INTUITIVE INFINITESIMAL CALCULUS 7.1 Polar Coordinates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Some Transcendental Functions with an Empty Exceptional Set 3KYUNGPOOK Math. J. 00(0000), 000-000 Some transcendental functions with an empty exceptional set F. M. S. Lima Institute of Physics, University of Brasilia, Brasilia, DF, Brazil e-mail : [email protected] Diego Marques∗ Department of Mathematics, University de Brasilia, Brasilia, DF, Brazil e-mail : [email protected] Abstract. A transcendental function usually returns transcendental values at algebraic points. The (algebraic) exceptions form the so-called exceptional set, as for instance the unitary set {0} for the function f(z)= ez , according to the Hermite-Lindemann theorem. In this note, we give some explicit examples of transcendental entire functions whose exceptional set are empty. 1 Introduction An algebraic function is a function f(x) which satisfies P (x, f(x)) = 0 for some nonzero polynomial P (x, y) with complex coefficients. Functions that can be con- structed using only a finite number of elementary operations are examples of alge- braic functions. A function which is not algebraic is, by definition, a transcendental function — e.g., basic trigonometric functions, exponential function, their inverses, etc. If f is an entire function, namely a function which is analytic in C, to say that f is a transcendental function amounts to say that it is not a polynomial. By evaluating a transcendental function at an algebraic point of its domain, one usually finds a transcendental number, but exceptions can take place. For a given transcendental function, the set of all exceptions (i.e., all algebraic numbers of the arXiv:1004.1668v2 [math.NT] 25 Aug 2012 function domain whose image is an algebraic value) form the so-called exceptional set (denoted by Sf ).
- 
												  Notes on Calculus II Integral Calculus Miguel A. LermaNotes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus.
- 
												  A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variablesmathematics Article A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables Chukwuma Ogbonnaya 1,2,* , Chamil Abeykoon 3 , Adel Nasser 1 and Ali Turan 4 1 Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK; [email protected] 2 Faculty of Engineering and Technology, Alex Ekwueme Federal University, Ndufu Alike Ikwo, Abakaliki PMB 1010, Nigeria 3 Aerospace Research Institute and Northwest Composites Centre, School of Materials, The University of Manchester, Manchester M13 9PL, UK; [email protected] 4 Independent Researcher, Manchester M22 4ES, Lancashire, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)74-3850-3799 Abstract: A system of transcendental equations (SoTE) is a set of simultaneous equations containing at least a transcendental function. Solutions involving transcendental equations are often problematic, particularly in the form of a system of equations. This challenge has limited the number of equations, with inter-related multi-functions and multi-variables, often included in the mathematical modelling of physical systems during problem formulation. Here, we presented detailed steps for using a code- based modelling approach for solving SoTEs that may be encountered in science and engineering problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to illustrate the steps. Parametric studies were performed to visualize how a change in the variables Citation: Ogbonnaya, C.; Abeykoon, affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to C.; Nasser, A.; Turan, A.
- 
												  Some Results on the Arithmetic Behavior of Transcendental FunctionsAlgebra: celebrating Paulo Ribenboim’s ninetieth birthday SOME RESULTS ON THE ARITHMETIC BEHAVIOR OF TRANSCENDENTAL FUNCTIONS Diego Marques University of Brasilia October 25, 2018 After I found the famous Ribenboim’s book (Chapter 10: What kind of p p 2 number is 2 ?): Algebra: celebrating Paulo Ribenboim’s ninetieth birthday My first transcendental steps In 2005, in an undergraduate course of Abstract Algebra, the professor (G.Gurgel) defined transcendental numbers and asked about the algebraic independence of e and π. Algebra: celebrating Paulo Ribenboim’s ninetieth birthday My first transcendental steps In 2005, in an undergraduate course of Abstract Algebra, the professor (G.Gurgel) defined transcendental numbers and asked about the algebraic independence of e and π. After I found the famous Ribenboim’s book (Chapter 10: What kind of p p 2 number is 2 ?): In 1976, Mahler wrote a book entitled "Lectures on Transcendental Numbers". In its chapter 3, he left three problems, called A,B, and C. The goal of this lecture is to talk about these problems... Algebra: celebrating Paulo Ribenboim’s ninetieth birthday Kurt Mahler Kurt Mahler (Germany, 1903-Australia, 1988) Mahler’s works focus in transcendental number theory, Diophantine approximation, Diophantine equations, etc In its chapter 3, he left three problems, called A,B, and C. The goal of this lecture is to talk about these problems... Algebra: celebrating Paulo Ribenboim’s ninetieth birthday Kurt Mahler Kurt Mahler (Germany, 1903-Australia, 1988) Mahler’s works focus in transcendental number theory, Diophantine approximation, Diophantine equations, etc In 1976, Mahler wrote a book entitled "Lectures on Transcendental Numbers".
