Origin and Evolution of the Anchor Clock Escapement

Total Page:16

File Type:pdf, Size:1020Kb

Origin and Evolution of the Anchor Clock Escapement Horologium, solo naturae motu, atque ingenio, dimetiens, et numerans momenta temporis, constantissime aequalia. (A clock that, by natural motions alone, indicates regularly equal divisions of time.) —Mateo de Alimenis Campani (1678) he escapement is a feedback reg- ulator that controls the speed of a mechanical clock. The first an- chor escapement used in a me- chanical clock was designed and applied by Robert Hooke (1635- 1703) around 1657, in London. Although there is Targument as to who invented the anchor escape- ment, either Robert Hooke or William Clement, credit is generally given to Hooke. Its application catalyzed a rapid succession in clock and watch escapement designs over the next 50 years that revolutionized timekeeping. In this article, I con- sider the advances this escapement design made possible and then describe how horolo- gists improved on this escapement in subse- quent designs. Before continuing, it is important to stress that the development of the escapement by gen- erations of horologists was largely an empirical trial-and-error process. As will be seen, this pro- cess was remarkably successful despite being based on only an intuitive understanding of physics and mechanical engineering principles. Even today, the understanding of the dynamics The author is with the Abbey Clock Clinic, Austin, TX 2001 CORBIS CORP. 78757, U.S.A. 0272-1708/02/$17.00©2002IEEE April 2002 IEEE Control Systems Magazine 41 of linkages under impact, friction, and other realistic effects tem is the potential energy of the driving weight, which falls is incomplete. Consequently, the explanations I give in this slowly during operation. In early clocks, the driving weight article concerning the evolution and operation of the clock could weigh as much as 1,000 lb, and large towers were con- escapement are based largely on kinematic, geometric, and structed to accommodate its range of motion. energy transfer principles. It is important to understand how the verge escapement An escapement mechanism is a speed regulator, and it works to appreciate the circumstances that led to the inven- uses feedback to obtain precision operation despite imper- tion of the anchor escapement. The oscillator consists of fect components. The presence of feedback is realized by the foliot, suspended at its center by a string, often made of the interaction between the escape wheel and silk. For the foliot to oscillate, accelerating and de- the escape arm, which interact according to celerating forces must be acting on it. their relative position and velocity. This interac- When a tooth of the escape wheel escapes, this tion can be seen in [1] and [2], where the wheel rotates freely by about 2° (called drop) un- verge-and-foliot escapement, one of the earliest til another tooth strikes an arm protruding from escapements, is analyzed. It is with this escape- the vertical shaft that is attached to the crossbar. ment that I begin this description of the evolu- The vertical shaft has two arms, called pallets, lo- tion of the anchor escapement. cated with about 100° of angular separation and with a vertical separation equal to the diameter of Prior to the Anchor the escape wheel. The pallets rotate by about 100° Escapement until a pallet releases an escape tooth. An instant The earliest record of a mechanical clock with an later, another escape tooth strikes the other pal- escapement, which is believed to date around let. As the pallets rotate, the escape tooth slides 1285, was a reference to a payment for a hired across the surface of the pallet, exerting a force on clock keeper at St. Paul’s in London. All the early it. The work done on a pallet is therefore the ap- mechanical timepieces are believed to have had a M. HEADRICK plied moment times the arc through which the es- verge and foliot as the control cape tooth moves during contact, mechanism for measuring the pas- and it is this moment that causes sage of time. The verge-and-foliot The Graham the foliot to accelerate and rotate in design was clearly based on the ala- one direction. In horology, the mo- rum (the alarm mechanism, with a escapement has been ment applied during contact is tra- hammer and a bell instead of a ditionally called impulse, although foliot), which was invented several the escapement of the applied torque is not necessar- centuries earlier. No one knows ex- ily impulsive in the usual engineer- actly when the mechanical clock choice in almost all ing sense. was invented or by whom. After another tooth strikes the First, let us consider a clock finer pendulum clocks other pallet, the foliot continues to consisting of a set of gears and a rotate in the same direction (as it driving weight, using the force of since 1715. was rotating in before the tooth gravity (see Fig. 1). In such a clock, struck the other pallet), causing the gears would spin uncontrolla- the other pallet to push the escape bly unless a control mechanism was applied at the other wheel backward as the foliot rotates. Since the escape end of the gear train. The control mechanism consists of an wheel exerts a force on the pallet, the pushing of the es- oscillating device that prevents the gear train from rotat- cape wheel backward causes a decelerating force, which is ing, except at specific intervals, when it releases one tooth opposite and equal in magnitude, to act on the pallet until of the last gear in the train. By controlling the rate of rota- the foliot stops. This backward action, called recoil, is tion of the gears, it is possible to use this device to measure equivalent to winding the clock by a small amount; in