Chapter 9 Planetary Geology: What Are Terrestrial Planets Like on The

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 9 Planetary Geology: What Are Terrestrial Planets Like on The Chapter 9 9.1 Connecting Planetary Interiors and Planetary Geology: Surfaces Earth and the Other Terrestrial Worlds • Our goals for learning • What are terrestrial planets like on the inside? • What causes geological activity? • Why do some planetary interiors create magnetic fields? What are terrestrial planets like Seismic Waves on the inside? • Vibrations that travel through Earth’s interior tell us what Earth is like on the inside Earth’s Interior Terrestrial Planet Interiors • Core: Highest density; nickel and iron • Mantle: Moderate density; silicon, oxygen, etc. • Crust: Lowest density; granite, • Applying what we have learned about Earth’s basalt, etc. interior to other planets tells us what their interiors are probably like 1 Differentiation Lithosphere • Gravity pulls • A planet’s outer high-density layer of cool, rigid material to center rock is called the • Lower-density lithosphere material rises to • It “floats” on the surface warmer, softer • Material ends up rock that lies separated by beneath density Strength of Rock Special Topic: How do we know what’s inside a planet? • Rock stretches when pulled slowly but • P waves push breaks when pulled matter back rapidly and forth • The gravity of a large world pulls slowly on its rocky content, shaping the world into a • S waves sphere shake matter side to side Special Topic: What causes geological activity? How do we know what’s inside a planet? • P waves go through Earth’s core but S waves do not • We conclude that Earth’s core must have a liquid outer layer 2 Heating of Interior Cooling of Interior • Accretion and • Convection differentiation transports heat as when planets hot material rises and cool material were young falls • Conduction • Radioactive transfers heat decay is most from hot material important heat to cool material source today • Radiation sends energy into space Role of Size Surface Area to Volume Ratio • Heat content depends on volume • Loss of heat through radiation depends on surface area • Time to cool depends on surface area divided by volume 4πr2 3 surface area to volume ratio = = 4 πr3 r 3 • Smaller worlds cool off faster and harden earlier • Moon and Mercury are now geologically “dead” • Larger objects have smaller ratio and cool more slowly Why do some planetary interiors Sources of Magnetic Fields create magnetic fields? • Motions of charged particles are what create magnetic fields 3 What have we learned? Sources of Magnetic Fields • What are terrestrial planets like on the inside? • A world can have – Core, mantle, crust structure a magnetic field if – Denser material is found deeper inside charged particles • What causes geological activity? are moving inside – Interior heat drives geological activity • 3 requirements: – Radioactive decay is currently main heat source – Molten interior • Why do some planetary interiors create magnetic – Convection fields? – Moderately rapid – Requires motion of charged particles inside planet rotation What processes shape planetary 9.2 Shaping Planetary Surfaces surfaces? • Our goals for learning • What processes shape planetary surfaces? • Why do the terrestrial planets have different geological histories? • How does a planet’s surface reveal its geological age? Processes that Shape Surfaces Impact Cratering • Impact cratering • Most cratering – Impacts by asteroids or comets happened soon after • Volcanism solar system formed – Eruption of molten rock onto surface • Craters are about 10 • Tectonics times wider than object that made them – Disruption of a planet’s surface by internal stresses • Small craters greatly •Erosion outnumber large ones – Surface changes made by wind, water, or ice 4 Impact Craters Impact Craters on Mars Meteor Crater (Arizona) Tycho (Moon) “standard” crater impact into icy ground eroded crater Volcanism Lava and Volcanoes • Volcanism happens when molten rock (magma) finds a path through lithosphere to the surface • Molten rock is called lava after it reaches the Runny lava makes flat Slightly thicker lava Thickest lava makes surface lava plains makes broad shield steep stratovolcanoes volcanoes Outgassing Tectonics • Convection of the mantle creates stresses in the crust called tectonic forces • Volcanism also releases gases from Earth’s interior • Compression forces make mountain ranges into atmosphere • Valley can form where crust is pulled apart 5 Plate Tectonics on Earth Erosion • Earth’s continents • Erosion is a blanket term for weather-driven slide around on processes that break down or transport rock separate plates of • Processes that cause erosion include crust – Glaciers –Rivers –Wind Erosion by Water Erosion by Ice • Colorado River • Glaciers carved continues to the Yosemite carve Grand Valley Canyon Erosion