Anticoagulation Reversal

Total Page:16

File Type:pdf, Size:1020Kb

Anticoagulation Reversal 12/27/2013 Outline Anticoagulation Reversal Common anticoagulants misc anticoagulants coumadin IIb/IIIa inhibitors Family Medicine Update Big Sky, Montana ASA LMWH January, 2014 ADP Inhibitors heparin Mark Tieszen, MD, FCCM, FCCP Sanford Medical Center—Fargo DTI/XaI associated with Critical Care Medicine Procoagulants [email protected] disease states novoseven liver disease TXA uremia DIC Premise Coumadin Premise of this lecture is that you have a Risk of major bleeding is 1-3 % per year patient with a life-threating bleeding Varies depending on the intensity of the complication associated with an anticoagulation and patient risk factors coagulopathy How aggressive you are in any individual patient always relies on clinical judgment Coumadin Vitamin K Vitamin K 10 mg IV Give IV FFP 2 units IV previous incidence of anaphylaxis was PCC 25 units/kg IV secondary to a diluent which is no longer present in the drug PO better than SC Onset 12-24 hours Duration 12-24 hours 1 12/27/2013 FFP PCC Dosing guidelines not accurate Prothrombin-complex concentrate Recommend 2 units to start and redose Factor IX complex (Profilnine 9) Onset 30-60 minutes INR < 4: 25 units/kg Duration 2-4 hours INR > 4: 50 units/kg Onset 10 minutes Duration 60 minutes Coumadin Reversal Protocol PCC Order the Vit K, FFP, PCC It is a medicine not a blood product Repeat INR 10 minutes after PCC finished Dispensed by pharmacy not blood bank Give an additional 25 u/kg of PCC if INR Long shelf life still too high Expensive To OR with FFP hanging PCC-3 (3 factor PCC) Follow INR Q 4 hours and give additional FFP if INR rebounds PCC-4 Aspirin 4 factor PCC Many of our patients are on ASA and PCC-3 plus aVIIr many of those on another Should be a better hemostatic product anticoagulant as well but no evidence based The increased risk of bleeding with the recommendations for use addition of ASA is unclear Very Expensive 2 12/27/2013 Risk of ICH ASA ASA plus Coumadin Affects the platelet in the bone marrow at One study of 10,000 elderly risk the time the platelet was formed increased threefold not a circulating effect 0.3 % to 0.9 % per year Not dose dependent Another large case-control study showed 7 day lag no increased risk The patient on 81 mg ASA q day for at least 7 days = full antiplatelet effect Acute ASA overdose = no antiplatelet effect Aspirin ASA reversal 7 day irreversible platelet One unit single donor platelets dysfunction Platelet dysfunction test (replaces bleeding time) add reagents (ADP, epi) and measure time to aggregation ADP Inhibitors ADP Inhibitors Bleeding Risk clopidogrel (Plavix) Incidence of major bleeding reported as prasugrel (Effient) 4-5 % ticagrelor (Brilinta) Limited data on drug effects once a ticlopidine (Ticlid) bleeding event has occurred Limited data on how to reverse antiplatelet effect 3 12/27/2013 P2Y12 Platelet Function Test ADP Inhibitor reversal reported as % inhibition desmopressin (DDAVP) IV 24 mcg Considered reversed if < 20 % 1 unit of single donor platelets Test not accurrate if: Hgb < 26 % platelet count < 50,000 if received Glycoprotein IIb/IIIa inhibitor Integrillin within 48 hours Reopro with in 10 days Direct Thrombin Inhibitors / DTI/XaI Reversal Factor Xa Inhibitors DTI/XaI Limited data dabagatran (Pradaxa) PCC 50 units/kg rivaroxaban (Xarelto) Recommend PCC4 if available else give apixaban (Eliquis) PCC3 Can add 1 mg of rVIIa to PCC3 to make PCC4 dabigatran rivaroxaban PCC 50 units/kg PCC 50 units/kg 4 hours of hemodialysis may remove up Half life 5-9 hours if hepatic and renal to 68 % of active drug function (CrCl > 80) are normal Half-life depends on creatinine clearance Half life 11-19 hours if elderly CrCl > 50: 24 hours Half life 48+ hours if hepatic/renal failure CrCl < 50: 48-96 hours MOA: XaI MAO: DTI 4 12/27/2013 apixiban Procoagulants PCC 50 units/kg Novoseven Half life 12 hours if normal hepatic and TPX renal function PCC (discussed earlier) Half life 48+ hours if elderly or hepatic/renal failure MOA: XaI Novoseven Novoseven in trauma Recombivent activated factor VII Small series showed benefit rVIIa Best results in diffuse multifocal A lot of enthusiasm when first released oozing No evidence based guidelines about how Not helpful in large vessel bleeding to use No longer used much Small case studies used in a variety of settings Novoseven in ICH Novoseven use Decreased the size of the To be effective must reverse: intracranial hemorrhage by acidosis imaging criteria hypofibrinogenemia No benefit in clinical recovery hypothermia Studied in both coumadin and non- Should only be used after 10 u RBC and coumadin bleeds without clear adequate FFP, platelets and cyro benefit 5 12/27/2013 Dose rFVIIa Tranexamic acid (TXA) 30-90 mcg/kg Inhibits fibrinolysis by competitively inhibiting plasmin activity and plasminogen activation Dose can be repeated in 30 minutes Half-life approximately 2 hours New evidence