other time by incorporating an indicator and a scale at the end of words, energy is stored rather than wasted. After the foliot the shaft of one of the gears. has stopped, it changes direction, since the escape wheel The verge-and-foliot control mechanism consists of a continues to exert a force on the pallet, and the foliot be- shaft, called the verge, and a crossbar with a weight at- gins to accelerate in the opposite direction, continuing to tached at each end, called the foliot (Fig. 2). The weights can do so until it has rotated by about 100° and the pallet al- be moved to different positions on the crossbar, so that the lows the tooth to escape again. The escape wheel rotates radius (or distance) of the weights from the center deter- freely again by about 2° until another tooth strikes the mine the period of oscillation. The control mechanism is an other pallet. This process is repeated indefinitely. escapement because the energy is allowed to “escape” each Since it was difficult to control many of the factors that af- time a gear tooth is released. The stored energy of the sys- fected the period of oscillation of the foliot, the early clocks 42 IEEE Control Systems Magazine April 2002 were poor timekeepers, with errors exceeding several hours pulled in and had smaller diameters than before (tending to per day. The greatest problems were caused by changes in make the clock gain time and partially offsetting the effect of temperature and levels of friction. When the temperature in- time loss). This could be seen as a crude form of tempera- creases, the crossbar becomes longer due to the thermal ex- ture compensation. The wheel, or metal ring, that replaced pansion of the wrought iron, so the period increases, and the foliot is called a balance wheel, and it was introduced the clock loses time. Similarly, the clock gains time in colder around 1400. The foliot continued to be used as well, how- temperatures. ever, until around 1650. A warmer temperature causes the lubricants to become Another modification was the replacement of the weight thinner so that they create less resistance or drag, which re- with an elastic steel ribbon, called the mainspring. Its intro- sults in more energy reaching the foliot, and the clock gains duction around 1500 by Peter Henlein (1480-1542), a lock- time. The lubricants used in early clocks were primitive (an- smith from Nürnberg, is most significant because it made imal fats and fish or vegetable oils, especially olive oil) and possible the production of smaller and portable clocks (or did not have preservatives. Clocks needed to be lubricated very large pocket watches). It was extremely difficult to frequently because the lubricants were not hostile to bacte- make a steel ribbon by hand with the production methods ria, which accelerated their deterioration by causing the available at that time. formation of fatty acids that corroded metal parts and re- Mainsprings were relatively short and did not provide sulted in the formation of sludge, increasing resistance. constant power. Power levels were high when the clock (Since the foliot rotates by about 100° in each direction and was fully wound, decreasing gradually as the mainspring the pallets are almost continuously in contact with the es- unwound. Early spring-driven timepieces were extremely cape wheel, the action of the escapement is rather violent erratic timekeepers because they gained time drastically and requires a lot of energy to keep going. To reduce the re- at the beginning of the wind and lost time drastically to- quired power, it is necessary to reduce the levels of friction ward the end of the wind. Several devices were designed to involved, and thus there is a need for lubricants.) improve the moment-versus-angle curve of the mainspring, The first modification of the verge-and-foliot clock was but the spring-driven timepiece always remained an inferior the replacement of the foliot weights with a wheel in smaller timekeeper compared to an equivalent weight-driven time- (nonchurch) clocks.
Recommended publications
  • Grandfathers' Clocks: Their Making and Their Makers in Lancaster County
    GRANDFATHERS' CLOCKS: THEIR MAKING AND THEIR MAKERS IN LANCASTER COUNTY, Whilst Lancaster county is not the first or only home of the so-called "Grandfathers' Clock," yet the extent and the excellence of the clock industry in this type of clocks entitle our county to claim special distinction as one of the most noted centres of its production. I, therefore, feel the story of it specially worthy of an enduring place in our annals, and it is with pleasure •and patriotic enthusiasm that I devote the time and research necessary to do justice to the subject that so closely touches the dearest traditions of our old county's social life and surroundings. These old clocks, first bought and used by the forefathers of many of us, have stood for a century or more in hundreds of our homes, faithfully and tirelessly marking the flight of time, in annual succession, for four genera- tions of our sires from the cradle to the grave. Well do they recall to memory and imagination the joys and sorrows, the hopes and disappointments, the successes and failures, the ioves and the hates, hours of anguish, thrills of happiness and pleasure, that have gone into and went to make up the lives of the lines of humanity that have scanned their faces to know and note the minutes and the hours that have made the years of each succeeding life. There is a strong human element in the existence of all such clocks, and that human appeal to our thoughts and memories is doubly intensified when we know that we are looking upon a clock that has thus spanned the lives of our very own flesh and blood from the beginning.
