Age and Origin of Fluvial Terraces in the Central Coast Range, Western Oregon

Total Page:16

File Type:pdf, Size:1020Kb

Age and Origin of Fluvial Terraces in the Central Coast Range, Western Oregon Age and Origin of Fluvial Terraces in the Central Coast Range, Western Oregon By STEPHEN F. PERSONIUS U.S. GEOLOGICAL SURVEY BULLETIN 2038 Radiocarbon and thermoluminescence dating methods are used to determine the ages and probable origins offluvial terraces UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M Hirsch, Acting Director For sale by USGS Map Distribution Box 25286, Building 810 Denver Federal Center Denver, CO 80225 Any use of trade, product, or finn names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Personius, Stephen F. Age and origin of fluvial terraces in the central Coast Range, western Oregon I by Stephen F. Personius. p. em. - (U.S. Geological Survey bulletin; 2038) Includes bibliographical references. Supt. of Docs. no.: I 19.3:B2038 1. Terraces (Geology)-Oregon. 2. Terraces (Geology)-Coast Ranges. I. Title. II. Series. QE75.B9 no. 2038 [GB595.07] 557.3 s-dc20 92-23352 [551.4'42] CIP CONTENTS Abstract ................................................................................................................................ 1 Introduction .......................................................................................................................... 1 Scope and Purpose ..................................................................................................... 1 Geomorphic Setting ................................................................................................... 4 Climate ...................................................................................................................... .. 4 Bedrock Geology ....................................................................................................... 4 Methods ............................................................................................................................... 4 Terrace Dating Methods .................. ........................................................................... 4 Radiocarbon Dating.............................................................................................. 4 Thermoluminescence Dating................................................................................ 5 Other Dating Methods .................... ...................................................................... 8 Terrace Heights and Profile Construction .................................................................. 10 General Characteristics of Coast Range Terraces ................................................................ 11 Terrace Stratigraphy ................................................................................................... 11 Controls On Terrace Formation.................................................................................. 11 Sediment Accumulation Rates.................................................................................... 12 Terraces Along the Umpqua River ...................................................................................... 14 Latest Pleistocene and Holocene Terraces ................................................................ 14 Pleistocene-Holocene Transition (PHT) Terrace Exposures Near McGee Creek 14 PHT Terrace near Elkton ..................................................................................... 16 PHT Terraces Near the Coast ............................................................................. .. 16 Low Terraces Near the Coast ............................................................................. .. 19 Other Holocene Terraces ..................................................................................... 19 Older Terraces ........................................................................................................... 20 Marine Terraces ................................................................................................... 20 Intermediate Terraces Near Reedsport ............................................................... .. 21 High Terrace at Reedsport ................................................................................... 23 High Terrace Along Crestview Drive .................................................................. 25 High Terraces Along Henderer Road ................................................................. .. 26 Terraces Along the Smith River .......................................................................................... 27 Terraces Upstream from the Island ............................................................................ 27 Terraces in the Island ................................................................................................ .. 30 Terraces Between the Island and Brainard Creek. .................................................... .. 33 Terraces Near Brainard Creek ................................................................................... 33 Terraces Downstream from Brainard Creek .............................................................. 34 Terraces Along the Siuslaw River ...................................................................................... .. 36 Holocene Terrace ....................................................................................................... 36 Older Terraces ........................................................................................................... 36 Marine Terraces ................................................................................................... 36 Older Fluvial Terraces ......................................................................................... 39 Terraces Along the Siletz River ........................................................................................... 41 Latest Pleistocene and Holocene Terraces ................................................................ 43 Late Pleistocene Terraces .......................................................................................... 43 Older Terraces ........................................................................................................... 46 Marine Terraces ................................................................................................... 46 Older Fluvial Terraces ......................................................................................... 46 Terraces Along the CO<Juille River ............................................................................ 