by Wind Erosional Debris • Wind wears • Erosion can away rock and create new builds up sand features by dunes depositing debris 6 Why do the terrestrial planets have Role of Planetary Size different geological histories? • Smaller worlds cool off faster and harden earlier • Larger worlds remain warm inside, promoting volcanism and tectonics • Larger worlds also have more erosion because their gravity retains an atmosphere Role of Distance from Sun Role of Rotation • Planets close to Sun are too hot for rain, snow, ice and so have less erosion • Planets with slower rotation have less weather and • More difficult for hot planet to retain atmosphere less erosion and a weak magnetic field • Planets far from Sun are too cold for rain, limiting • Planets with faster rotation have more weather and erosion more erosion and a stronger magnetic field • Planets with liquid water have most erosion How does a planet’s surface reveal History of Cratering its geological age? • Most cratering happened in first billion years • A surface with many craters has not changed much in 3 billion years 7 Cratering of Moon Cratering of Moon • Some areas of Moon are more heavily cratered than others • Younger regions were flooded by lava after most cratering Cratering map of Moon’s entire surface What have we learned? 9.3 Geology of the Moon and Mercury • What processes shape planetary surfaces? – Cratering, volcanism, tectonics, erosion • Our goals for learning • Why do the terrestrial planets have different geological histories? • What geological processes shaped our – Differences arise because of planetary size, Moon? distance from Sun, and rotation rate • What geological processes shaped • How does a planet’s surface reveal its Mercury? geological age? – Amount of cratering tells us how long ago a surface formed What geological processes shaped Lunar Maria our Moon? • Smooth, dark lunar maria are less heavily cratered than lunar highlands • Maria were made by flood of runny lava 8 Formation of Lunar Maria Tectonic Features • Wrinkles arise from cooling and contraction of lava flood Early surface Large impact Heat build- Cooled lava covered with crater up allows is smoother craters weakens lava to well and darker crust up to surface than surroundings What geological processes shaped Geologically Dead Mercury? • Moon is considered geologically “dead” because geological processes have virtually stopped Cratering of Mercury Cratering of Mercury Caloris basin is Region opposite • A mixture of heavily cratered and smooth regions largest impact crater Caloris Basin is like the Moon on Mercury jumbled from • Smooth regions are likely ancient lava flows seismic energy of impact 9 What have we learned? Tectonics on Mercury • What geological processes shaped our Moon? – Early cratering still present – Maria resulted from volcanism • What geological processes shaped Mercury? – Cratering and volcanism similar to Moon • Long cliffs indicate that Mercury shrank early in its – Tectonic features indicate early shrinkage history How did Martians invade popular 9.4 Geology of Mars culture? • Our goals for learning • How did Martians invade popular culture? • What are the major geological features of Mars? • What geological evidence tells us that water once flowed on Mars? What are the major geological “Canals” on Mars features of Mars? • Percival Lowell misinterpreted surface features seen in telescopic images of Mars 10 Cratering on Mars Volcanism on Mars • Mars has many large shield volcanoes • Olympus Mons is largest volcano in solar system • Amount of cratering differs greatly across surface • Many early craters have been erased What geological evidence tells us Tectonics on Mars that water once flowed on Mars? • System of valleys known as Valles Marineris thought to originate from tectonics Dry Riverbeds? Erosion of Craters • Close-up • Details of some photos of Mars craters suggest show what they were once appear to be filled with dried-up water riverbeds 11 Martian Rocks Martian Rocks • Mars rovers have found rocks that appear to have • Exploration of impact craters has revealed that formed in water Mars’ deeper layers were affected by water Hydrogen Content Crater Walls • Gullies on crater walls suggest occasional liquid water flows have happened less than a million years ago • Map of hydrogen content (blue) shows that low- lying areas contain more water ice What have we learned? What have we learned? • How did Martians invade popular culture? • What geological evidence tells us that – Surface features of Mars in early telescopic water once flowed on Mars? photos were misinterpreted as “canals” – Features that look like dry riverbeds • What are the major geological features of – Some craters appear to be eroded Mars? – Rovers have found rocks that appear to have formed in water – Differences
Recommended publications
  • Planetary Geology (Part of Chapter 9): General Processes Affecting the Terrestrial Planets (And the Moon)
