Type of the Paper (Article

Total Page:16

File Type:pdf, Size:1020Kb

Type of the Paper (Article crystals Review Tryptophan, an Amino-Acid Endowed with Unique Properties and Its Many Roles in Membrane Proteins Sonia Khemaissa, Sandrine Sagan and Astrid Walrant * Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France; [email protected] (S.K.); [email protected] (S.S.) * Correspondence: [email protected] Abstract: Tryptophan is an aromatic amino acid with unique physico-chemical properties. It is often encountered in membrane proteins, especially at the level of the water/bilayer interface. It plays a role in membrane protein stabilization, anchoring and orientation in lipid bilayers. It has a hydrophobic character but can also engage in many types of interactions, such as π–cation or hydrogen bonds. In this review, we give an overview of the role of tryptophan in membrane proteins and a more detailed description of the underlying noncovalent interactions it can engage in with membrane partners. Keywords: tryptophan; membrane proteins; noncovalent interactions 1. Introduction Citation: Khemaissa, S.; Sagan, S.; Among the naturally coded eukaryote amino acids, tryptophan (Trp) is unique in Walrant, A. Tryptophan, an terms of its physico-chemical properties. Considered as an aromatic residue similarly to Amino-Acid Endowed with Unique tyrosine (Tyr), phenylalanine (Phe) or histidine (His), it is however the sole amino acid Properties and Its Many Roles in that contains two rings in its lateral side-chain, namely the indole moiety composed of Membrane Proteins. Crystals 2021, 11, a benzene ring fused to a pyrrole ring, making it the largest coded amino acid in the 1032. https://doi.org/10.3390/ natural series. cryst11091032 Depending on the many different hydrophobic/hydrophilic scales that have been developed over the years by different research groups to rank amino acids, Trp is seen Academic Editors: Antonio Bauzá and Marta E. G. Mosquera as more or less hydrophobic. The nitrogen of its indole ring can indeed be engaged in hydrogen bonds, which may facilitate the solubility of proteins. Its large quadrupole allows Received: 27 July 2021 it to engage in intense π–π or π–cation interactions. In addition, Trp has a dipole moment Accepted: 24 August 2021 similar to Tyr but not Phe. All these specific physico-chemical properties make Trp unique Published: 27 August 2021 in biological functions and localizations of proteins. In this review, we develop how these unique Trp properties are crucial for membrane proteins and help to understand their Publisher’s Note: MDPI stays neutral membrane location and functions. with regard to jurisdictional claims in published maps and institutional affil- 2. Trp in Membrane Proteins iations. 2.1. Trp Localization at the Lipid/Water Interface of Membrane Proteins The analysis of amino acids distribution in proteins indicates that Trp is mostly located in transmembrane proteins, where it represents 3.3% of amino acid composition, whereas it only represents 1.2% for soluble proteins [1]. Copyright: © 2021 by the authors. In these transmembrane proteins, Trp has a strong preference for the bilayer interface Licensee MDPI, Basel, Switzerland. as demonstrated for the first time by Jacobs and White using neutron diffraction [2]. Since This article is an open access article then, other techniques have been used in order to determine Trp localization, including distributed under the terms and X-ray diffraction [3], nuclear magnetic resonance (NMR) [4], fluorescence spectroscopy [5] conditions of the Creative Commons and molecular simulations [6]. All these studies converge towards the same direction: Trp Attribution (CC BY) license (https:// is located at the lipid/water interface. Actually, Trp is not the only residue found at the creativecommons.org/licenses/by/ interface, aromatic residues in general have this preferential location in transmembrane 4.0/). Crystals 2021, 11, 1032. https://doi.org/10.3390/cryst11091032 https://www.mdpi.com/journal/crystals Crystals 2021, 11, x FOR PEER REVIEW 2 of 14 Crystals 2021, 11, 1032 2 of 13 Trp is located at the lipid/water interface. Actually, Trp is not the only residue found at the interface, aromatic residues in general have this preferential location in transmem- proteins in both α helix and β sheet structures, which is called “the aromatic belt” [7] brane proteins in both α helix and β sheet structures, which is called “the aromatic belt” (Figure1). [7] (Figure 1). FigureFigure 1. 