Character States and Evolution of the Chelicerate Claws

Total Page:16

File Type:pdf, Size:1020Kb

Character States and Evolution of the Chelicerate Claws 345 European Arachnology 2000 (S. Toft & N. Scharff eds.), pp. 345-354. © Aarhus University Press, Aarhus, 2002. ISBN 87 7934 001 6 (Proceedings of the 19th European Colloquium of Arachnology, Århus 17-22 July 2000) Character states and evolution of the chelicerate claws JASON A. DUNLOP Institut für Systematische Zooloigie, Museum für Naturkunde der Humboldt-Universität zu Berlin, Invalidenstraße 43, D-10115 Berlin, Germany ([email protected]) Abstract Outgroups of Chelicerata have an apotele in which two smaller claws insert on a larger median claw. A three-clawed plesiomorphic state is retained in basal Pycnogonida and the Palaeozoic xiphosuran Weinbergina. Modifications or reductions from this pattern are interpreted here as apo- morphic character states. A single apotele element occurs in the crown group Xiphosurida and in the extinct taxa Eurypterida and Chasmataspida. The digitigrade, 'eurypteroid' apotele of Allopalaeo- phonus-like fossil Scorpiones may not be the plesiomorphic condition for the group since the most basal clade, Palaeoscorpius, has an apotele more like Weinbergina and the outgroups. Among the other arachnids Palpigradi retain the most plesiomorphic apotele morphology with three claws on all postcheliceral appendages. Unequivocal homologies between the claws in different arachnid or- ders are difficult to resolve, especially in relation to the complex apoteles seen among the Acari. However, further apomorphic apotele states in arachnids include the development of the empodial region between the claws into a pulvillus in adults of basal Amblypygi, in Solifugae and Pseudoscor- piones and among the mites in the (Opilioacariformes + Parasitiformes) clade, but not in basal Acariformes. Key words: Apotele, claw, ungue, empodium, pulvillus, Chelicerata, phylogeny INTRODUCTION scorpions and xiphosurans. Palaeozoic fossils The terminal element of the postcheliceral of the latter two taxa preserve character states limbs in Chelicerata is called the apotele. This different from extant forms, which probably apotele has been modified in arachnids to form better reflect the ground pattern of these the claws, while in some taxa (e.g. solifuges, clades. The aim of the present paper is to give some amblypygids) the membranous region an overview of apotele morphology which inte- between the claws - the empodium - has been grates the fossil data and to try and identify further modified to form a complex, typically potential synapomorphies for clades within the eversible structure which is usually called the chelicerates. pulvillus. Chelicerate limb morphology, includ- ing apotele character states, has been reviewed MATERIALS AND METHODS by authors such as Barrows (1925), van der Wherever possible specimens of Recent taxa Hammen (1989) and Shultz (1989). However, were drawn from life from material in the col- these authors restricted their surveys to Recent lections of the Muesum für Naturkunde, Berlin, euchelicerates and did not consider the basal supplemented by descriptions in the literature pycnogonid group (sea spiders), extinct taxa as detailed below. Well preserved eurypterids (e.g. eurypterids) or fossil representatives of and trigonotarbids from the Natural History 346 European Arachnology 2000 Museum, London were also examined. Termi- main claw is tiny, and in contrast to the trilo- nology generally follows Barrows (1925) and/or bite condition (see above) the auxiliary claws Shultz (1989). do not insert into the main claw, but arise from the membrane above it (Fig. 1b). The auxiliary RESULTS claws are lost in more derived clades, e.g. Outgroups (Trilobita) Pycnogonidae. The sister group of Chelicerata (including pycnogonids) has not been satisfactorily estab- Xiphosura lished, but Trilobita, and various arachno- Following Anderson & Selden (1997), the class morph or trilobite-like taxa, have emerged as Xiphosura (horseshoe crabs) can be divided potential outgroups for polarising chelicerate into a series of stem group plesion taxa, the characters. Appendage morphology can only synziphosurines, plus a monophyletic crown be determined with certainty in a few fossils group, Xiphosurida. Appendages are rarely showing exceptional preservation. Studies of preserved in Palaeozoic Xiphosura, but signifi- Triarthrus by Cisne (1975) and Whittington & cantly the Lower Devonian synziphosurine Almond (1987), of Agnostus by Müller & Weinbergina opitzi (Fig. 1c) lacks the chelate Walossek (1987) and of Phacops by Bruton & postcheliceral appendages with a single apotele Haas (1999) consistently show an apotele mor- characteristic for living species. Stürmer & phology in which two lateral claws appear to Bergström (1981) redescibed W. opitzi and al- insert into a slightly larger central claw (Fig. though there are inconsistencies in their inter- 1a). These three apotele structures are poten- pretative drawings, their plates (especially tially homologous with the three claws seen in their fig. 7a) indicate a trifurcate apotele with many chelicerates (see below) and provide a all three elements approximately the same size. plesiomorphic condition against which the che- These three elements appear to emerge adja- licerate apotele can be compared. cent to each other (Fig. 1c) and the lateral ele- ments do not insert on the central one as in the Pycnogonida trilobites. By contrast, extant Xiphosura have Most phylogenetic studies have concluded that only a single apotele element in all their post- Pycnogonida are basal chelicerates (Weygoldt cheliceral limbs which forms the movable fin- & Paulus 1979; Wheeler & Hayashi 1998), rep- ger of a distal chela (Fig. 1d). This apparently resenting the sister group of all other chelicer- apomorphic condition arose in the Xiphosurida ates: the Euchelicerata. The palps (limb II) of by the Carboniferous, having been recently de- Pycnogonida are variable within the group and scribed in the fossil genus Euproops by Schultka are reduced or absent in adults of certain taxa. (2000, pl. 1, fig. 2). In Recent taxa this chela is Nevertheless, a distinct apotele in the palp ap- larger in appendages II-V, but rather small in pears to be lacking, at least in adults. By con- appendage VI and is essentially subchelate in trast, the oviger (limb III) - also absent in some appendages III and IV of the extant species taxa - ends in a single claw in most groups Tachypleus tridentatus. where it is present (Arnaud & Bamber 1987). The legs of Pycnogonida (limbs IV-VII) typi- Eurypterida cally end in three claws (Fig. 1b): a main claw In most reconstructions the extinct Eurypterida plus a pair of auxiliary claws (Arnaud & Bam- (sea scorpions) are shown with a trifurcate end ber 1987). The relative proportions of these to the legs. Jeram (1998) referred to the lateral claw elements can vary, even intraspecifically elements as ‘tarsal spurs’ and suggested that (e.g. Helfer & Schlottke 1935, fig. 44). The main homologous structures occur in fossil scorpions claw is usually longer than the auxiliary claws, and that they are in turn homologous with the but see e.g. Ammothea biunguiculata where the lateral claws or ungues of other arachnids (see Dunlop: Evolution of the claws 347 Fig. 1. (a) Triarthrus sp. (Trilobita). Ordovician, after Whittington & Almond (1987). (b) Achelia echinata (Pycnogonida). Recent, from life. (c) Weinbergina optzi (Xiphosura: ‘synziphosurine’). Devonian, after Stür- mer & Bergström (1981). (d) Limulus polyphemus (Xiphosura: Xiphosurida). Recent, from life. (e) Baltoeu- rypterus tetragonophthalmus (Eurypterida). Silurian, after Selden (1981). (f) Diploaspis casteri (Chasma- taspida). Devonian, from original material. (g) Palaeoscorpius devonicus (Scorpiones: stem group). Devonian, after Kjellesvig-Waering (1986). (h) Buthus occitanus (Scorpiones: Buthidae). Recent, from life. All drawings not to scale. below). However, when examined in detail - and Eurypterida (Dunlop in press). Their ap- see e.g. Selden's (1981) study of Baltoeurypterus pendages are poorly known, but Caster & tetragonophthalmus - the apotele of eurypterids Brooks (1956) described an isolated limb with is represented by a single claw. The spinous chelate, distal podomeres, resembling those of elements either side of it, when present, are Xiphosurida (see above). A better preserved derived from the preceding podomere (Fig. 1e) limb described by Størmer (1972) and Dunlop either as fixed spines (see e.g. Selden 1981, figs. et al. (2002) ends in a short, slightly curving 26-29 for Baltoeurypterus) or as socketed spines element with a weakly developed spine on the (see e.g. Clarke & Ruedemann 1912, pl. 28 for preceding podomere. As in Eurypterida there Carcinosoma) and thus their homology with the is no evidence for lateral claws (Fig. 1f) and ungues of arachnids is questionable. In stylon- Chasmataspida should also provisionally be urid eurypterids, which lack paddles and scored as retaining only a single element in which probably represent the more basal taxa their apotele. (S. Braddy pers. comm.), the spines on this po- domere preceding the apotele are either absent Scorpiones or only weakly developed; see e.g. Tollerton Among the best known Palaeozoic scorpions (1989, fig. 9). are the Silurian Palaeophonus / Allopalaeophonus species which have been figured as having Chasmataspida crab-like legs ending in a single, large apotele - Chasmataspida are a rare group of extinct che- Pocock's (1901, p. 295) ‘clawless terminal seg- licerates. Although initially interpreted as un- ment’ - similar to that seen in many eurypterids
Recommended publications
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111799 Evolutionary morphology of the locomotor apparatus in Arachnida Shultz, Jeffrey Walden, Ph.D.
    [Show full text]
  • Introduction to Arthropod Groups What Is Entomology?
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders,
    [Show full text]
  • Functional Morphology and Evolu Tion of Xiphosurids
    Func tional morphol ogy and evolu tion of xiphosurids JAN BERGSTROM Bergstrom, J. 1 975 07 15: Functional morphology and evolution of xiphosurids. Fossils and Strata, No. 4, pp. 291-305, Pl. 1. Oslo. ISSN 0300-9491. ISBN 82-00-04963-9. Aspects of the morphology, evolution and systematics of the Xiphosurida are treated. The ancestrai forms lacked specialization for ploughing, and their chilaria were evidently developed as prosomal walking legs. The cor­ responding tergite (of the pregenital segment) was probably separate from the main prosomal shield in the early xiphosurids as well as in the eurypter­ ids. From this stem two main groups seem to have evolved. One consists of the synziphosurids, large-eyed eurypterid-like hunters with stri king opistho­ somal tagmosis. The other consists of the burrowing and ploughing xipho­ surids, in which the opisthosomal tergites were subject to progressive fusion ending with a single opisthothoracic tergal shield in the Late Palaeo­ zoic. The last prosomal appendages evolved into the chilaria, if this did not happen earlier, and the corresponding free tergite disappeared. Probably in Carboniferous time the limulines came into existence through a sudden displacement of the prosomal/opisthosomal boundary. Jan Bergstram, Department of His torical Geology and Palaeontology, Un iversity of Lund, Solvegatan 13, S-223 62 Lund, 1st August 1973. The Xiphosura may be considered to constitute a subdass or dass of chelicerate arthropods. The delimitation has been diseussed in the past, but no general agreement seems to exist. Generally, the xiphosurids are induded with the aglaspidids and eurypterids in the Merostorna­ ta. However, as generally understood, this taxon probably represents an evolutionary grade rather than a phylogenetic unit.