48 Discussion ............................................................................................................................ 51 Origin of Latest Pleistocene/Early Holocene Aggradation ....................................... 51 III IV CONTENTS Discussion-Continued Relations Between the PHT and Other Coast Range Terraces ................................... 52 Conclusion............................................................................................................................. 52 Acknowledgments................................................................................................................. 53 References Cited .. ............... .. .............. .......... ............. ........................................................... 53 PLATES [Plates are in pocket] 1. Generalized map of terraces along the lower Umpqua River, central Coast Range, western Oregon. 2. Generalized map of terraces along the lower Smith River, central Coast Range, western Oregon. 3. Generalized map of terraces along the lower Siuslaw River, central Coast Range, western Oregon. 4. Generalized map of terraces along the lower Siletz River, central Coast Range, western Oregon. FIGURES 1. Map showing regional tectonic setting of the Pacific Northwest................................................................................ 2 2. Map showing the location of major rivers in western Oregon and Washington......................................................... 3 3. Stratigraphic columns of three fluvial terrace exposures along the Umpqua River where both thermoluminescence (1L) and radiocarbon samples were collected ............................................................................................................ 9 4. Stratigraphic columns of radiocarbon-dated fluvial sediments used to calculate sedimentation rates........................ 13 5. Longitudinal profile of terraces along the lower reach of the Umpqua River............................................................. 15 6. Photograph ofPHT (Pleistocene-Holocene transition) terrace on the Umpqua River near McGee Creek ................. 16 7. Rod-and-level profile of stripped bedrock strath and PHT (Pleistocene-Holocene transition) terrace near McGee Creek on the Umpqua River........................................................................................................................... 17 8. Stratigraphic column from a PHT (Pleistocene-Holocene transition) terrace exposure near McGee Creek at station 88-U2 ........... .. ....... ... .. .. ... ... ............ ............. .............................. ..................................................... .. .... ... ..... 18 9. Stratigraphic column from a terrace exposure about 2 km downstream from the highway bridge near Scottsburg at station 87-Ul4........................................................................................................................................................
Recommended publications
  • Geomorphometric Delineation of Floodplains and Terraces From
    Earth Surf. Dynam., 5, 369–385, 2017 https://doi.org/10.5194/esurf-5-369-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds Fiona J. Clubb1, Simon M. Mudd1, David T. Milodowski2, Declan A. Valters3, Louise J. Slater4, Martin D. Hurst5, and Ajay B. Limaye6 1School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh, EH8 9XP, UK 2School of GeoSciences, University of Edinburgh, Crew Building, King’s Buildings, Edinburgh, EH9 3JN, UK 3School of Earth, Atmospheric, and Environmental Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK 4Department of Geography, Loughborough University, Loughborough, LE11 3TU, UK 5School of Geographical and Earth Sciences, East Quadrangle, University of Glasgow, Glasgow, G12 8QQ, UK 6Department of Earth Sciences and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA Correspondence to: Fiona J. Clubb ([email protected]) Received: 31 March 2017 – Discussion started: 12 April 2017 Revised: 26 May 2017 – Accepted: 9 June 2017 – Published: 10 July 2017 Abstract. Floodplain and terrace features can provide information about current and past fluvial processes, including channel response to varying discharge and sediment flux, sediment storage, and the climatic or tectonic history of a catchment. Previous methods of identifying floodplain and terraces from digital elevation models (DEMs) tend to be semi-automated, requiring the input of independent datasets or manual editing by the user. In this study we present a new method of identifying floodplain and terrace features based on two thresholds: local gradient, and elevation compared to the nearest channel.
    [Show full text]
  • 5Site Assessment
    Site Assessment 55.1 Collecting Site Data 5.2 Analyzing and Interpreting Site Data 5.3 Project Site Risk Assessment 5.4 Document Key Design Considerations and Recommendations 5.5 Reference Reach: The Pattern for Stream- Simulation Design Stream Simulation Steps and Considerations in Site Assessment Sketch a planview map Topographic survey l Site and road topography. l Channel longitudinal profile. l Channel and flood-plain cross sections. Measure size and observe arrangement of bed materials l Pebble count or bulk sample. l Bed mobility and armoring. l Bed structure type and stability (steps, bars, key features). Describe bank characteristics and stability Conduct preliminary geotechnical investigation l Bedrock. l Soils. l Engineering properties. l Mass wasting. l Ground water. Analyze and interpret site data l Bed material size and mobility. l Cross section analysis. Flood-plain conveyance. Bank stability. Lateral adjustment potential. l Longitudinal profile analysis. Vertical adjustment potential. l General channel stability. Document key design considerations and recommendations. RESULTS Geomorphic characterization of reach. Engineering site plan map for design. Understanding of site risk factors and potential channel changes over structure lifetime. Detailed project objectives, including extent and objectives of any channel restoration. Design template for simulated streambed (reference reach). Figure 5.1—Steps and considerations in site assessment. Chapter 5—Site Assessment After verifying that the site is suitable for a crossing and will probably be suitable for stream simulation, the next step is to conduct a thorough site assessment. In this phase, you will collect the topographic and other data necessary for designing both the stream-simulation channel and the crossing structure and road approaches.