1.Position Position of of amino amino acids acids in in transmembrane transmembrane proteins. proteins. Interestingly,Interestingly, aromatic aromatic residues residues are are not not randomly randomly distributed distributed at the at interfaces. the interfaces. Indeed, In- aromaticdeed, aromatic residues residues are often are mainly often mainly located locate at thed lipid–extracellularat the lipid–extracellular interface interface [8]. This [8]. observationThis observation is reported is reported in the in case the ofcase the of photosyntheticthe photosynthetic reaction reaction center, center, where where Trp Trp is mainlyis mainly located located in the in periplasmicthe periplasmic side [side1]. Another [1]. Another study study points points out this out particularity this particularity for 29 integralfor 29 integral proteins, proteins, highlighting highlighting the fact that the Trp fact is locatedthat Trp at is the located noncytoplasmic at the noncytoplasmic interface for αinterfacehelical transmembrane for α helical transmembrane proteins according proteins to a sequence-based according to a method.sequence-based The same method. study showsThe same that thisstudy residue shows is that more this present residue in α ishelical more present structures in thanα helical in β sheetstructures structures than [in7]. β However,sheet structures this tendency [7]. However, is not true this fortendency all proteins. is not Fortrue example, for all proteins. in the transmembrane For example, in segmentsthe transmembrane of human type segments I single-span of human membrane type I proteins, single-span Trp ismembrane found at both proteins, ends ofTrp the is hydrophobicfound at both domain, ends of whereas the hydrophobic Tyr is only domain, located whereas at the C-terminal Tyr is only boundary located at and the Phe C-ter- is foundminal inside boundary the hydrophobic and Phe is found domain inside and the at thehydrophobic Tyr position domain [8]. and at the Tyr position [8]. Trp is found at the interface and, more precisely, in the region of acyl carbonyl groups of theTrp lipid is bilayer,found at as the evidenced interface byand, the more chemical precisely, shift in change the region of the of signals acyl carbonyl attributed groups to theof cholinethe lipid group bilayer, in theas evidenced presence of by Trp the [ 9chem,10]. ical shift change of the signals attributed to the Anothercholine group study in shows the presence that Trp isof also Trp found [9,10]. in the glycerol region and in the hydropho- 1 2 bic coreAnother of lipid study bilayers, shows according that Trp is to alsoH andfoundH in NMR the glycerol studies. region The authorsand in the propose hydro- π thatphobic Trp locationcore of lipid in the bilayers, choline according region could to 1 beH and mainly 2H governedNMR studies. by cation– The authorsinteractions, propose whereasthat Trp inlocation the glycerol in the choline region, region other kindscould be of mainly interactions governed could by be cation– involved,π interactions, such as vanwhereas der Waals in the interactions, glycerol region, dipolar other interactions, kinds of interactions entropic contribution could be involved, or even such hydrogen as van bonding [10,11]. The interfacial localization of Trp allows it to establish interactions with der Waals interactions, dipolar interactions, entropic contribution or even hydrogen choline moieties, as mentioned above, but it can also be involved in interactions with other bonding [10,11]. The interfacial localization of Trp allows it to establish interactions with molecules present in its environment such as water with which hydrogen bonds are formed. choline moieties, as mentioned above, but it can also be involved in interactions with other Cationic residues in proteins, such as Arg and Lys, are located near phosphate moieties molecules present in its environment such as water with which hydrogen bonds are because a deeper localization inside a hydrophobic core is energetically unfavorable and formed. Cationic residues in proteins, such as Arg and Lys, are located near phosphate leads to specific lipid organization [12]. Trp can also interact favorably with these cationic moieties because a deeper localization inside a hydrophobic core is energetically unfavor- residues through cation–π interactions. able and leads to specific lipid organization [12]. Trp can also interact favorably with these Trp has a preference for the hydrophilic region over the hydrophobic core [13]. If cationic residues through cation–π interactions. we focus on its orientation in a bilayer, the benzene moiety of the indole prefers the Trp has a preference for the hydrophilic region over the hydrophobic core [13]. If we hydrophobic core, whereas the pyrrole moiety points towards the more hydrophilic part of focus on its orientation in a bilayer, the benzene moiety of the indole prefers the the lipid bilayer [8,14] Crystals 2021, 11, 1032 3 of 13 Molecular simulations for indoles in