    [Show full text]
  • Floating and Platform Balances an Introduction
    Floating and Platform Balances An introduction ©Darrah Artzner 3/2018 Floating and Platform Balances • Introduce main types • Discuss each in some detail including part identification and function • Testing and Inspecting • Cleaning tips • Lubrication • Performing repairs Balance Assembly Type Floating Platform Floating Balance Frame Spring stud Helicoid spring Hollow Tube Mounting Post Regulator Balance wheel Floating Balance cont. Jewel Roller Pin Paired weight Hollow Tube Safety Roller Pivot Wire Floating Balance cont. Example Retaining Hermle screws Safety Roller Note: moving fork Jewel cover Floating Balance cont. Inspecting and Testing (Balance assembly is removed from movement) • Inspect pivot (suspension) wire for distortion, corrosion, breakage. • Balance should appear to float between frame. Top and bottom distance. • Balance spring should be proportional and not distorted in any way. • Inspect jewels for cracks and or breakage. • Roller pin should be centered when viewed from front. (beat) • Rotate balance wheel three quarters of a turn (270°) and release. It should rotate smoothly with no distortion and should oscillate for several (3) minutes. Otherwise it needs attention. Floating Balance cont. Cleaning • Make sure the main spring has been let down before working on movement. • Use non-aqueous watch cleaner and/or rinse. • Agitate in cleaner/rinse by hand or briefly in ultrasonic. • Rinse twice and final in naphtha, Coleman fuel (or similar) or alcohol. • Allow to dry. (heat can be used with caution – ask me how I would do it.) Lubrication • There are two opinions. To lube or not to lube. • Place a vary small amount of watch oil on to the upper and lower jewel where the pivot wire passed through the jewel holes.
    [Show full text]
  • Bimetallic Strip Worksheet Answers
    Bimetallic strip worksheet answers Continue The bimetallic strip consists of two different materials with different expansion ratios that are related to each other. For example, for brass and steel, linear expansion ratios: brass: 19 x 10-6/C steel: 11 x 10-6/C When this bimetallic band is heated, brass expands more than steel and strip curves with brass on the outside. If the band is cooled, it curves with steel on the outside. Bimetallic strips are used as switches in thermostats. Copper and zinc strips are the same length of 20 cm at 20 degrees Celsius (a) What will be the difference in the length of the strips at 100 degrees Celsius? b) The stripes were chained to each other at 20 degrees Celsius and formed the so-called bimetallic strip. Suppose it bends into an arc when heated. Determine which metal will be on the outside of the arc and what will be the arc radius at 100 degrees Celsius. The thickness of each band is 1 mm. t0 - 20 degrees Celsius, in which both strips are equally long l0 and 20 cm, the length of both bands is 0.20 m at t0 t. difference in length of both bands at t d 1 mm and thickness of 1'10-3 m of each band r ? The radius of the curved bimetallic strip From tables No 30-10- 6K-1 ratio of linear thermal zinc expansion NoCu 17'10-6K-1 ratio of linear thermal expansion of copper substances expands when we raise their temperature. Different substances expand in different ways, so there will be a difference in the length of the two bands.