    [Show full text]
  • River Terraces and Alluvial Fans: the Case for an Integrated Quaternary Fluvial Archive
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 01 University of Plymouth Research Outputs University of Plymouth Research Outputs 2016-10-21 River terraces and alluvial fans: The case for an integrated Quaternary fluvial archive Mather, A http://hdl.handle.net/10026.1/6673 10.1016/j.quascirev.2016.09.022 Quaternary Science Reviews All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. This is an accepted manuscript of an article published by Elsevier in Quaternary Science Reviews available at: http://dx.doi.org/10.1016/j.quascirev.2016.09.022 River terraces and alluvial fans: the case for an integrated Quaternary fluvial archive 1Mather, A.E., 1Stokes, M., 2Whitfield, E. 1School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK 2School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK Abstract The fluvial archive literature is dominated by research on river terraces with appropriate mention of adjacent environments such as lakes. Despite modern sedimentary basins comprising a significant (>88%) volume of distributive fluvial systems, of which alluvial fans (>1km, <30km in scale) are a significant part, interaction with these environments tends to be neglected and discussed in separate literature. This paper examines the dynamic role of alluvial fans within the fluvial landscape and their interaction with river systems, highlighting the potential value of alluvial fans to the wider fluvial archive community.
    [Show full text]
  • Fluvial Terrace on the Huntington River – Deglacial and Post-Glacial History of Northern Vermont
    Geol 151 – Geomorphology Fall 2008 Your Name_________________________ Survey Partners_________________________ _________________________ _________________________ Fluvial Terrace on the Huntington River – Deglacial and Post-glacial History of Northern Vermont Fig 5.2 from Whalen, 1998. Schematic evolution of valley formation Introduction: We will return to the Huntington River Audubon Center this week to learn how to rapidly survey (using Pop-Levles) a flight of fluvial terraces formed during the deglacial and post-glacial history of the Huntington and Winooski River valleys, Vermont. In addition to these fast surveys, we will construct more detailed cross-sections of several fluvial features and terrace risers (scarps) cut into floodplains abandoned by the Huntington River during the Holocene using instruments called Auto-Levels. Finally, we will place the data we collect in the context of a pre-existing and comprehensive body of work assembled by Tim Whalen in 1998 in order to understand better how the landscape we tread upon today was created in the past through the actions of ice, falling levels of pro- glacial lakes, flowing water, changing climate, and the activities of humans over the past 200 years. What to hand in: This handout with all questions answered, your Pop Level and Auto Level field sketches drawn to scale, an excel plot of your auto-level cross-section (Completed by end of class on Friday), and your concept sketches of the Huntington River longitudinal profiles. 1 Geol 151 – Geomorphology Fall 2008 Gear we will need: • 5 GPS units • 5 of each the ortho and topo laminated maps. • 5 pop levels • 100 m, and several 30 m tapes.
    [Show full text]
  • U.S. GEOLOGICAL SURVEY BULLETIN 2085-A R^C I V"*, *>*S*->^R*>*:^
    Stratigraphy, Sedimentology, and Provenance of the Raging River Formation (Early? and Middle Eocene), King County, Washington U.S. GEOLOGICAL SURVEY BULLETIN 2085-A r^c i V"*, *>*s*->^r*>*:^ l1^ w >*': -^- ^^1^^"g- -'*^t» *v- »- -^* <^*\ ^fl' y tf^. T^^ ?iM *fjf.-^ Cover. Steeply dipping beds (fluvial channel deposits) of the Eocene Puget Group in the upper part of the Green River Gorge near Kanaskat, southeastern King County, Washington. Photograph by Samuel Y. Johnson, July 1992. Stratigraphy, Sedimentology, and Provenance of the Raging River Formation (Early? and Middle Eocene), King County, Washington By Samuel Y. Johnson and Joseph T. O'Connor EVOLUTION OF SEDIMENTARY BASINS CENOZOIC SEDIMENTARY BASINS IN SOUTHWEST WASHINGTON AND NORTHWEST OREGON Samuel Y. Johnson, Project Coordinator U.S. GEOLOGICAL SURVEY BULLETIN 2085-A A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Johnson, Samuel Y. Stratigraphy, sedimentology, and provenance of the Raging River Formation (Early? and Middle Eocene), King County, Washington/by Samuel Y. Johnson and Joseph T. O'Connor. p. cm. (U.S. Geological Survey bulletin; 2085) (Evolution of sedimentary basins Cenozoic sedimentary basins in southwest Washington and northwest Oregon; A) Includes bibliographical references.