Recommended publications
  • Consensus Guideline for the Diagnosis and Treatment of Aromatic L-Amino
    Wassenberg et al. Orphanet Journal of Rare Diseases (2017) 12:12 DOI 10.1186/s13023-016-0522-z REVIEW Open Access Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency Tessa Wassenberg1, Marta Molero-Luis2, Kathrin Jeltsch3, Georg F. Hoffmann3, Birgit Assmann3, Nenad Blau4, Angeles Garcia-Cazorla5, Rafael Artuch2, Roser Pons6, Toni S. Pearson7, Vincenco Leuzzi8, Mario Mastrangelo8, Phillip L. Pearl9, Wang Tso Lee10, Manju A. Kurian11, Simon Heales12, Lisa Flint13, Marcel Verbeek1,14, Michèl Willemsen1 and Thomas Opladen3* Abstract Aromatic L-amino acid decarboxylase deficiency (AADCD) is a rare, autosomal recessive neurometabolic disorder that leads to a severe combined deficiency of serotonin, dopamine, norepinephrine and epinephrine. Onset is early in life, and key clinical symptoms are hypotonia, movement disorders (oculogyric crisis, dystonia, and hypokinesia), developmental delay, and autonomic symptoms. In this consensus guideline, representatives of the International Working Group on Neurotransmitter Related Disorders (iNTD) and patient representatives evaluated all available evidence for diagnosis and treatment of AADCD and made recommendations using SIGN and GRADE methodology. In the face of limited definitive evidence, we constructed practical recommendations on clinical diagnosis, laboratory diagnosis, imaging and electroencephalograpy, medical treatments and non-medical treatments. Furthermore, we identified topics for further research. We believe this guideline will improve the care for AADCD patients around the world whilst promoting general awareness of this rare disease. Keywords: Aromatic l-amino acid decarboxylase deficiency, AADC deficiency, Neurotransmitter, Dopamine, Serotonin, Guideline, Infantile dystonia-parkinsonism, SIGN, GRADE German abstract Der Aromatische L-Aminosäuren Decarboxylase Mangel (AADCD) ist eine seltene autosomal rezessive neurometabolische Störung, die zu einem schweren kombinierten Mangel an Serotonin, Dopamin, Norepinephrin und Epinephrin führt.
    [Show full text]
  • Plasma Amino-Acid Patterns in Liver Disease
    Gut: first published as 10.1136/gut.23.5.362 on 1 May 1982. Downloaded from Gut, 1982, 23, 362-370 Plasma amino-acid patterns in liver disease MARSHA Y MORGAN*, A W MARSHALL, JUDITH P MILSOM, and SHEILA SHERLOCK From the Department of Medicine, Royal Free Hospital, London SUMMARY Plasma amino-acid concentrations were measured in 167 patients with liver disease of varying aetiology and severity, all free of encephalopathy, and the results compared with those in 57 control subjects matched for age and sex. In the four groups of patients with chronic liver disease (26 patients with chronic active hepatitis, 23 with primary biliary cirrhosis, 11 with cryptogenic cirrhosis, and 48 with alcoholic hepatitis±cirrhosis) plasma concentrations of methionine were significantly increased, while concentrations of the three branched chain amino-acids were significantly reduced. In the first three groups of patients plasma concentrations of aspartate, serine, and one or both of the aromatic amino-acids tyrosine and phenylalanine were also significantly increased, while in the patients with alcoholic hepatitis±cirrhosis plasma concentrations of glycine, alanine, and phenylalanine were significantly reduced. In the three groups of patients with minimal, potentially reversible liver disease (31 patients with alcoholic fatty liver, 10 with viral hepatitis, and 18 with biliary disease) plasma concentrations of proline and the three branched chain amino-acids were significantly reduced. Patients with alcoholic fatty liver also showed significantly reduced plasma phenylalanine values. Most changes in plasma amino-acid concentrations in patients with chronic liver disease may be explained on the basis of impaired hepatic function, portal-systemic shunting of blood, and hyperinsulinaemia and http://gut.bmj.com/ hyperglucagonaemia.