    Planetary Geology (part of Chapter 9): General Processes Affecting the Terrestrial Planets (and the Moon) Many geological features on planetary surfaces are shaped by processes within the planet’s interior. The interior of a terrestrial world is divided into three layers of differing densities and chemical compositions: core of high-density metal, mantle of moderate- density rock, and crust of low-density rock. Although we see molten rock (lava) coming out of the Earth, only a thin layer near the top of the mantle is partially molten. However, the solid rock within planets can flow like a liquid over periods of millions of years at speeds of around 1 cm per year. The crust and very top part of the mantle do not deform or flow easily, they are called the lithosphere. The thickness of a planet’s lithosphere affects how easily it can be fractured and rearranged into mountains and valleys, and how easily lava can be erupted onto the surface. Interior heat causes geological activity. Terrestrial worlds were heated during their formation due to accretion and differentiation, and are still heated today by radioactive decay. They are slowly cooling down, with heat moving up through the mantle by convection, up through the crust by conduction, and radiating out to space. Larger planets retain heat for longer than smaller planets, so larger planets are more geologically active. If a rapidly-rotating planet contains a layer of electrically conducting fluid, such as a liquid metal core, then it will have a magnetic field. This magnetic field can protect its atmosphere from the solar wind.
    [Show full text]
  • Mars Mars Is the Fourth Terrestrial Planet. It Is Smaller in Size Than
    Mars Mars is the fourth terrestrial planet. It is smaller in size than Earth and Venus, but larger than Mercury. Of the planets, Mars is the most hospitable to visiting humans, as it has an atmosphere, though it has no oxygen and is very thin. In the early days of the solar system, Mars has had liquid water on its surface, which is proved by the existence of various minerals that require liquid water to form. The current atmosphere of Mars is too thin and cold for liquid water to exist for long periods of times. Still, there is evidence of terrain shaped by flowing liquids, which are probably temporary flows or floods caused by the melting of ice in the ground. Mars has seasons like the Earth, and ice caps at the poles that grow and shrink over the course of the year. They consist of water ice and CO2 ice, the latter varying more with the seasons. One year on Mars is a bit less than two Earth years. Mars has two moons, Phobos and Deimos. They are very small compared to Mars, and are likely to be asteroids captured by Mars's gravity in the distant past. Giant planets and their moons The outer four planets of the solar system are known as the giant planets, because of their large size (compared to the terrestrial planets). The giant planets of our solar system can be further divided into two categories: gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). The gas giants consist mainly of hydrogen (up to 90%) and helium, while the ice giants are mostly "ices" such as water and ammonia, with only some 20% of hydrogen.
    [Show full text]
  • Planetary Geology GEOLOGY 307 Spring 2018 Tuesday & Thursday 9:30 -10:50 A.M
    Planetary Geology GEOLOGY 307 Spring 2018 Tuesday & Thursday 9:30 -10:50 a.m. C. M. Bailey Office- McStreet Hall 215 x12445 [email protected] Preamble Space, the Final Frontier! Although the Earth provides a rich tapestry for geologists, other planetary bodies in our Solar System are equally worthy of study. Many of the same processes that operate on Earth modify these worlds, but each planet is unique in many respects. Planetary bodies also contain a record of the solar system’s history. The goals of this course include a better understanding of the processes that operate on distant worlds, gaining insight into how the Solar System has changed through time, and thinking about the future opportunties in planetary science. This class will not simply be a tour of the planets, nor will it attempt to answer all the questions normally dealt with in Astronomy and Cosmology courses. We will start from observations and use a judicious amount of mathematics, physics, and chemistry to achieve our goals. At semester’s end we hope you will have developed an understanding of the Solar System, a sense for the new and exciting discoveries in planetary science, as well as an appreciation of the important questions still to be answered. Week Dates Topic Readings 1 Jan. 18 Planetary Geology Introduced WHOOPS! Ch. 1 2 Jan. 23, 25 Planetary Geology Introduced Ch. 1 The Universe: matter, stars, planets, and life- oh my! 3 Jan. 30, Feb. 1 Celestial Mechanics Ch. 2 Ch. 5, pg. 64-67 4 Feb. 6, 8 Solar System Formation Meteorites are Mighty Important 5 Feb.