    [Show full text]
  • Phylogenomic Resolution of Sea Spider Diversification Through Integration Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phylogenomic resolution of sea spider diversification through integration of multiple data classes 1Jesús A. Ballesteros†, 1Emily V.W. Setton†, 1Carlos E. Santibáñez López†, 2Claudia P. Arango, 3Georg Brenneis, 4Saskia Brix, 5Esperanza Cano-Sánchez, 6Merai Dandouch, 6Geoffrey F. Dilly, 7Marc P. Eleaume, 1Guilherme Gainett, 8Cyril Gallut, 6Sean McAtee, 6Lauren McIntyre, 9Amy L. Moran, 6Randy Moran, 5Pablo J. López-González, 10Gerhard Scholtz, 6Clay Williamson, 11H. Arthur Woods, 12Ward C. Wheeler, 1Prashant P. Sharma* 1 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA 2 Queensland Museum, Biodiversity Program, Brisbane, Australia 3 Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany 4 Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany 5 Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain 6 Department of Biology, California State University-Channel Islands, Camarillo, CA, USA 7 Départment Milieux et Peuplements Aquatiques, Muséum national d’Histoire naturelle, Paris, France 8 Institut de Systématique, Emvolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France 9 Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI, USA Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Giant Whip Scorpion Mastigoproctus Giganteus Giganteus (Lucas, 1835) (Arachnida: Thelyphonida (=Uropygi): Thelyphonidae) 1 William H
    EENY493 Giant Whip Scorpion Mastigoproctus giganteus giganteus (Lucas, 1835) (Arachnida: Thelyphonida (=Uropygi): Thelyphonidae) 1 William H. Kern and Ralph E. Mitchell2 Introduction shrimp can deliver to an unsuspecting finger during sorting of the shrimp from the by-catch. The only whip scorpion found in the United States is the giant whip scorpion, Mastigoproctus giganteus giganteus (Lucas). The giant whip scorpion is also known as the ‘vinegaroon’ or ‘grampus’ in some local regions where they occur. To encounter a giant whip scorpion for the first time can be an alarming experience! What seems like a miniature monster from a horror movie is really a fairly benign creature. While called a scorpion, this arachnid has neither the venom-filled stinger found in scorpions nor the venomous bite found in some spiders. One very distinct and curious feature of whip scorpions is its long thin caudal appendage, which is directly related to their common name “whip-scorpion.” The common name ‘vinegaroon’ is related to their ability to give off a spray of concentrated (85%) acetic acid from the base of the whip-like tail. This produces that tell-tale vinegar-like scent. The common name ‘grampus’ may be related to the mantis shrimp, also called the grampus. The mantis shrimp Figure 1. The giant whip scorpion or ‘vingaroon’, Mastigoproctus is a marine crustacean that can deliver a painful wound giganteus giganteus (Lucas). Credits: R. Mitchell, UF/IFAS with its mantis-like, raptorial front legs. Often captured with shrimp during coastal trawling, shrimpers dislike this creature because of the lightning fast slashing cut mantis 1.
    [Show full text]
  • Microscopic Anatomy of Eukoenenia Spelaea (Palpigradi) — a Miniaturized Euchelicerate