    [Show full text]
  • Th B T the Brocots
    The BtBrocots A Dyyynasty of Horologers Presented by John G. Kirk 1 Outline • Introduction • Background: Paris Clocks • Brocot GlGenealogy • The Men and Their Works • Gallery 2 Outline • Introduction • Background: Paris Clocks • Brocot GlGenealogy • The Men and Their Works • Gallery 3 Introduction • This is a review of “Les Brocot, une dynastie d’ horlogers” by Richard Chavigny • Dean Armentrout asked me to discover the following: – How many/who are the Brocots who contributed to horology (see below…) – The years the famous innovations were made (and by whom) (see below…) – How the Brocot dynasty interacted with other clockmakers, for example the house of Le Roy (i(curious ly, such iitnterac tions, if any, aren’t mentioned in the book) 4 Outline • Introduction • Background: Paris Clocks • Brocot GlGenealogy • The Men and Their Works • Gallery 5 The Paris Clock (1 of 5) • The term, la Pendule de Paris, applies to table/mantel clocks developed by Parisian clockmakers • Beginning around 1810 and continuing well into the 20th century production of these clocks evolved into a highly industrialized process 6 The Paris Clock (2 of 7) • Around 1810, Paris clocks were no longer fabricated from scratch in Paris except by the grand houses, such as Breguet, Le Paute, etc. • A “mass” market for high quality, competitively‐priced “Clocks of Commerce” developed based on ébauches completed and finished in Paris 7 The Paris Clock (3 of 7) • The ébauches comprised – The two plates – The barrel (without spring) – The stiktrike titrain compltlete with dtdeten
    [Show full text]
  • SSSS It's About Time Division C Event by Syo Astro
    SSSS It’s About Time Division C Event By syo_astro Directions * Each question is worth one point, where each part (ie. a, b, etc or i, ii, etc) is worth an additional point. The test is 71 points and 30 minutes. Use space provided for answers. * The test involves various types of questions relating to time, timekeeping, astronomy, physics, and/or mechanics. * Within plus or minus 10% of a quantitative answer is considered correct. Without units and significant figures, a correct answer is given a ½ point. * Don’t be afraid to guess (logically) for partial credit where possible, and have fun! PAGE 1 1. This man came up with the idea of absolute time. 2. In 1502, who built the first pocketwatch? 3. Who invented the 1st quartz clock in 1927? 4. In 1577, who invented the first minute hand? 5. Who completed the first documented astrarium clock? 6. In what year was daylight saving time first established in the US? 7. What type of clocks are H1, H2, H3, H4, and H5? 8. What escapement is shown below? 9. Describe one common problem with the escapement below. 10. Label the following referring to the escapement below. a. b. c. d. e. f. g. h. PAGE 2 11. What is the physical purpose of the pendulum in clocks? Why is one used? 12. What clockmaker’s tool is an iron vertical plunger that can place rollers and balanced wheels on staffs? 13. Circle the fusee in the device shown below. a. What is its purpose? 14. What is a silent timekeeping instrument traditionally called? 15.
    [Show full text]
  • Pioneers in Optics: Christiaan Huygens
    Downloaded from Microscopy Pioneers https://www.cambridge.org/core Pioneers in Optics: Christiaan Huygens Eric Clark From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 . IP address: [email protected] 170.106.33.22 Christiaan Huygens reliability and accuracy. The first watch using this principle (1629–1695) was finished in 1675, whereupon it was promptly presented , on Christiaan Huygens was a to his sponsor, King Louis XIV. 29 Sep 2021 at 16:11:10 brilliant Dutch mathematician, In 1681, Huygens returned to Holland where he began physicist, and astronomer who lived to construct optical lenses with extremely large focal lengths, during the seventeenth century, a which were eventually presented to the Royal Society of period sometimes referred to as the London, where they remain today. Continuing along this line Scientific Revolution. Huygens, a of work, Huygens perfected his skills in lens grinding and highly gifted theoretical and experi- subsequently invented the achromatic eyepiece that bears his , subject to the Cambridge Core terms of use, available at mental scientist, is best known name and is still in widespread use today. for his work on the theories of Huygens left Holland in 1689, and ventured to London centrifugal force, the wave theory of where he became acquainted with Sir Isaac Newton and began light, and the pendulum clock. to study Newton’s theories on classical physics. Although it At an early age, Huygens began seems Huygens was duly impressed with Newton’s work, he work in advanced mathematics was still very skeptical about any theory that did not explain by attempting to disprove several theories established by gravitation by mechanical means.