- 
												  Which Moments of a Logarithmic Derivative Imply Quasiinvariance?Doc Math J DMV Which Moments of a Logarithmic Derivative Imply Quasi invariance Michael Scheutzow Heinrich v Weizsacker Received June Communicated by Friedrich Gotze Abstract In many sp ecial contexts quasiinvariance of a measure under a oneparameter group of transformations has b een established A remarkable classical general result of AV Skorokhod states that a measure on a Hilb ert space is quasiinvariant in a given direction if it has a logarithmic aj j derivative in this direction such that e is integrable for some a In this note we use the techniques of to extend this result to general oneparameter families of measures and moreover we give a complete char acterization of all functions for which the integrability of j j implies quasiinvariance of If is convex then a necessary and sucient condition is that log xx is not integrable at Mathematics Sub ject Classication A C G Overview The pap er is divided into two parts The rst part do es not mention quasiinvariance at all It treats only onedimensional functions and implicitly onedimensional measures The reason is as follows A measure on R has a logarithmic derivative if and only if has an absolutely continuous Leb esgue density f and is given by 0 f x ae Then the integrability of jj is equivalent to the Leb esgue x f 0 f jf The quasiinvariance of is equivalent to the statement integrability of j f that f x Leb esgueae Therefore in the case of onedimensional measures a function allows a quasiinvariance criterion as indicated in the abstract
- 
												  Plotting, Derivatives, and Integrals for Teaching Calculus in RPlotting, Derivatives, and Integrals for Teaching Calculus in R Daniel Kaplan, Cecylia Bocovich, & Randall Pruim July 3, 2012 The mosaic package provides a command notation in R designed to make it easier to teach and to learn introductory calculus, statistics, and modeling. The principle behind mosaic is that a notation can more effectively support learning when it draws clear connections between related concepts, when it is concise and consistent, and when it suppresses extraneous form. At the same time, the notation needs to mesh clearly with R, facilitating students' moving on from the basics to more advanced or individualized work with R. This document describes the calculus-related features of mosaic. As they have developed histori- cally, and for the main as they are taught today, calculus instruction has little or nothing to do with statistics. Calculus software is generally associated with computer algebra systems (CAS) such as Mathematica, which provide the ability to carry out the operations of differentiation, integration, and solving algebraic expressions. The mosaic package provides functions implementing he core operations of calculus | differen- tiation and integration | as well plotting, modeling, fitting, interpolating, smoothing, solving, etc. The notation is designed to emphasize the roles of different kinds of mathematical objects | vari- ables, functions, parameters, data | without unnecessarily turning one into another. For example, the derivative of a function in mosaic, as in mathematics, is itself a function. The result of fitting a functional form to data is similarly a function, not a set of numbers. Traditionally, the calculus curriculum has emphasized symbolic algorithms and rules (such as xn ! nxn−1 and sin(x) ! cos(x)).
- 
												  Original Research Article Hypergeometric Functions OnOriginal Research Article Hypergeometric Functions on Cumulative Distribution Function ABSTRACT Exponential functions have been extended to Hypergeometric functions. There are many functions which can be expressed in hypergeometric function by using its analytic properties. In this paper, we will apply a unified approach to the probability density function and corresponding cumulative distribution function of the noncentral chi square variate to extract and derive hypergeometric functions. Key words: Generalized hypergeometric functions; Cumulative distribution theory; chi-square Distribution on Non-centrality Parameter. I) INTRODUCTION Higher-order transcendental functions are generalized from hypergeometric functions. Hypergeometric functions are special function which represents a series whose coefficients satisfy many recursion properties. These functions are applied in different subjects and ubiquitous in mathematical physics and also in computers as Maple and Mathematica. They can also give explicit solutions to problems in economics having dynamic aspects. The purpose of this paper is to understand the importance of hypergeometric function in different fields and initiating economists to the large class of hypergeometric functions which are generalized from transcendental function. The paper is organized in following way. In Section II, the generalized hypergeometric series is defined with some of its analytical properties and special cases. In Sections 3 and 4, hypergeometric function and Kummer’s confluent hypergeometric function are discussed in detail which will be directly used in our results. In Section 5, the main result is proved where we derive the exact cumulative distribution function of the noncentral chi sqaure variate. An appendix is attached which summarizes notational abbreviations and function names. The paper is introductory in nature presenting results reduced from general formulae.