    MICROSCOPIC ANATOMY OF EUKOENENIA SPELAEA (PALPIGRADI) — A MINIATURIZED EUCHELICERATE Sandra Franz-Guess Gröbenzell, Deutschland 2019 For my wife ii Diese Dissertation wurde angefertigt unter der Leitung von Herrn Prof. Dr. J. Matthias Starck im Bereich von Department Biologie II an der Ludwig‐Maximilians‐Universität München Erstgutachter: Prof. Dr. J. Matthias Starck Zweitgutachter: Prof. Dr. Roland Melzer Tag der Abgabe: 18.12.2018 Tag der mündlichen Prüfung: 01.03.2019 iii Erklärung Ich versichere hiermit an Eides statt, dass meine Dissertation selbständig und ohne unerlaubte Hilfsmittel angefertigt worden ist. Die vorliegende Dissertation wurde weder ganz, noch teilweise bei einer anderen Prüfungskommission vorgelegt. Ich habe noch zu keinem früheren Zeitpunkt versucht, eine Dissertation einzureichen oder an einer Doktorprüfung teilzunehmen. Gröbenzell, den 18.12.2018 Sandra Franz-Guess, M.Sc. iv List of additional publications Publication I Czaczkes, T. J.; Franz, S.; Witte, V.; Heinze, J. 2015. Perception of collective path use affects path selection in ants. Animal Behaviour 99: 15–24. Publication II Franz-Guess, S.; Klußmann-Fricke, B. J.; Wirkner, C. S.; Prendini, L.; Starck, J. M. 2016. Morphology of the tracheal system of camel spiders (Chelicerata: Solifugae) based on micro-CT and 3D-reconstruction in exemplar species from three families. Arthropod Structure & Development 45: 440–451. Publication III Franz-Guess, S.; & Starck, J. M. 2016. Histological and ultrastructural analysis of the respiratory tracheae of Galeodes granti (Chelicerata: Solifugae). Arthropod Structure & Development 45: 452–461. Publication IV Starck, J. M.; Neul, A.; Schmidt, V.; Kolb, T.; Franz-Guess, S.; Balcecean, D.; Pees, M. 2017. Morphology and morphometry of the lung in corn snakes (Pantherophis guttatus) infected with three different strains of ferlavirus.
    [Show full text]
  • The Phylogeny of Fossil Whip Spiders Russell J
    Garwood et al. BMC Evolutionary Biology (2017) 17:105 DOI 10.1186/s12862-017-0931-1 RESEARCH ARTICLE Open Access The phylogeny of fossil whip spiders Russell J. Garwood1,2*, Jason A. Dunlop3, Brian J. Knecht4 and Thomas A. Hegna4 Abstract Background: Arachnids are a highly successful group of land-dwelling arthropods. They are major contributors to modern terrestrial ecosystems, and have a deep evolutionary history. Whip spiders (Arachnida, Amblypygi), are one of the smaller arachnid orders with ca. 190 living species. Here we restudy one of the oldest fossil representatives of the group, Graeophonus anglicus Pocock, 1911 from the Late Carboniferous (Duckmantian, ca. 315 Ma) British Middle Coal Measures of the West Midlands, UK. Using X-ray microtomography, our principal aim was to resolve details of the limbs and mouthparts which would allow us to test whether this fossil belongs in the extant, relict family Paracharontidae; represented today by a single, blind species Paracharon caecus Hansen, 1921. Results: Tomography reveals several novel and significant character states for G. anglicus; most notably in the chelicerae, pedipalps and walking legs. These allowed it to be scored into a phylogenetic analysis together with the recently described Paracharonopsis cambayensis Engel & Grimaldi, 2014 from the Eocene (ca. 52 Ma) Cambay amber, and Kronocharon prendinii Engel & Grimaldi, 2014 from Cretaceous (ca. 99 Ma) Burmese amber. We recovered relationships of the form ((Graeophonus (Paracharonopsis + Paracharon)) + (Charinus (Stygophrynus (Kronocharon (Charon (Musicodamon + Paraphrynus)))))). This tree largely reflects Peter Weygoldt’s 1996 classification with its basic split into Paleoamblypygi and Euamblypygi lineages; we were able to score several of his characters for the first time in fossils.