    *S*->^R*>*:^" class="panel-rg color-a">[Show full text]
  • Mega Palace 5211 Route 38; Pennsauken, Nj 08109
    STORMWATER MANAGEMENT REPORT MEGA PALACE 5211 ROUTE 38; PENNSAUKEN, NJ 08109 PREPARED FOR: MEGA PALACE INVESTMENT, LP 5201 ROUTE 38 PENNSAUKEN, NJ 08109 PREPARED BY: CIVIL & ENVIRONMENTAL CONSULTANTS, INC. 370 EAST MAPLE AVE; SUITE 304 LANGHORNE, PA 19047 CEC PROJECT 194-266 FEBRUARY 2020 REVISED MAY 2020 MEGA PALACE STORMWATER MANAGEMENT REPORT TABLE OF CONTENTS 1.0 GENERAL PROJECT DESCRIPTION .........................................................................3 1.1 Site/Project Information .......................................................................................... 3 1.2 Owner of Record: Mega Palace Investment, LP ..................................................... 3 1.3 Existing Conditions ................................................................................................. 3 1.4 Soil Information ...................................................................................................... 4 1.5 Geologic Conditions ............................................................................................... 4 1.6 Proposed Development ........................................................................................... 5 2.0 STORMWATER MANAGEMENT.................................................................................5 2.1 Existing Stormwater Drainage ................................................................................ 5 2.1.1 Stonegate 1 ...................................................................................................5 2.1.2 Saigon Plaza .................................................................................................5
    [Show full text]
  • Fluvial Terrace Mapping: Eel and Van Duzen Rivers
    GEOL 553 Lab 5: Fluvial Terrace Mapping: Eel and Van Duzen Rivers Summary In this lab, students learn about fluvial terraces as preserved along the Eel and Van Duzen Rivers in Humboldt County, California. Plate tectonic uplift, eustatic sea level, and millennial scale climate forcing factors have conspired to form and preserve these terrace landforms. Students will map the landforms using digital elevation data in the form of DEMs, shaded relief data, and slope data. The students will digitize their interpretations and make estimates of terrace elevations, relative to the active channel, from the digital data. The students will attempt to correlate terraces with each river system and between the two river systems. Finally, the students will create a map, prepare a figure plotting their terrace elevation results, and write a report. Goals Students will learn the following: To become familiar with fluvial terrace landforms To learn how to map these landforms in a GIS software application To learn how to correlate paired and unpaired terrace treads within a single river system, as well as between regional river systems. To hypothesize about the reasons why fluvial terraces may or may not correlate regionally. Background Fluvial processes are driven by gravity and mass fluxes, which include hydrologic and sedimentologic inputs and outputs. Potential energy is converted to kinetic energy via slope and moderated by base level. Steeper slopes lead to more energetic flow. The elevation of sea level or lake level is called base level. Changes in sea level or lake level can increase or decrease base level. Once rivers meet oceans or lakes, they no longer have elevation changes necessary to drive the energy transfer that causes rivers to flow.