    [Show full text]
  • Collectable POCKET Watches 1750-1920
    cOLLECTABLE POCKET watches 1750-1920 Ian Beilby Clocks Magazine Beginner’s Guide Series No 5 cOLLECTABLE POCKET watches 1750-1920 Ian Beilby Clocks Magazine Beginner’s Guide Series No 5 Published by Splat Publishing Ltd. 141b Lower Granton Road Edinburgh EH5 1EX United Kingdom www.clocksmagazine.com © 2017 Ian Beilby World copyright reserved ISBN: 978-0-9562732-4-6 The right of Ian Beilby to be identified as author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. 2 4 6 8 10 9 7 5 3 1 Printed by CBF Cheltenham Business Forms Ltd, 67 Hatherley Road, Cheltenham GL51 6EG CONTENTS Introduction 7 Chapter 1. The eighteenth century verge watch 13 Chapter 2. The nineteenth century verge watch 22 Chapter 3. The English cylinder and rack lever watch 36 Chapter 4. The English lever watch 42 Chapter 5. The Swiss lever watch 54 Chapter 6. The American lever watch 62 Chapter 7. The Swiss cylinder ladies’ fob watch 72 Chapter 8. Advice on collecting and maintenance 77 Appendix 1. Glossary 82 Appendix 2. Further reading 86 CLOCKS MAGAZINE BEGINNER’S GUIDE SERIES No. 1. Clock Repair, A Beginner’s Guide No. 2. Beginner’s Guide to Pocket Watches No. 3. American Clocks, An Introduction No. 4. What’s it Worth, Price Guide to Clocks 2014 No.
    [Show full text]
  • The Case of Switzerland and the World Watch Industry *
    469 Technological discontinuities and flexible production networks: The case of Switzerland and the world watch industry * Amy Glasmeier tain and augment their competitiveness in a global Unrr~rs~t~of Texas at Austin, Texas, USA economy. On the eve of the electronics revolution, the Swiss watch production system, centered in the mountainous Jura region, was flexible, cost The twentieth-century history of the Swiss watch industry effective, and extremely profitable. Both horizon- illustrates how cultures and industrial production systems ex- tally and vertically disintegrated, the Swiss system perience great difficulty adapting to external change at differ- offered enormous variety while maintaining qual- ent points in time. The current emphasis on production net- ity and timeliness of delivery. “The multiplicity of works - unique reservoirs of potential technological innovation realized through cooperation rather than competition among enterprises, and the competition and emulation firms - lacks a detailed appreciation of historic networks, and that characterized the industry, yielded a product in particular their fragile character in times of economic of superior quality known the world over for high turmoil. While networks can and do promote innovation within fashion, design, and precision” [21, p. 481. an existing technological framework, historical experience sug- Beginning in the 1970s when foreign competi- gests their fragmented, atomistic structure is subject to dis- organization and disintegration during periods of technological tion hurdled technological frontiers in watch change. An exclusive focus on “production” ignores other movements, advancing from mechanical to elec- constraints that are powerful forces governing the reaction tric, electronic, digital and finally quartz technol- abilities of regions. Previous research has largely relied on a ogy, the Jura’s undisputed dominance ended.
    [Show full text]
  • Physics 2305 Lab 11: Torsion Pendulum
    Name___________________ ID number_________________________ Date____________________ Lab partner_________________________ Lab CRN________________ Lab instructor_______________________ Physics 2305 Lab 11: Torsion Pendulum Objective 1. To demonstrate that the motion of the torsion pendulum satisfies the simple harmonic form in equation (3) 2. To show that the period (or angular frequency) of the simple harmonic motion of the torsion pendulum is independent of the amplitude of the motion 3. To make measurements to demonstrate the validity of equation (6), which relates the angular frequency of motion to the torsion constant and the moment of inertia of the torsion pendulum Useful background reading Young and Freedman, section 13.1, 13.2, 13.4 (the “angular SHM” section, specifically) Introduction A torsion pendulum is shown schematically to the right. A disk with moment of inertia I0 is fastened near the center of a long straight wire stretched between two fixed mounts. If the disk is rotated through an angle θ and released, the twist in the wire rotates the disk back toward equilibrium. It overshoots and I 0 oscillates back and forth like a pendulum, hence the name. Torsion pendulums are used for the timing element in some θ clocks. The most common variety is a decorative polished brass mechanism under a glass dome. You may have seen one. The balance wheel in an old fashioned mechanical watch is a kind of torsion pendulum, though the restoring force is provided by a flat coiled spring rather than a long twisted wire. Torsion pendulums can be made very accurate and have been used in numerous precision experiments in 1 physics.