    [Show full text]
  • Newsletter Alaska Entomological Society
    Newsletter of the Alaska Entomological Society Volume 11, Issue 1, August 2018 In this issue: DNA barcoding Alaskan willow rosette gall mak- ers (Diptera: Cecidomyiidae: Rabdophaga)....8 Microarthropods and other soil fauna of Tanana How heating affects growth rate of Dubia roaches 14 River floodplain soils: a primer . .1 Review of the eleventh annual meeting . 16 Larger insect collection specimens are not more likely to show evidence of apparent feeding damage by dermestids (Coleoptera: Dermesti- dae) . .5 Microarthropods and other soil fauna of Tanana River floodplain soils: a primer doi:10.7299/X7HM58SN blage composed of species from the superorder Parasiti- 1 formes containing members of order Mesostigmata, and by Robin N. Andrews superorder Acariformes composed of the suborders En- deostigmata, Prostigmata, and Oribatida (Krantz and Wal- Though largely unseen, tiny microarthropods form soils, ter, 2009). influence rates of decomposition, and shape bacterial, fungal, and plant communities (Seastedt, 1984; Wall and Moore, 1999; Walter and Proctor, 2013). Difficult to see without a microscope, most microarthropods are between a 0.1 and 2 mm in length. Though they exist much deeper, microarthropods are most abundant in first 5 centimeters of soil where they can reach 70,000 per square meter in early successional alder stages and a million per square meter in mature white spruce stands. These arthropods occupy at least the first couple meters in unfrozen boreal soil decreasing in numbers with depth. We are studying the development of microarthropod communities in three forest stand types along the Tanana River floodplain: early- succession alder, mid-succesion balsam poplar, and late- succession white spruce.
    [Show full text]
  • Volume 36, No 1 Summer 2017
    Newsletter of the Biological Survey of Canada Vol. 36(1) Summer 2017 The Newsletter of the BSC is published twice a year by the Biological Survey of Canada, an incorporated not-for-profit In this issue group devoted to promoting biodiversity science in Canada. From the editor’s desk......2 Information on Student Corner: Membership ....................3 The Application of President’s Report ...........4 Soil Mesostigmata as Bioindicators and a Summer Update ...............6 Description of Common BSC on facebook & twit- Groups Found in the ter....................................5 Boreal Forest in Northern Alberta..........................9 BSC Student Corner ..........8 Soil Mesostigmata..........9 Matthew Meehan, MSc student, University of Alberta, Department of Biological Sciences Bioblitz 2017..................13 Book announcements: BSC BioBlitz 2017 - A Handbook to the Bioblitzing the Cypress Ticks of Canada (Ixo- Hills dida: Ixodidae, Argasi- Contact: Cory Sheffield.........13 dae)..............................15 -The Biological Survey of Canada: A Personal History..........................16 BSC Symposium 2017 Canadian Journal of Canada 150: Canada’s Insect Diversity in Arthropod Identification: Expected and Unexpected Places recent papers..................17 Contact: Cory Sheffield .....................................14 Wild Species 2015 Report available ........................17 Book Announcements: Handbook to the Ticks of Canada..................15 Check out the BSC The Biological Survey of Canada: A personal Website: Publications
    [Show full text]
  • Current Views on Chelicerate Phylogeny —A Tribute to Peter Weygoldt
    Current views on chelicerate phylogeny —A tribute to Peter Weygoldt The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Giribet, Gonzalo. 2018. “Current Views on Chelicerate phylogeny— A Tribute to Peter Weygoldt.” Zoologischer Anzeiger 273 (March): 7– 13. doi:10.1016/j.jcz.2018.01.004. Published Version doi:10.1016/j.jcz.2018.01.004 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37308630 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP 1 Current views on chelicerate phylogeny—a tribute to Peter Weygoldt 2 3 Gonzalo Giribet 4 5 Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard 6 University, 26 Oxford Street, CamBridge, MA 02138, USA 7 8 Keywords: Arachnida, Chelicerata, Arthropoda, evolution, systematics, phylogeny 9 10 11 ABSTRACT 12 13 Peter Weygoldt pioneered studies of arachnid phylogeny by providing the first synapomorphy 14 scheme to underpin inter-ordinal relationships. Since this seminal worK, arachnid relationships 15 have been evaluated using morphological characters of extant and fossil taxa as well as multiple 16 generations of molecular sequence data. While nearly all datasets agree on the monophyly of 17 Tetrapulmonata, and modern analyses of molecules and novel morphological and genomic data 18 support Arachnopulmonata (a sister group relationship of Scorpiones to Tetrapulmonata), the 19 relationships of the apulmonate arachnid orders remain largely unresolved.
    [Show full text]