Eigenvalue, Eigenvector and Eigenspace

Eigenvalue, Eigenvector and Eigenspace

http://en.wikipedia.org/wiki/Eigenvector Eigenvalue, eigenvector and eigenspace FromWikipedia,thefreeencyclopedia (RedirectedfromEigenvector) Inmathematics,an eigenvector ofatransformation[1]isa nonnull vectorwhosedirectionisunchangedbythattransformation. Thefactorbywhichthemagnitudeisscalediscalledthe eigenvalue ofthatvector.(SeeFig.1.)Often,atransformationis completelydescribedbyitseigenvaluesandeigenvectors.An eigenspaceisasetofeigenvectorswithacommoneigenvalue. Theseconceptsplayamajorroleinseveralbranchesofbothpure andappliedmathematics—appearingprominentlyinlinearalgebra, functionalanalysis,andtoalesserextentinnonlinearsituations. Itiscommontoprefixanynaturalnameforthesolutionwitheigen Fig.1.InthissheartransformationoftheMona insteadofsayingeigenvector.Forexample,eigenfunctionifthe Lisa,thepicturewasdeformedinsuchaway eigenvectorisafunction,eigenmodeiftheeigenvectorisaharmonic thatitscentralverticalaxis(redvector)was notmodified,butthediagonalvector(blue)has mode,eigenstateiftheeigenvectorisaquantumstate,andsoon changeddirection.Hencetheredvectorisan (e.g.theeigenfaceexamplebelow).Similarlyfortheeigenvalue,e.g. eigenvectorofthetransformationandtheblue eigenfrequencyiftheeigenvalueis(ordetermines)afrequency. vectorisnot.Sincetheredvectorwasneither stretchednorcompressed,itseigenvalueis1. Allvectorsalongthesameverticallinearealso eigenvectors,withthesameeigenvalue.They formtheeigenspaceforthiseigenvalue. 1 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector Contents 1 History 2 Definitions 3 Examples 4 Eigenvalueequation 5 Spectraltheorem 6 Eigenvaluesandeigenvectorsofmatrices 6.1 Computingeigenvaluesandeigenvectorsofmatrices 6.1.1 Symboliccomputations 6.1.2 Numericalcomputations 6.2 Properties 6.2.1 Algebraicmultiplicity 6.2.2 Decompositiontheoremsforgeneralmatrices 6.2.3 Someotherpropertiesofeigenvalues 6.3 Conjugateeigenvector 6.4 Generalizedeigenvalueproblem 6.5 Entriesfromaring 7 Infinitedimensionalspaces 8 Applications 9 Notes 10 References 11 Externallinks History Nowadays,eigenvaluesareusuallyintroducedinthecontextofmatrixtheory.Historically,however,theyarosein thestudyofquadraticformsanddifferentialequations. Inthefirsthalfofthe18thcentury,JohannandDanielBernoulli,d'Alembert,andEulerencounteredeigenvalue problemswhenstudyingthemotionofarope,whichtheyconsideredtobeaweightlessstringloadedwithanumber ofmasses.LaplaceandLagrangecontinuedtheirworkinthesecondhalfofthecentury.Theyrealizedthatthe eigenvaluesarerelatedtothestabilityofthemotion.Theyalsousedeigenvaluemethodintheirstudyofthesolar system.[2] Eulerhadalsostudiedtherotationalmotionofarigidbodyanddiscoveredtheimportanceoftheprincipalaxes.As Lagrangerealized,theprincipalaxesaretheeigenvectorsoftheinertiamatrix.[3]Intheearly19thcentury,Cauchy sawhowtheirworkcouldbeusedtoclassifythequadricsurfaces,andgeneralizedittoarbitrarydimensions.[4] Cauchyalsocoinedthetermracinecaractéristique(characteristicroot)forwhatisnowcalledeigenvalue;histerm survivesincharacteristicequation.[5] FourierusedtheworkofLaplaceandLagrangetosolvetheheatequationbyseparationofvariablesinhisfamous 1822bookThéorieanalytiquedelachaleur.