpoint,knownastheForwardScatteringAlignment (FSA),andgivesrisetoaregulareigenvalueequation,whereasinradar,thecoordinatesystemisdefinedfromthe radar'sviewpoint,knownastheBackScatteringAlignment(BSA),andgivesrisetoaconeigenvalueequation.

Generalized eigenvalue problem

Ageneralized eigenvalue problem(2ndsense)isoftheform

whereAandBarematrices.Thegeneralized eigenvalues(2ndsense)λcanbeobtainedbysolvingtheequation

ThesetofmatricesoftheformA−λB,whereλisacomplexnumber,iscalledapencil.IfBisinvertible,thenthe originalproblemcanbewrittenintheform

whichisastandardeigenvalueproblem.However,inmostsituationsitispreferablenottoperformtheinversion, andsolvethegeneralizedeigenvalueproblemasstatedoriginally.

Anexampleisprovidedbythemolecularorbitalapplicationbelow.

Entries from a ring

InthecaseofasquarematrixAwithentriesinaring,λiscalledaright eigenvalueifthereexistsanonzero columnvectorxsuchthatAx=λx,oraleft eigenvalueifthereexistsanonzerorowvectorysuchthatyA=yλ.

Iftheringiscommutative,thelefteigenvaluesareequaltotherighteigenvaluesandarejustcalledeigenvalues.If not,forinstanceiftheringisthesetof,theymaybedifferent.

Infinite-dimensional spaces

9 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector Ifthevectorspaceisinfinitedimensional,thenotionofeigenvaluescanbe generalizedtotheconceptofspectrum.Thespectrumisthesetofscalarsλ forwhich, ,isnotdefined;thatis,suchthatT−λhasno boundedinverse.

ClearlyifλisaneigenvalueofT,λisinthespectrumofT.Ingeneral,the converseisnottrue.ThereareoperatorsonHilbertorBanachspaces whichhavenoeigenvectorsatall.Thiscanbeseeninthefollowing example.ThebilateralshiftontheHilbertspace (thespaceofall sequencesofscalars suchthat converges)hasno eigenvaluebuthasspectralvalues.

Ininfinitedimensionalspaces,thespectrumofaboundedoperatoris alwaysnonempty.Thisisalsotrueforanunboundedselfadjointoperator. Fig.3.Absorptionspectrum(cross Viaitsspectralmeasures,thespectrumofanyselfadjointoperator, section)ofatomicChlorine.Thesharp boundedorotherwise,canbedecomposedintoabsolutelycontinuous,pure linesobtainedintheorycorrespondto point,andsingularparts.(SeeDecompositionofspectrum.) thediscretespectrum(Rydbergseries) oftheHamiltonian;thebroadstructure Theexponentialgrowthordecayprovidesanexampleofacontinuous ontherightisassociatedwiththe spectrum,asdoesthevibratingstringexampleillustratedabove.The continuousspectrum(ionization).The hydrogenatomisanexamplewherebothtypesofspectraappear.The correspondingexperimentalresults havebeenobtainedbymeasuringthe boundstatesofthehydrogenatomcorrespondtothediscretepartofthe intensityofXraysabsorbedbyagasof spectrumwhiletheionizationprocessesaredescribedbythecontinuous atomsasafunctionoftheincident part.Fig.3exemplifiesthisconceptinthecaseoftheChlorineatom. photonenergyineV.[13] Applications

Schrödingerequation

10 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector Anexampleofaneigenvalueequationwherethetransformation is representedintermsofadifferentialoperatoristhetimeindependent Schrödingerequationinquantummechanics:

whereH,theHamiltonian,isasecondorderdifferentialoperatorand ΨE,thewavefunction,isoneofitseigenfunctionscorrespondingto theeigenvalueE,interpretedasitsenergy.

However,inthecasewhereoneisinterestedonlyintheboundstate solutionsoftheSchrödingerequation,onelooksforΨEwithinthe spaceofsquareintegrablefunctions.Sincethisspaceisawithawelldefinedscalarproduct,onecanintroduceabasis setinwhichΨEandHcanberepresentedasaonedimensional Fig.4.Thewavefunctionsassociatedwiththe arrayandamatrixrespectively.Thisallowsonetorepresentthe boundstatesofanelectroninahydrogenatom canbeseenastheeigenvectorsofthe Schrödingerequationinamatrixform.(Fig.4presentsthelowest hydrogenatomHamiltonianaswellasofthe eigenfunctionsoftheHydrogenatomHamiltonian.) angularmomentumoperator.Theyare associatedwitheigenvaluesinterpretedas TheDiracnotationisoftenusedinthiscontext.Avector,which theirenergies(increasingdownward: representsastateofthesystem,intheHilbertspaceofsquare n=1,2,3,...)andangularmomentum(increasing integrablefunctionsisrepresentedby .Inthisnotation,the across:s,p,d,...).Theillustrationshowsthe squareoftheabsolutevalueofthe Schrödingerequationis: wavefunctions.Brighterareascorrespondto higherprobabilitydensityforaposition measurement.Thecenterofeachfigureisthe atomicnucleus,aproton. where isaneigenstateofH.Itisaselfadjointoperator,the infinitedimensionalanalogofHermitianmatrices(seeObservable). Asinthematrixcase,intheequationabove isunderstoodtobethevectorobtainedbyapplicationofthe transformationHto .