    [Show full text]
  • Toward Refined Theoretical Models for the Description of Lipophilicity in Biomolecules
    Toward Refined Theoretical Models for the Description of Lipophilicity in Biomolecules William J. Zamora Ramírez ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • 8.2 Shikimic Acid Pathway
    CHAPTER 8 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORAromatic SALE OR DISTRIBUTION and NOT FOR SALE OR DISTRIBUTION Phenolic Compounds © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER OUTLINE Overview Synthesis and Properties of Polyketides 8.1 8.5 Synthesis of Chalcones © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 8.2 Shikimic Acid Pathway Synthesis of Flavanones and Derivatives NOT FOR SALE ORPhenylalanine DISTRIBUTION and Tyrosine Synthesis NOT FOR SALESynthesis OR DISTRIBUTION and Properties of Flavones Tryptophan Synthesis Synthesis and Properties of Anthocyanidins Synthesis and Properties of Isofl avonoids Phenylpropanoid Pathway 8.3 Examples of Other Plant Polyketide Synthases Synthesis of Trans-Cinnamic Acid Synthesis and Activity of Coumarins Lignin Synthesis Polymerization© Jonesof Monolignols & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC Genetic EngineeringNOT FOR of Lignin SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Natural Products Derived from the 8.4 Phenylpropanoid Pathway Natural Products from Monolignols © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 119 © Jones & Bartlett Learning, LLC.
    [Show full text]
  • Pattern of Aromatic and Hydrophobic Amino Acids Critical for One of Two
    Proc. Nati. Acad. Sci. USA Vol. 90, pp. 883-887, February 1993 Biochemistry Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator (transcriptional activation/herpes simplex virus/site-directed mutagenesis/virion protein Vmw65/a-trans-inducing factor) JEFFREY L. REGIER*, FAN SHENt, AND STEVEN J. TRIEZENBERG*t* *Genetics Program and tDepartment of Biochemistry, Michigan State University, East Lansing, MI 48824-1319 Communicated by Steven McKnight, September 29, 1992 (receivedfor review July 14, 1992) ABSTRACT Structural features of the transcriptional ac- tivation domain ofthe herpes simplex virion protein VP16 were I examined by oligonucleotide-directed mutagenesis. Extensive 413 456 490 mutagenesis at position 442 of the truncated VP16 activation Leu Asp Asp Phe Asp LeuAspMet MtAla Asp Phe Glu Phe Glu Gln Met domain (A456), normally occupied by a phenylalanine residue, 439 442 444 473 475 demonstrated the importance ofan aromatic amino acid at that position. On the basis of an alignment of the VP16 sequence FIG. 1. Schematic representation of the VP16 activation domain surrounding Phe-442 and the sequences of other transcrip- (amino acids 413-490). The truncated VP16 activation domain (A456) tional activation domains, we subjected leucine residues at lacks residues 457-490 (24, 31). Portions ofthe amino acid sequence positions 439 and 444 of VP16 to mutagenesis. Results from are shown, using hollow type for hydrophobic amino acids and bold these experiments suggest that bulky hydrophobic residues type for acidic amino acids. flanking Phe-442 also contribute signifucantly to the function of In the case of VP16, the amino-terminal region of the protein the truncated VP16 activation domain.
    [Show full text]
  • Monoamine Biosynthesis Via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom
    Monoamine Biosynthesis via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Torrens-Spence, Michael Patrick et al. "Monoamine Biosynthesis via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom." ACS chemical biology 13 (2018): 3343-3353 © 2018 The Author(s) As Published 10.1021/acschembio.8b00821 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/124629 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Articles Cite This: ACS Chem. Biol. XXXX, XXX, XXX−XXX pubs.acs.org/acschemicalbiology Monoamine Biosynthesis via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom † ∇ † ‡ § ∇ † † ∥ Michael Patrick Torrens-Spence, , Chun-Ting Liu, , , , Tomaś̌Pluskal, Yin Kwan Chung, , † ‡ and Jing-Ke Weng*, , † Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States ‡ Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States § Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States ∥ Division of Life Science, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China *S Supporting Information ABSTRACT: Aromatic L-amino acid decarboxylases (AAADs) are a phylogenetically diverse group of enzymes responsible for the decarboxylation of aromatic amino acid substrates into their corresponding aromatic arylalkylamines. AAADs have been extensively studied in mammals and plants as they catalyze the first step in the production of neurotransmitters and bioactive phytochemicals, respectively.
    [Show full text]
  • 4 Aromatic Amino Acids in the Brain M
    4 Aromatic Amino Acids in the Brain M. Cansev . R. J. Wurtman 1 Introduction ..................................................................................... 60 2 Sources of Aromatic Amino Acids .............................................................. 61 3 Plasma Concentrations of the Aromatic Amino Acids . ........................................ 62 3.1 Plasma Tryptophan . .......................................................................... 66 3.1.1 Tryptophan Dioxygenase and Indoleamine Dioxygenase . .................................. 66 3.1.2 Eosinophilia‐Myalgia Syndrome . ................................................................ 69 3.2 Plasma Tyrosine .................................................................................... 69 3.2.1 Tyrosine Aminotransferase . ................................................................ 70 3.3 Plasma Phenylalanine . .......................................................................... 72 3.3.1 Phenylalanine Hydroxylase . ................................................................ 72 4 Brain Tryptophan and Tyrosine ................................................................ 73 4.1 Transport of Plasma Tryptophan and Tyrosine into the Brain . .................................. 74 4.2 Brain Tryptophan . .......................................................................... 75 4.2.1 Tryptophan Hydroxylase . .......................................................................... 77 4.2.2 5‐Hydroxytryptophan and l‐DOPA ...............................................................