[6] SturmdevelopedFourier'sideasfurtherandhebroughtthemtothe attentionofCauchy,whocombinedthemwithhisownideasandarrivedatthefactthatsymmetricmatriceshave realeigenvalues.[4]ThiswasextendedbyHermitein1855towhatarenowcalledHermitianmatrices.[5]Aroundthe sametime,Brioschiprovedthattheeigenvaluesoforthogonalmatriceslieontheunitcircle,[4]andClebschfound thecorrespondingresultforskewsymmetricmatrices.[5]Finally,Weierstrassclarifiedanimportantaspectinthe 2 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector stabilitytheorystartedbyLaplacebyrealizingthatdefectivematricescancauseinstability.[4] Inthemeantime,LiouvillehadstudiedsimilareigenvalueproblemsasSturm;thedisciplinethatgrewoutoftheir workisnowcalledSturmLiouvilletheory.[7] SchwarzstudiedthefirsteigenvalueofLaplace'sequationongeneral domainstowardstheendofthe19thcentury,whilePoincaréstudiedPoisson'sequationafewyearslater.[8] Atthestartofthe20thcentury,Hilbertstudiedtheeigenvaluesofintegraloperatorsbyconsideringthemtobe infinitematrices.[9]HewasthefirsttousetheGermanwordeigentodenoteeigenvaluesandeigenvectorsin1904, thoughhemayhavebeenfollowingarelatedusagebyHelmholtz."Eigen"canbetranslatedas"own","peculiarto", "characteristic"or"individual"—emphasizinghowimportanteigenvaluesaretodefiningtheuniquenatureofa specifictransformation.Forsometime,thestandardterminEnglishwas"propervalue",butthemoredistinctive term"eigenvalue"isstandardtoday.[10] Thefirstnumericalalgorithmforcomputingeigenvaluesandeigenvectorsappearedin1929,whenVonMises publishedthepowermethod.Oneofthemostpopularmethodstoday,theQRalgorithm,wasproposed independentlybyFrancisandKublanovskayain1961.[11] Definitions Seealso:Eigenplane Transformationsofspace—suchastranslation(orshiftingtheorigin),rotation,reflection,stretching,compression, oranycombinationofthese—maybevisualizedbytheeffecttheyproduceonvectors.Vectorscanbevisualisedas arrowspointingfromonepointtoanother. Eigenvectorsoftransformationsarevectors[12]whichareeitherleftunaffectedorsimplymultipliedbya scalefactorafterthetransformation. Aneigenvector'seigenvalueisthescalefactorbywhichithasbeenmultiplied. Aneigenspaceisaspaceconsistingofalleigenvectorswhichhavethesameeigenvalue,alongwiththezero (null)vector,whichitselfisnotaneigenvector. Theprincipal eigenvectorofatransformationistheeigenvectorwiththelargestcorrespondingeigenvalue. Thegeometric multiplicityofaneigenvalueisthedimensionoftheassociatedeigenspace. Thespectrumofatransformationonfinitedimensionalvectorspacesisthesetofallitseigenvalues. Forinstance,aneigenvectorofarotationinthreedimensionsisavectorlocatedwithintheaxisaboutwhichthe rotationisperformed.Thecorrespondingeigenvalueis1andthecorrespondingeigenspacecontainsallthevectors alongtheaxis.Asthisisaonedimensionalspace,itsgeometricmultiplicityisone.Thisistheonlyeigenvalueofthe spectrum(ofthisrotation)thatisarealnumber. Examples AstheEarthrotates,everyarrowpointingoutwardfromthecenteroftheEarthalsorotates,exceptthosearrows thatlieontheaxisofrotation.ConsiderthetransformationoftheEarthafteronehourofrotation:Anarrowfromthe centeroftheEarthtotheGeographicSouthPolewouldbeaneigenvectorofthistransformation,butanarrowfrom thecenteroftheEarthtoanywhereontheequatorwouldnotbeaneigenvector.Sincethearrowpointingatthe poleisnotstretchedbytherotationoftheEarth,itseigenvalueis1. Anotherexampleisprovidedbyathinmetalsheetexpandinguniformlyaboutafixedpointinsuchawaythatthe distancesfromanypointofthesheettothefixedpointaredoubled.Thisexpansionisatransformationwith eigenvalue2.Everyvectorfromthefixedpointtoapointonthesheetisaneigenvector,andtheeigenspaceisthe setofallthesevectors. 