    [Show full text]
  • Fluvial Geomorphic and Hydrologic Evolution and Climate Change Resilience in Young Volcanic Landscapes: Rhyolite Plateau and Lamar Valley, Yellowstone National Park
    University of New Mexico UNM Digital Repository Earth and Planetary Sciences ETDs Electronic Theses and Dissertations Summer 7-15-2020 Fluvial Geomorphic and Hydrologic Evolution and Climate Change Resilience in Young Volcanic Landscapes: Rhyolite Plateau and Lamar Valley, Yellowstone National Park Benjamin Newell Burnett University of New Mexico Follow this and additional works at: https://digitalrepository.unm.edu/eps_etds Part of the Geology Commons, Geomorphology Commons, and the Hydrology Commons Recommended Citation Burnett, Benjamin Newell. "Fluvial Geomorphic and Hydrologic Evolution and Climate Change Resilience in Young Volcanic Landscapes: Rhyolite Plateau and Lamar Valley, Yellowstone National Park." (2020). https://digitalrepository.unm.edu/eps_etds/275 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Earth and Planetary Sciences ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. i Benjamin Newell Burnett Candidate Earth and Planetary Sciences Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Grant Meyer , Chairperson Dr. Peter Fawcett Dr. Leslie McFadden Dr. Julia Coonrod ii FLUVIAL GEOMORPHIC AND HYDROLOGIC EVOLUTION AND CLIMATE CHANGE RESILIENCE IN YOUNG VOLCANIC LANDSCAPES: RHYOLITE PLATEAU AND LAMAR VALLEY,
    [Show full text]
  • Geomorphology and Stratigraphy of Inset Fluvial Deposits Along the Rio Grande Valley in the Central Albuquerque Basin, New Mexico
    Geomorphology and stratigraphy of inset fluvial deposits along the Rio Grande valley in the central Albuquerque Basin, New Mexico Sean D. Connell, New Mexico Bureau of Geology and Mineral Resources, Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave. SE, Albuquerque, NM 87106, [email protected]; David W. Love, and Nelia W. Dunbar, New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 Abstract incision of the Rio Grande valley in the Albu- Connell et al. 2005) that formed when the querque area. river began cutting into underlying basin Five inset levels of Pleistocene fluvial depos- The (middle Pleistocene) Edith Formation its indicating former and present posi- fill of the Ceja and Sierra Ladrones Forma- appears to be the second oldest inset deposit. tions (upper Santa Fe Group). Incised val- tions of the Rio Grande are differentiated The (middle Pleistocene) Los Duranes For- between San Felipe Pueblo and Los Lunas, mation aggraded during the eruption of the leys tend to leave a record of previous river New Mexico. All have coarse-grained, well- Albuquerque Volcanoes (156 ka) and had positions in a suite of stepped terrace land- rounded cobble-gravel bases overlain by ceased by the time of the Cat Hills lava flow forms and deposits preserved along the varying amounts of finer-grained and more (98–110 ka). The Arenal Formation is inset borders of the valley (Gile et al. 1981). An poorly sorted sediments. This paper formal- into Los Duranes Formation and is late Pleis- understanding of the timing and location of izes (with modification) three fluvial depos- tocene in age.
    [Show full text]
  • The Green Mountain Anticlinorium in the Vicinity of Wilmington and Woodford Vermont
    THE GREEN MOUNTAIN ANTICLINORIUM IN THE VICINITY OF WILMINGTON AND WOODFORD VERMONT By JAMES WILLIAM SKEHAN, S. J. VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, Stale Geologist Published by VERMONT DEVELOPMENT DEPARTMENT MONTPELIER, VERMONT BULLETIN NO. 17 1961 = 0 0. Looking northwest from centra' \Vhitingham, from a point near C in WHITINCHAM IPlate 1 Looking across Sadawga Pond Dome to Haystack Mountain-Searsburg Ridge in the background; Stratton and Glastenburv Mountains in the far distance. Davidson Cemetery in center foreground on Route 8 serves as point of reference. TABLE OF CONTENTS PAGE ABSTRACT 9 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 10 Location ........................ 10 Regional Geologic Setting . . . . . . . . . . . . . . . 13 Previous Geologic Work ................. 15 The Problem ...................... 16 Present Investigation ................... 18 Acknowledgments .................... 19 Topography . . . . . . . . . . . . . . . . . . . . . 19 Rock Exposure ..................... 20 Culture and Accessibility ................. 20 STRATIGRAPHY AND LITHOLOGY ............... 23 General Statement . . . . . . . . . . . . . . . . . . 23 Stratigraphic Nomenclature . . . . . . . . . . . . . . 25 Lithologic Nomenclature ................. 26 Pre-Cambrian Rocks . . . . . . . . . . . . . . . . . 27 General Statement . . . . . . . . . . . . . . . . . 27 Mount Holly Complex ................. 28 Stamford