    [Show full text]
  • Detergents As Membrane-Mimetic Media for Structural Characterization of Membrane Proteins
    Detergents as membrane-mimetic media for structural characterization of membrane proteins. by David Vincent Tulumello A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Biochemistry University of Toronto © Copyright by David Vincent Tulumello 2012 Detergents as membrane-mimetic media for structural characterization of membrane proteins. David Vincent Tulumello Doctor of Philosophy Department of Biochemistry University of Toronto 2012 Abstract Membrane proteins are essential cellular components, responsible for a wide variety of biological functions. In order to better understand such aspects of cell activity, researchers have pursued detailed structural analysis of this class of proteins. Because of the complexities in isolating and studying membrane proteins in their native environment, detergents are often employed as a membrane mimetic media. This thesis examines several features of transmembrane (TM) protein structure and folding in detergents through which we are able to gain insights into membrane protein folding, as well as explore the suitability of detergents as membrane-mimetic environments. We first compare the helix-helix association of a series of model TM sequences in a native bilayer to the corresponding association in a detergent environment. We find that while various classes of helix-helix interaction motifs are preserved in detergents, alterations in detergent solvation may, in turn, lead to altered association affinity. We further explore this phenomenon through investigation of the consequences of the insertion of a strongly polar residue into a TM segment. In these studies we find a correlation between sequence-dependent ii alterations in detergent solvation and predicted in vivo folding. We also extend such analyses to a variety of detergents and native TM segments, finding that native secondary structure, as it occurs in the context of a full-length protein, is generally well preserved in a variety of detergents.
    [Show full text]
  • Biomolecules
    biomolecules Article Comparing Interfacial Trp, Interfacial His and pH Dependence for the Anchoring of Tilted Transmembrane Helical Peptides Fahmida Afrose and Roger E. Koeppe II * Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; [email protected] * Correspondence: [email protected]; Tel.: +(1)-479-575-4976 Received: 16 January 2020; Accepted: 10 February 2020; Published: 11 February 2020 Abstract: Charged and aromatic amino acid residues, being enriched toward the terminals of membrane-spanning helices in membrane proteins, help to stabilize particular transmembrane orientations. Among them, histidine is aromatic and can be positively charge at low pH. To enable investigations of the underlying protein-lipid interactions, we have examined the effects of single or pairs of interfacial histidine residues using the constructive low-dynamic GWALP23 (acetyl-GG2ALW5LALALALALALALW19LAG22A-amide) peptide framework by incorporating individual or paired histidines at locations 2, 5, 19 or 22. Analysis of helix orientation by means of solid-state 2H NMR spectra of labeled alanine residues reveals marked differences with H2,22 compared to W2,22. Nevertheless, the properties of membrane-spanning H2,22WALP23 helices show little pH dependence and are similar to those having Gly, Arg or Lys at positions 2 and 22. The presence of H5 or H19 influences the helix rotational preference but not the tilt magnitude. H5 affects the helical integrity, as residue 7 unwinds from the core helix; yet once again the helix orientation and dynamic properties show little sensitivity to pH. The overall results reveal that the detailed properties of transmembrane helices depend upon the precise locations of interfacial histidine residues.