Molecularorbitals

Inquantummechanics,andinparticularinatomicandmolecularphysics,withintheHartreeFocktheory,theatomic andmolecularorbitalscanbedefinedbytheeigenvectorsoftheFockoperator.Thecorrespondingeigenvaluesare interpretedasionizationpotentialsviaKoopmans'theorem.Inthiscase,thetermeigenvectorisusedina somewhatmoregeneralmeaning,sincetheFockoperatorisexplicitlydependentontheorbitalsandtheir eigenvalues.Ifonewantstounderlinethisaspectonespeaksofimpliciteigenvalueequation.Suchequationsare usuallysolvedbyaniterationprocedure,calledinthiscaseselfconsistentmethod.Inquantumchemistry,one oftenrepresentstheHartreeFockequationinanonorthogonalbasisset.Thisparticularrepresentationisa generalizedeigenvalueproblemcalledRoothaanequations.

Factoranalysis

Infactoranalysis,theeigenvectorsofacovariancematrixcorrespondtofactors,andeigenvaluestofactorloadings. Factoranalysisisastatisticaltechniqueusedinthesocialsciencesandinmarketing,productmanagement, operationsresearch,andotherappliedsciencesthatdealwithlargequantitiesofdata.Theobjectiveistoexplain mostofthevariabilityamonganumberofobservablerandomvariablesintermsofasmallernumberof unobservablerandomvariablescalledfactors.Theobservablerandomvariablesaremodeledaslinear combinationsofthefactors,plus"error"terms.

11 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector Eigenfaces

Inimageprocessing,processedimagesoffacescanbeseenasvectorswhose componentsarethebrightnessesofeachpixel.Thedimensionofthisvector spaceisthenumberofpixels.Theeigenvectorsofthecovariancematrix associatedtoalargesetofnormalizedpicturesoffacesarecalledeigenfaces. Theyareveryusefulforexpressinganyfaceimageasalinearcombinationof someofthem.Eigenfacesprovideameansofapplyingdatacompressionto facesforidentificationpurposes.

Tensorofinertia

Inmechanics,theeigenvectorsoftheinertiadefinetheprincipalaxesofa Fig.5.Eigenfacesasexamplesof rigidbody.Thetensorofinertiaisakeyquantityrequiredinordertodetermine eigenvectors therotationofarigidbodyarounditscenterofmass.

Stresstensor

Insolidmechanics,thestresstensorissymmetricandsocanbedecomposedintoadiagonaltensorwiththe eigenvaluesonthediagonalandeigenvectorsasabasis.Becauseitisdiagonal,inthisorientation,thestress tensorhasnoshearcomponents;thecomponentsitdoeshavearetheprincipalcomponents.

Eigenvaluesofagraph

Inspectralgraphtheory,aneigenvalueofagraphisdefinedasaneigenvalueofthegraph'sadjacencymatrixA,or (increasingly)ofthegraph'sLaplacianmatrixI−T−1/2AT−1/2,whereTisadiagonalmatrixholdingthedegree ofeachvertex,andinT−1/2,0issubstitutedfor0−1/2.Theprincipaleigenvectorofagraphisusedtomeasure thecentralityofitsvertices.AnexampleisGoogle'sPageRankalgorithm.Theprincipaleigenvectorofamodified adjacencymatrixofthewwwgraphgivesthepageranksasitscomponents.Thetwoeigenvectorswithlargest positiveeigenvaluescanalsobeusedasxandycoordinatesofverticesindrawingthegraphviaspectrallayout methods.

Notes

1. ^Inthiscontext,onlylineartransformationsfromavectorspacetoitselfareconsidered. 2. ^SeeHawkins(1975),§2;Kline(1972),pp.807+808. 3. ^SeeHawkins(1975),§2. a b c d 4. ^ SeeHawkins(1975),§3. a b c 5. ^ SeeKline(1972),pp.807+808. 6. ^SeeKline(1972),p.673. 7. ^SeeKline(1972),pp.715+716. 8. ^SeeKline(1972),pp.706+707. 9. ^SeeKline(1972),p.1063. 10. ^SeeAldrich(2006). 11. ^SeeGolubandVanLoan(1996),§7.3;Meyer(2000),§7.3. 12. ^Sincealllineartransformationsleavethezerovectorunchanged,itisnotconsideredaneigenvector. 13. ^T.WGorczyca,AugerDecayofthePhotoexcitedInnerShellRydbergSeriesinNeon,Chlorine,andArgon, Abstractsofthe18thInternationalConferenceonXrayandInnerShellProcesses,Chicago,August2327 (1999).