    [Show full text]
  • Mars Field Geology, Biology, and Paleontology Workshop, Summary
    MARS FIELD GEOLOGY, BIOLOGY, AND PALEONTOLOGY WORKSHOP: SUMMARY AND RECOMMENDATIONS November 18–19, 1998 Space Center Houston, Houston, Texas LPI Contribution No. 968 MARS FIELD GEOLOGY, BIOLOGY, AND PALEONTOLOGY WORKSHOP: SUMMARY AND RECOMMENDATIONS November 18–19, 1998 Space Center Houston Edited by Nancy Ann Budden Lunar and Planetary Institute Sponsored by Lunar and Planetary Institute National Aeronautics and Space Administration Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 968 Compiled in 1999 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautcis and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This volume may be cited as Budden N. A., ed. (1999) Mars Field Geology, Biology, and Paleontology Workshop: Summary and Recommendations. LPI Contribution No. 968, Lunar and Planetary Institute, Houston. 80 pp. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling. _________________ Cover: Mars test suit subject and field geologist Dean Eppler overlooking Meteor Crater, Arizona, in Mark III Mars EVA suit. PREFACE In November 1998 the Lunar and Planetary Institute, under the sponsorship of the NASA/HEDS (Human Exploration and Development of Space) Enterprise, held a workshop to explore the objectives, desired capabilities, and operational requirements for the first human exploration of Mars.
    [Show full text]
  • Burlington House Fire Safety Information
    William Smith Meeting 2015 (Part 2) 5 November 2015 200 Years and Beyond: The future of geological mapping Contents Page 2 Acknowledgements Page 3 Conference Programme Page 5 Speaker Biographies and Abstracts Page 29 Poster Abstracts Page 40 Burlington House Fire Safety Information Page 41 Ground Floor Plan of the Geological Society, Burlington House @geolsoc #wsmith15 #williamsmith200 Page 1 William Smith Meeting 2015 (Part 2) 5 November 2015 200 Years and Beyond: The future of geological mapping WELCOME FROM THE CONVENORS In 1815 William Smith published the first edition of his Geological Map of England and Wales. Smith’s map made a seminal contribution to the understanding of the ground beneath our feet and, by showing the location of coal, iron ore, clays and other raw materials, helped fuel the industrial revolution. Two hundred years on, the demands for spatial knowledge about our geological environment and its resources and hazards have become ever more diverse and pressing. Nevertheless, many of the motivators, approaches and principles pioneered by William Smith survive in the geological maps, models and information systems of today. The History of Geology Group and the British Geological Survey have worked together to convene two William Smith meetings at the Geological Society in 2015 to celebrate this landmark anniversary. The first, very successful meeting in April 2015, convened by HOGG, chronicled the history and development of the geological map from its earliest beginnings to the digital maps of today. This second meeting, convened by the BGS, looks to the future of geological mapping, and to the grand challenges for geoscience that will motivate the ‘William Smiths’ of tomorrow.
    [Show full text]
  • Comparative Habitability of Transiting Exoplanets
    Draft version October 1, 2015 A Preprint typeset using LTEX style emulateapj v. 04/17/13 COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS Rory Barnes1,2,3, Victoria S. Meadows1,2, Nicole Evans1,2 Draft version October 1, 2015 ABSTRACT Exoplanet habitability is traditionally assessed by comparing a planet’s semi-major axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass-radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler Objects of Interest and find that planets that receive between 60–90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable.