    [Show full text]
  • The Uniqueness of Tryptophan in Biology: Properties, Metabolism, Interactions and Localization in Proteins
    International Journal of Molecular Sciences Review The Uniqueness of Tryptophan in Biology: Properties, Metabolism, Interactions and Localization in Proteins Sailen Barik 3780 Pelham Drive, Mobile, AL 36619, USA; [email protected] Received: 2 November 2020; Accepted: 17 November 2020; Published: 20 November 2020 Abstract: Tryptophan (Trp) holds a unique place in biology for a multitude of reasons. It is the largest of all twenty amino acids in the translational toolbox. Its side chain is indole, which is aromatic with a binuclear ring structure, whereas those of Phe, Tyr, and His are single-ring aromatics. In part due to these elaborate structural features, the biosynthetic pathway of Trp is the most complex and the most energy-consuming among all amino acids. Essential in the animal diet, Trp is also the least abundant amino acid in the cell, and one of the rarest in the proteome. In most eukaryotes, Trp is the only amino acid besides Met, which is coded for by a single codon, namely UGG. Due to the large and hydrophobic π-electron surface area, its aromatic side chain interacts with multiple other side chains in the protein, befitting its strategic locations in the protein structure. Finally, several Trp derivatives, namely tryptophylquinone, oxitriptan, serotonin, melatonin, and tryptophol, have specialized functions. Overall, Trp is a scarce and precious amino acid in the cell, such that nature uses it parsimoniously, for multiple but selective functions. Here, the various aspects of the uniqueness of Trp are presented in molecular terms. Keywords: tryptophan; indole; virus; immunity; serotonin; kynurenine; codon 1. Introduction Tryptophan (Trp, W) is one of three aromatic amino acids that minimally contain a six-membered benzene ring in their side chains, the other two being phenylalanine (Phe, F) and tyrosine (Tyr, Y).
    [Show full text]
  • Letter to the Editor: a Response to Horne and Lucey (2017)
    Carver, J. A., Thorn, D. C., Ecroyd, H. and Holt, C. (2017) Letter to the Editor: a response to Horne and Lucey (2017). Journal of Dairy Science, 100(7), pp. 5121-5124. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/143198/ Deposited on: 7 July 2017 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Response to Horne and Lucey In 2013, we wrote a review in the Journal of Dairy Science (Holt et al., 2013) and another in the International Dairy Journal in 2015 (Thorn et al., 2015), both dealing with the application of modern protein science concepts to the chemistry and physics of caseins. These were substantial documents with an important message. We brought together results from the burgeoning new fields of intrinsically disordered proteins (IDPs), amyloid fibril formation and molecular chaperone action to provide a radically new view of caseins and the casein micelle. We showed, through various examples, that caseins were far from unique among proteins in their behaviour and that other IDPs provided better models for understanding caseins than either globular proteins or soap molecules. New concepts have been developed within the IDP field to explain how IDPs interact with each other and with intermediately folded globular proteins to form either amyloid fibrils, amorphous aggregates, gels or precipitates. These ideas relate to interactions between main-chain groups having low sequence specificity (also called promiscuous interactions) that are important in the action of caseins as molecular chaperones and in forming amorphous aggregates such as the casein micelle.
    [Show full text]
  • Editorial: Aromatic Amino Acid Metabolism
    EDITORIAL published: 10 April 2019 doi: 10.3389/fmolb.2019.00022 Editorial: Aromatic Amino Acid Metabolism Qian Han 1*, Robert S. Phillips 2* and Jianyong Li 3* 1 Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Life Sciences and Pharmacy, Hainan University, Haikou, China, 2 Department of Chemistry, University of Georgia, Athens, GA, United States, 3 Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States Keywords: aromatic amino acids, metabolism, tryptophan, serotoinin, melatonin, auxin, kynurenine, dopamine Editorial on the Research Topic Aromatic Amino Acid Metabolism Aromatic amino acids, like other proteinogenic amino acids, are the building blocks of proteins and include phenylalanine, tryptophan, and tyrosine. All plants and micro-organisms synthesize their own aromatic amino acids to make proteins (Braus, 1991; Tzin and Galili, 2010). However, animals have lost these costly metabolic pathways for aromatic amino acids synthesis and must instead obtain the amino acids through their diet. Herbicides take advantage of this by inhibiting enzymes involved in aromatic amino acid synthesis, thereby making them toxic to plants but not to animals (Healy-Fried et al., 2007). In animals and humans, aromatic amino acids serve as precursors for the synthesis of many biologically/neurologically active compounds that are essential for maintaining normal biological functions. Tyrosine is the initial precursor for the biosynthesis of dopa, dopamine, octopamine, norepinephrine, and epinephrine, etc., that are fundamental by functioning as neurotransmitters or Edited and reviewed by: hormones for animals and humans (Vavricka et al., 2010). In addition, tyrosine is the precursor for Loredano Pollegioni, melanin synthesis in most organisms including humans and animals, and is particularly important University of Insubria, Italy in insects for protection (Whitten and Coates, 2017).
    [Show full text]