    [Show full text]
  • A History of the Citizen Watch Company, from the Pages of Watchtime Magazine
    THE WORLD OF FINE WATCHES SPOTLIGHT www.watchtime.com A HISTORY OF THE CITIZEN WATCH COMPANY, FROM THE PAGES OF WATCHTIME MAGAZINE CCIITTIIZZEENN THe HisTory of ciTizen One of the original Citizen pocket watches that went on THE sale in December 1924 CITIZEN WATCH STORY How a Tokyo jeweler’s experiment in making pocket watches 84 years ago led to the creation of a global watch colossus n the 1920s, the young Emperor of Japan, than the imports. To that end, Yamazaki found - Goto. The mayor was a friend of Yamazaki’s. Hirohito, received a gift that reportedly de - ed in 1918 the Shokosha Watch Research Insti - When the fledgling watch manufacturer was I lighted him. The gift was from Kamekichi tute in Tokyo’s Totsuka district. Using Swiss ma - searching for a name for his product, he asked Yamazaki, a Tokyo jeweler, who had an ambi - chinery, Yamazaki and his team began experi - Goto for ideas. Goto suggested Citizen. A tion to manufacture pocket watches in Japan. menting in the production of pocket watches. watch is, to a great extent, a luxury item, he ex - The Japanese watch market at that time By the end of 1924, they began commercial plained, but Yamazaki was aiming to make af - was dominated by foreign makes, primarily production of their first product, the Caliber fordable watches. It was Goto’s hope that every Swiss brands, followed by Americans like 16 pocket watch, which they sold under the citizen would benefit from and enjoy the time - Waltham and Elgin. Yamazaki felt the time brand name Citizen.
    [Show full text]
  • Vleeuwen on Van Call
    © 2013 Antiquarian Horological Society. Reproduction prohibited without permission. MARCH 2013 Jan van Call and the age of the pendulum clock in the Netherlands Pier van Leeuwen* The signature of Jan van Call, best known for his work on turret clocks, appears on a controversial wall clock that was the subject of a symposium held at the British Museum in 2011. At this symposium, the author sketched van Call’s documented biographical data against the colourful background of Anglo-Dutch history. This article, a much reduced version of that presentation, focuses on Van Call’s specific achievements and preserved heritage. From Kall to Nijmegen Brabant. The brass drum had twenty-four holes on one Jan van Call was born in Kall in the German Eifel and rule of about 45 cm. On 1 January 1647 Jan Becker moved to Batenburg near Nijmegen in the Dutch duchy Call was granted citizenship in the town of Nijmegen, of Guelders (since 1814 Province of Guelderland). This by which time he must have moved from Batenburg to old capital of the duchy had a rich medieval history, the capital. Amongst other constructional work he renowned among art historians as the birthplace of the produced pumps, drains and waterworks.3 Limburg brethren, court illuminators of at least two Books of Hours for the Duke of Berry. Nijmegen had an Repairing a monumental clock impressive medieval castle known as the Valkhof, once In the year in which he officially became a citizen of inhabited by emperor Charles V who made the old Nijmegen, Jan van Call repaired, for the fee of 280 duchy another part of his Habsburg realm.
    [Show full text]
  • Evolution of Clock Escapement Mechanisms
    Miodrag Stoimenov Associate Professor Evolution of Clock Escapement University of Belgrade Faculty of Mechanical Engineering Mechanisms Branislav Popkonstantinović Associate Professor The paper presents and explains the evolution of details design of the clock University of Belgrade escapement mechanisms through the ages. As particularly significant, the Faculty of Mechanical Engineering following mechanisms are emphasized: the crown wheel (verge & foliot), Ljubomir Miladinović anchor recoil, deadbeat and detached escapements, and their variations – Associate Professor gravity and chronometer escapements, as well as the English and Swiss University of Belgrade lever watch escapements. All important geometrical, kinematical and Faculty of Mechanical Engineering dynamical properties and the influence of these properties on the clock Dragan Petrović accuracy are explained. Associate Professor University of Belgrade Keywords: clock, escapement, evolution, mechanism, lever. Faculty of Mechanical Engineering 1. INTRODUCTION oscillator with the restoring force and standardized pace. The crown wheel rate, acted upon by driving torque, is This work is aimed at a qualitative analysis of regulated only by the foliot inertia with a rather advancement in escapement mechanism structural unpredictable error. When the crown wheel is rotating, definition and development of a timepiece over the past the pallet of the verge is caught by one of the wheel’s seven centuries. This study cowers the following issues teeth, rotating the verge and a solid foliot in one a) the crown wheel, the verge and foliot, b) the recoil direction and leading to engagement of the opposite anchor escapement, c) deadbeat escapements, and d) tooth with the second pallet [4]. Due to the foliot inertia, detached escapements. Measure of the effectiveness in that next tooth stops the wheel’s motion, and the wheel the regulator horological properties could be specified with its eigen driving torque finally stops the rotation of as follows: a) the level of constructive and dynamic the foliot too.
    [Show full text]