3 of 14 16/Oct/06 5:01 PM http://en.wikipedia.org/wiki/Eigenvector However,threedimensionalgeometricspaceisnottheonlyvector space.Forexample,considerastressedropefixedatbothends,like thevibratingstringsofastringinstrument(Fig.2).Thedistancesof atomsofthevibratingropefromtheirpositionswhentheropeisat restcanbeseenasthecomponentsofavectorinaspacewithas Fig.2.Astandingwaveinaropefixedatits boundariesisanexampleofaneigenvector,or manydimensionsasthereareatomsintherope. moreprecisely,aneigenfunctionofthe transformationgivingtheacceleration.Astime Assumetheropeisacontinuousmedium.Ifoneconsidersthe passes,thestandingwaveisscaledbya equationfortheaccelerationateverypointoftherope,its sinusoidaloscillationwhosefrequencyis eigenvectors,oreigenfunctions,arethestandingwaves.The determinedbytheeigenvalue,butitsoverall standingwavescorrespondtoparticularoscillationsoftheropesuch shapeisnotmodified. thattheaccelerationoftheropeissimplyitsshapescaledbya factor—thisfactor,theeigenvalue,turnsouttobe−ω2whereωistheangularfrequencyoftheoscillation.Each componentofthevectorassociatedwiththeropeismultipliedbyatimedependentfactorsin(ωt).Ifdampingis considered,theamplitudeofthisoscillationdecreasesuntiltheropestopsoscillating,correspondingtoacomplex ω.Onecanthenassociatealifetimewiththeimaginarypartofω,andrelatetheconceptofaneigenvectortothe conceptofresonance.Withoutdamping,thefactthattheaccelerationoperator(assumingauniformdensity)is Hermitianleadstoseveralimportantproperties,suchasthatthestandingwavepatternsareorthogonalfunctions. Eigenvalue equation Mathematically,vλisaneigenvectorandλthecorrespondingeigenvalueofatransformationTiftheequation: istrue,whereT(vλ)isthevectorobtainedwhenapplyingthetransformationTtovλ. SupposeTisalineartransformation(whichmeansthat forallscalars a,b, andvectorsv,w).Considerabasisinthatvectorspace.Then,Tandvλcanberepresentedrelativetothatbasisby amatrix AT—atwodimensionalarray—andrespectivelyacolumnvectorvλ—aonedimensionalverticalarray.The eigenvalueequationinitsmatrixrepresentationiswritten wherethejuxtapositionismatrixmultiplication.SinceinthiscircumstancethetransformationTanditsmatrix representationATareequivalent,wecanoftenusejustTforthematrixrepresentationandthetransformation.This isequivalenttoasetofnlinearequations,wherenisthenumberofbasisvectorsinthebasisset.Inthisequation boththeeigenvalueλandthencomponentsofvλareunknowns. However,itissometimesunnaturalorevenimpossibletowritedowntheeigenvalueequationinamatrixform.This occursforinstancewhenthevectorspaceisinfinitedimensional,forexample,inthecaseoftheropeabove. DependingonthenatureofthetransformationTandthespacetowhichitapplies,itcanbeadvantageousto representtheeigenvalueequationasasetofdifferentialequations.IfTisadifferentialoperator,theeigenvectors arecommonlycalledeigenfunctionsofthedifferentialoperatorrepresentingT.Forexample,differentiationitselfis

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us