References

12 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector Abdi,H."[1](http://www.utdallas.edu/~herve/AbdiEVD2007pretty.pdf)((2007).Eigendecomposition: eigenvaluesandeigenvecteurs.InN.J.Salkind(Ed.):EncyclopediaofMeasurementand.Thousand Oaks(CA):Sage.". JohnAldrich,Eigenvalue,eigenfunction,eigenvector,andrelatedterms.InJeffMiller(Editor),EarliestKnown UsesofSomeoftheWordsofMathematics(http://members.aol.com/jeff570/e.html),lastupdated7August 2006,accessed22August2006. ClaudeCohenTannoudji,QuantumMechanics,Wiley(1977).ISBN0471164321.(ChapterII.The mathematicaltoolsofquantummechanics.) JohnB.FraleighandRaymondA.Beauregard,LinearAlgebra(3rdedition),AddisonWesleyPublishing Company(1995).ISBN0201839997(internationaledition). GeneH.GolubandCharlesF.vanLoan,MatrixComputations(3rdedition),JohnHopkinsUniversityPress, Baltimore,1996.ISBN9780801854149. T.Hawkins,Cauchyandthespectraltheoryofmatrices,HistoriaMathematica,vol.2,pp.1–29,1975. RogerA.HornandCharlesR.Johnson,MatrixAnalysis,CambridgeUniversityPress,1985.ISBN 0521305861(hardback),ISBN0521386322(paperback). MorrisKline,Mathematicalthoughtfromancienttomoderntimes,OxfordUniversityPress,1972.ISBN 0195014960. CarlD.Meyer,MatrixAnalysisandAppliedLinearAlgebra,SocietyforIndustrialandAppliedMathematics (SIAM),Philadelphia,2000.ISBN9780898714548. Valentin,D.,Abdi,H,Edelman,B.,O'TooleA.."[2](http://www.utdallas.edu/~herve/abdi.vaeo97.pdf)(1997). PrincipalComponentandNeuralNetworkAnalysesofFaceImages:WhatCanBeGeneralizedinGender Classification?JournalofMathematicalPsychology,41,398412.".

External links

VideosofMITLinearAlgebraCourse,spring2005 Wikibookshasabookonthetopic (http://ocw.mit.edu/OcwWeb/Mathematics/1806Spring2005/VideoLectures/index.htm)of SeeLectureEigenvaluesandEigenvectors Algebra/Eigenvaluesand MathWorld:Eigenvector eigenvectors (http://mathworld.wolfram.com/Eigenvector.html) ARPACK(http://www.caam.rice.edu/software/ARPACK/)isacollectionofFORTRANsubroutinesforsolving largescaleeigenvalueproblems Eigenvalue(ofamatrix)(http://planetmath.org/?op=getobj&from=objects&id=4397)onPlanetMath OnlinecalculatorforEigenvaluesandEigenvectors (http://www.arndtbruenner.de/mathe/scripts/engl_eigenwert.htm) OnlineMatrixCalculator(http://www.bluebit.gr/matrixcalculator/)Calculateseigenvalues,eigenvectorsand otherdecompositionsofmatricesonline VanderplaatsResearchandDevelopment(http://www.vrand.com)ProvidestheSMS(http://www.vrand.com) eigenvaluesolverforStructuralFiniteElement.ThesolverisintheGENESIS (http://www.vrand.com/Genesis.html)programaswellasothercommercialprograms.SMScanbeeasilyuse withMSC.NastranorNX/NastranviaDMAPs. WhatareEigenValues?(http://www.physlink.com/education/AskExperts/ae520.cfm)fromPhysLink.com's "AsktheExperts"

Retrievedfrom"http://en.wikipedia.org/wiki/Eigenvalue%2C_eigenvector_and_eigenspace"

Categories:Abstractalgebra|Linearalgebra|Singularvaluedecomposition|Germanloanwords

Thispagewaslastmodified09:54,14October2006. AlltextisavailableunderthetermsoftheGNUFreeDocumentationLicense.(SeeCopyrightsfordetails.) 13 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector Wikipedia®isaregisteredtrademarkoftheWikimediaFoundation,Inc.

14 of 14 16/Oct/06 5:01 PM