    [Show full text]
  • Dynamical Evolution and Bombardment of the Early Solar System: a Few Highlights from the Last 50 Years
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1545.pdf DYNAMICAL EVOLUTION AND BOMBARDMENT OF THE EARLY SOLAR SYSTEM: A FEW HIGHLIGHTS FROM THE LAST 50 YEARS. W. F. Bottke1 1Southwest Research Institute and NASA’s SSERVI-ISET Team, Boulder, CO ([email protected]). Introduction. Over the last several decades, there orbital migration of Jupiter and Saturn in a gas disk, has been a transformation in our theoretical under- Jupiter could have migrated inward all the way to ~1.5 standing of early Solar System evolution. Historically, AU from the Sun. At that point Jupiter and Saturn it was thought that the planets and small bodies formed could have become trapped in their mutual 2:3 reso- near their current locations. Starting in the 1980’s with nance and would have begun to move outward. pioneering work by Ward, Lin, and Papaloizou, (for The Grand Tack model studied the gravitational planet–gas disk interactions) in the late 1970s and Fer- scattering of asteroids by Jupiter and Saturn during nandez and Ip (for planet–planetesimal disk interac- their inward, then outward migration. This model not tions) in the early 1980s, however, it has now become only reproduces the mass and mixture of spectral types clear that the structure of the Solar System most likely in the asteroid belt, but also truncates the planetesimal changed as the planets grew and migrated [e.g., 1, 2]. disk from which the terrestrial planets form, as in Han- Evidence for giant planet migration can be found in sen’s work. This allowed them to form a low-mass the orbital structures of the Kuiper belt, Trojans, irreg- Mars.
    [Show full text]
  • Earth, Environmental and Planetary Sciences 1
    Earth, Environmental and Planetary Sciences 1 MATH 0090 Introductory Calculus, Part I (or higher) Earth, Environmental PHYS 0050 Foundations of Mechanics (or higher) Nine Concentration courses and Planetary Sciences EEPS 0220 Earth Processes 1 EEPS 0230 Geochemistry: Earth and Planetary 1 Materials and Processes Chair EEPS 0240 Earth: Evolution of a Habitable Planet 1 Greg Hirth Select three of the following: 3 Students in Earth, Environmental, and Planetary Sciences develop a EEPS 1240 Stratigraphy and Sedimentation comprehensive grasp of principles as well as an ability to think critically EEPS 1410 Mineralogy and creatively. Formal instruction places an emphasis on fundamental EEPS 1420 Petrology principles, processes, and recent developments, using lecture, seminar, EEPS 1450 Structural Geology laboratory, colloquium, and field trip formats. Undergraduates as well as graduate students have opportunities to carry out research in current fields Two additional upper level EEPS courses or an approved 2 of interest. substitute such as a field course One additional upper level science or math course with approval 1 The principal research fields of the department are geochemistry, from the concentration advisor. mineral physics, igneous petrology; geophysics, structural geology, tectonophysics; environmental science, hydrology; paleoceanography, Total Credits 13 paleoclimatology, sedimentology; and planetary geosciences. Emphasis in these different areas varies, but includes experimental, theoretical, and Standard program for the Sc.B. degree observational approaches as well as applications to field problems. Field This program is recommended for students interested in graduate study studies of specific problems are encouraged rather than field mapping for and careers in the geosciences and related fields. its own sake. Interdisciplinary study with other departments and divisions is encouraged.
    [Show full text]
  • GEOLOGY THEME STUDY Page 1
    NATIONAL HISTORIC LANDMARKS Dr. Harry A. Butowsky GEOLOGY THEME STUDY Page 1 Geology National Historic Landmark Theme Study (Draft 1990) Introduction by Dr. Harry A. Butowsky Historian, History Division National Park Service, Washington, DC The Geology National Historic Landmark Theme Study represents the second phase of the National Park Service's thematic study of the history of American science. Phase one of this study, Astronomy and Astrophysics: A National Historic Landmark Theme Study was completed in l989. Subsequent phases of the science theme study will include the disciplines of biology, chemistry, mathematics, physics and other related sciences. The Science Theme Study is being completed by the National Historic Landmarks Survey of the National Park Service in compliance with the requirements of the Historic Sites Act of l935. The Historic Sites Act established "a national policy to preserve for public use historic sites, buildings and objects of national significance for the inspiration and benefit of the American people." Under the terms of the Act, the service is required to survey, study, protect, preserve, maintain, or operate nationally significant historic buildings, sites & objects. The National Historic Landmarks Survey of the National Park Service is charged with the responsibility of identifying America's nationally significant historic property. The survey meets this obligation through a comprehensive process involving thematic study of the facets of American History. In recent years, the survey has completed National Historic Landmark theme studies on topics as diverse as the American space program, World War II in the Pacific, the US Constitution, recreation in the United States and architecture in the National Parks.