    [Show full text]
  • The Acadian Orogeny: Recent Studies in New England, Maritime Canada, and the Autochthonous Foreland
    Index [Italic page numbers indicate major references] Benner Hill belt, 8,9, 17 accretion, 20, 28, 67, 68, 69, 85 Assemetquagan River area, 111 bentonite beds, 111 Cambrian, 72 Atlantic Realm, 45 Berwick Formation, 11, 52 Caradocian, 72 Atrypa reticularis, 48 Berwick quadrangle, 60 timing, 33 Avalon, 35 Bethlehem pluton, 15 Ackley batholith, 129 Avalon belt, 8, 11,77 Big Berry Mountains syncline, 116 alcids, 42 Avalon block, 19, 78, 80, 126, 130 Bigelow Brook fault complex, 10 Alleghenian Plateau province, 154 Avalon Composite Terrane, 44 Billings Fold, 56 Allegheny County, Maryland, 160 Avalon crust, 11 biogeography allochthons, 136, 148 Avalon island arc, 17 analysis, 43 Allsbury Formation, 75 Avalon superterrane, 9, 11, 12, 13, 14 Cambrian, 41, 44, 47 Alto allochthon, 14 Avalon terrane, 20, 28 Carboniferous, 41, 44, 47 Alton quadrangle, 56, 58, 60 Avalon Zone, 15, 102, 126, 128, 129, bioherms, 109 American Cordillera, 67 130, 148 biostromes, 109 Amity quadrangle, 75 Awantjish Formation, 110 biotite, 58, 129, 139, 146, 148 amphibolites, 9, 106, 129 Aylmer Pluton, 95 Black-Cape Volcanics, 109 andalusites, 63,64, 129 blocks, 20, 35,67, 78, 130, 131 Angers-Dugal Outcrop Belt, 110 backfolds, 64 basement, 78 Angola member, 157 Badger Bay area, 32 continental, 32 Annapolis Valley region, 48 Baie Verte, 130 Blue Hills Nappe, 60 Annieopsquotch Complex, 36 Baie Verte-Brompton Line, 28, 86, 87, Blue Ridge, 14 Anse Cascon Formation, 109 106,117,136 Ansea Pierre-Loiselle Formation, 109 Baie Verte Flexure, 128 Bonaventure Formation, 109 anticlines, 141 Baie Verte Peninsula, 128, 129, 139, Bonnie Bay region, 144 anticlinoria, 8, 51 146 Boston area, 44 Antigonish County, 44, 45 Bailiella, 44 Boston Avalon block, 11 Appalachian basin, 154 Balmoral Group, 118 Boston Basin, 28 autochthonous, 153 Baltic Realm, 44, 47 Boston terrane, 19 Appalachian-Caledonian orogen, 28, faunas, 45 Botwood Group, 32, 34.
    [Show full text]
  • Bedrock Geology of the Lake Tapps Quadrangle Pierce County Washington
    Bedrock Geology of the Lake Tapps Quadrangle Pierce County Washington GEOLOGICAL SURVEY PROFESSIONAL PAPER 388-B Bedrock Geology of the Lake Tapps Quadrangle Pierce County Washington By LEONARD M. CARD, JR. GEOLOGIC STUDIES IN THE PUGET SOUND LOWLAND, WASHINGTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 388-B A study of Tertiary sedimentary, volcanic, and intrusive rocks in the western foothills of the Cascade Range UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract-___________________________ Bl Oligocene Series Continued Introduction. _______________________ 1 Intrusive rocks Continued Location, culture, and accessibility- 1 Latite___________________________________ B21 Purpose ________________________ 2 Miocene deposits.____________-___----__-_--__------ 22 Fieldwork and acknowledgments. __ 2 Description_ __________________________________ 22 Previous work.__________________ 3 Fossils and age________________-___-_-__---_---_ 23 General setting-_____________________ 3 Origin.______________________________________ 23 Drainage and relief. _____________ 3 Source__________---------------__-_--_---_---_- 24 Climate and vegetation._________. 4 Structure ______________________.._--__-.-----_------ 25 Regional geologic setting________ 4 Major folds________________----_-_____-_--_---_ 25 Stratigraphy ________________________ 4 Minor folds------------------------------------ 26 Eocene Series-_________-_-_-_-__--__ 5 Faults-,-_--_----_------------___-__----__ 26 Puget Group,___________________ 5 Origin of intense deformation in the Carbon River Carbonado Formation. _______ anticline. ____________________________________ 27 Northcraft Formation. _______ Age of deformation-___-________________-_-----_ 27 Spiketon Formation.________ 11 Economic geology________-___-_--________--__------ 29 Origin of the Puget Group.___ 12 Coal.
    [Show full text]