- 
												  Calculus TerminologyAP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
- 
												  Pre-Calculus-Honors-AcceleratedPUBLIC SCHOOLS OF EDISON TOWNSHIP OFFICE OF CURRICULUM AND INSTRUCTION Pre-Calculus Honors/Accelerated/Academic Length of Course: Term Elective/Required: Required Schools: High School Eligibility: Grade 10-12 Credit Value: 5 Credits Date Approved: September 23, 2019 Pre-Calculus 2 TABLE OF CONTENTS Statement of Purpose 3 Course Objectives 4 Suggested Timeline 5 Unit 1: Functions from a Pre-Calculus Perspective 11 Unit 2: Power, Polynomial, and Rational Functions 16 Unit 3: Exponential and Logarithmic Functions 20 Unit 4: Trigonometric Function 23 Unit 5: Trigonometric Identities and Equations 28 Unit 6: Systems of Equations and Matrices 32 Unit 7: Conic Sections and Parametric Equations 34 Unit 8: Vectors 38 Unit 9: Polar Coordinates and Complex Numbers 41 Unit 10: Sequences and Series 44 Unit 11: Inferential Statistics 47 Unit 12: Limits and Derivatives 51 Pre-Calculus 3 Statement of Purpose Pre-Calculus courses combine the study of Trigonometry, Elementary Functions, Analytic Geometry, and Math Analysis topics as preparation for calculus. Topics typically include the study of complex numbers; polynomial, logarithmic, exponential, rational, right trigonometric, and circular functions, and their relations, inverses and graphs; trigonometric identities and equations; solutions of right and oblique triangles; vectors; the polar coordinate system; conic sections; Boolean algebra and symbolic logic; mathematical induction; matrix algebra; sequences and series; and limits and continuity. This course includes a review of essential skills from algebra, introduces polynomial, rational, exponential and logarithmic functions, and gives the student an in-depth study of trigonometric functions and their applications. Modern technology provides tools for supplementing the traditional focus on algebraic procedures, such as solving equations, with a more visual perspective, with graphs of equations displayed on a screen.
- 
												  A Logarithmic Derivative Lemma in Several Complex Variables and Its ApplicationsTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 363, Number 12, December 2011, Pages 6257–6267 S 0002-9947(2011)05226-8 Article electronically published on June 27, 2011 A LOGARITHMIC DERIVATIVE LEMMA IN SEVERAL COMPLEX VARIABLES AND ITS APPLICATIONS BAO QIN LI Abstract. We give a logarithmic derivative lemma in several complex vari- ables and its applications to meromorphic solutions of partial differential equa- tions. 1. Introduction The logarithmic derivative lemma of Nevanlinna is an important tool in the value distribution theory of meromorphic functions and its applications. It has two main forms (see [13, 1.3.3 and 4.2.1], [9, p. 115], [4, p. 36], etc.): Estimate (1) and its consequence, Estimate (2) below. Theorem A. Let f be a non-zero meromorphic function in |z| <R≤ +∞ in the complex plane with f(0) =0 , ∞. Then for 0 <r<ρ<R, 1 2π f (k)(reiθ) log+ | |dθ 2π f(reiθ) (1) 0 1 1 1 ≤ c{log+ T (ρ, f) + log+ log+ +log+ ρ +log+ +log+ +1}, |f(0)| ρ − r r where k is a positive integer and c is a positive constant depending only on k. Estimate (1) with k = 1 was originally due to Nevanlinna, which easily implies the following version of the lemma with exceptional intervals of r for meromorphic functions in the plane: 1 2π f (reiθ) (2) + | | { } log iθ dθ = O log(rT(r, f )) , 2π 0 f(re ) for all r outside a countable union of intervals of finite Lebesgue measure, by using the Borel lemma in a standard way (see e.g.
- 
												  Notes Chapter 4(Integration) Definition of an Antiderivative1 Notes Chapter 4(Integration) Definition of an Antiderivative: A function F is an antiderivative of f on an interval I if for all x in I. Representation of Antiderivatives: If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form G(x) = F(x) + C, for all x in I where C is a constant. Sigma Notation: The sum of n terms a1,a2,a3,…,an is written as where I is the index of summation, ai is the ith term of the sum, and the upper and lower bounds of summation are n and 1. Summation Formulas: 1. 2. 3. 4. Limits of the Lower and Upper Sums: Let f be continuous and nonnegative on the interval [a,b]. The limits as n of both the lower and upper sums exist and are equal to each other. That is, where are the minimum and maximum values of f on the subinterval. Definition of the Area of a Region in the Plane: Let f be continuous and nonnegative on the interval [a,b]. The area if a region bounded by the graph of f, the x-axis and the vertical lines x=a and x=b is Area = where . Definition of a Riemann Sum: Let f be defined on the closed interval [a,b], and let be a partition of [a,b] given by a =x0<x1<x2<…<xn-1<xn=b where xi is the width of the ith subinterval.
- 
												  Calculus Formulas and TheoremsFormulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9.