    [Show full text]
  • Terrestrial Planets in High-Mass Disks Without Gas Giants
    A&A 557, A42 (2013) Astronomy DOI: 10.1051/0004-6361/201321304 & c ESO 2013 Astrophysics Terrestrial planets in high-mass disks without gas giants G. C. de Elía, O. M. Guilera, and A. Brunini Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata, CCT La Plata-CONICET-UNLP, Paseo del Bosque S/N, 1900 La Plata, Argentina e-mail: [email protected] Received 15 February 2013 / Accepted 24 May 2013 ABSTRACT Context. Observational and theoretical studies suggest that planetary systems consisting only of rocky planets are probably the most common in the Universe. Aims. We study the potential habitability of planets formed in high-mass disks without gas giants around solar-type stars. These systems are interesting because they are likely to harbor super-Earths or Neptune-mass planets on wide orbits, which one should be able to detect with the microlensing technique. Methods. First, a semi-analytical model was used to define the mass of the protoplanetary disks that produce Earth-like planets, super- Earths, or mini-Neptunes, but not gas giants. Using mean values for the parameters that describe a disk and its evolution, we infer that disks with masses lower than 0.15 M are unable to form gas giants. Then, that semi-analytical model was used to describe the evolution of embryos and planetesimals during the gaseous phase for a given disk. Thus, initial conditions were obtained to perform N-body simulations of planetary accretion. We studied disks of 0.1, 0.125, and 0.15 M.
    [Show full text]
  • Symposium on Telescope Science
    Proceedings for the 26th Annual Conference of the Society for Astronomical Sciences Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote David A. Kenyon Dale Mais May 22-24, 2007 Northwoods Resort, Big Bear Lake, CA Reprints of Papers Distribution of reprints of papers by any author of a given paper, either before or after the publication of the proceedings is allowed under the following guidelines. 1. The copyright remains with the author(s). 2. Under no circumstances may anyone other than the author(s) of a paper distribute a reprint without the express written permission of all author(s) of the paper. 3. Limited excerpts may be used in a review of the reprint as long as the inclusion of the excerpts is NOT used to make or imply an endorsement by the Society for Astronomical Sciences of any product or service. Notice The preceding “Reprint of Papers” supersedes the one that appeared in the original print version Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply or infer an endorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2007 ISBN: 0-9714693-6-9 Table of Contents Table of Contents PREFACE 7 CONFERENCE SPONSORS 9 Submitted Papers THE OLIN EGGEN PROJECT ARNE HENDEN 13 AMATEUR AND PROFESSIONAL ASTRONOMER COLLABORATION EXOPLANET RESEARCH PROGRAMS AND TECHNIQUES RON BISSINGER 17 EXOPLANET OBSERVING TIPS BRUCE L. GARY 23 STUDY OF CEPHEID VARIABLES AS A JOINT SPECTROSCOPY PROJECT THOMAS C.
    [Show full text]
  • Chapter 9 Planetary Geology: Agenda Ad Hoc Rover Update
    Chapter 9 Planetary Geology: Agenda Earth and the Other Terrestrial Worlds • Announce: – Part 2 of Projects due – Read Ch. 11 for Tuesday • Ad hoc, ex post facto • Rover Update • Ch. 9—Planetary Geology • Lab: Parallax or Waves on a String Rover Update Ad Hoc • More than 1000 Martian days • From Wikipedia: – Ad hoc is a Latin phrase which means "for this [purpose]." It generally signifies a solution that has been designed for a specific problem, is non-generalizable and can not be adapted to other purposes. – Ex post facto : from the Latin for "from something done afterward" 1 9.1 Connecting Planetary Interiors and What are terrestrial planets like Surfaces on the inside? • Our goals for learning • What are terrestrial planets like on the inside? • What causes geological activity? • Why do some planetary interiors create magnetic fields? Seismic Waves Earth’s Interior • Vibrations • Core: Highest that travel density; nickel through and iron Earth’s • Mantle: Moderate interior tell us density; silicon, what Earth is oxygen, etc. like on the • Crust: Lowest inside density; granite, basalt, etc. Terrestrial Planet Interiors Differentiation • Gravity pulls high-density material to center • Lower-density material rises to surface • Material ends up • Applying what we have learned about Earth’s separated by interior to other planets tells us what their interiors density are probably like 2 Lithosphere Strength of Rock • A planet’s outer • Rock stretches when layer of cool, rigid pulled slowly but rock is called the breaks when pulled lithosphere
    [Show full text]