indicates smaller Multiple dosing regimens are employed based doses just as effective as larger on indication doses Tranexamic acid is associated with cerebral infarction in studies of patients with 3,000 - 9,000 dollars a dose subarachnoid hemorrhage; however, thromboembolism with the use of tranexamic acid is rare CRASH 2 CRASH 2 Entrance Criteria Multicenter RCT 20,211 adult trauma Adult trauma patients with significant patients with, or at risk of, significant hemorrhage systolic blood pressure bleeding within 8 h of injury to either <90 mm Hg or heart rate >110 beats per tranexamic acid or placebo min, or both, loading dose 1 g over 10 min then or who were considered to be at risk of infusion of 1 g over 8 h significant hemorrhage, and who were within 8 h of injury CRASH 2 Results All-cause mortality was significantly IIb/IIIa inhibitors reduced with tranexamic acid LMWH 14.5% vs 16.0%; relative risk 0.91, 95% heparin CI 0.85–0.97; p=0.0035) The risk of death due to bleeding was significantly reduced 4.9% vs 5.7%; relative risk 0.85, 95% CI 0.76–0.96; p=0.0077 6 12/27/2013 Glycoprotein IIb/IIIa abciximab (Reopro) Antibodies and receptor antagonists Biological half-life 8 hours Strategies for reversal dependent on Unbound fraction low individual agents half-lifes and – Platelet transfusion will reverse unbound fractions abciximab eptifibatide tirofiban roxifiban* orbofiban* sirofiban* *not available in US yet eptifibatide (Integrillin) Glycoprotein IIb/IIIa Reversal tirofiban (Aggrastat) Biological half-life is 4 hours No evidence based Unbound fraction large meaning platelet recommendations transfusion will not reverse 2 units platelets most commonly Renal clearance used strategy – Unclear if dialyzable Low Molecular Weight LMWH monitoring Heparin Typical half-life is 12 hours PTT not useful Unless in renal failure Anti-factor Xa assay CrCl < 30 not available every place half-life doubled does not account for all the anticoagulant activity of LMWH Recommendation is to use one half typical dose in renal dysfunction 7 12/27/2013 LMWH antidotes Protamine and LMWH No evidence based Protamine completely neutralizes the recommendations antithrombin activity of LMWH but not the all of the anti-Xa activity Protamine 1 mg protamine for every 100 units anti- DDAVP Xa activity 25 mcg IV – enoxaparin (Lovenox) 1 mg = 100 anti-Xa can give every 12 hours units May repeat half the dose if bleeding tachyphlaxsis at 6 doses continues Protamine Toxicity Heparin Is a weak anticoagulant Unfractionated heparin (UFH) – Given repeat dose once the initial heparin Most bleeding occurs with appropriate has been reversed will result in more administration of heparin with PTT in bleeding the therapeutic range Does cause hypotension and bradycardia Half-life is 90 minutes – Give slow – Do not have to treat the bolus of heparin if – Calcium helps bolus is over 2 hours ago Can cause anaphylaxis Heparin Reversal = Protamine Protamine Toxicity Dose 1 mg IV per 100 units of UFH Is a weak anticoagulant Bolus of 5000 units within the last 2 – Given repeat dose once the initial heparin hours = 50 mg of protamine has been reversed will result in more bleeding Infusion of 1250 u/hr = 25 mg of protamine Does cause hypotension and bradycardia – Give slow – 1250/h x 2 hours = dose of 2500 – Calcium helps May check PTT to confirm reversal Can cause anaphylaxis May repeat dose if PTT still elevated 8 12/27/2013 Coagulopathies associated Liver disease with disease states Liver disease Vitamin K as in coumadin Uremia 2-4 units FFP DIC Do not expect INR to completely correct Uremic platelet dysfunction DIC Platelet transfusion does not work Factor replacement if bleeding Mechanism of dysfunction occurs von Willebrand factor dysfunction Platelets if count low DDAVP FFP if PT/INR high Cryoprecipitate Cryoprecipitate if fibrinogen low Acute hemodialysis typically keep fibrinogen > 150 k Questions 9.
Recommended publications
  • Safety of Tirofiban for Patients with Acute Ischemic Stroke in Routine Clinical Practice
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 10: 169-174, 2015 Safety of tirofiban for patients with acute ischemic stroke in routine clinical practice YUAN-QUN ZHU1, YAN-JUN ZHANG2, HAI-LIN RUAN3, QING LIU2, QIN ZHAN2 and QIONG LI2 1Department of Neurology, Liuzhou Worker's Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005; 2Department of Geriatrics, People's Hospital of Zhengzhou, Zhengzhou, Henan 450003; 3Department of Emergency, Liuzhou Worker's Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China Received April 11, 2014; Accepted December 8, 2014 DOI: 10.3892/etm.2015.2495 Abstract. The aim of the present study was to investigate the Introduction safety of tirofiban alone and in combination with various treat- ments in acute ischemic stroke (AIS). A total of 120 patients Acute ischemic stroke (AIS) is a common cause of morbidity with AIS were included in the study, and these patients were and mortality worldwide. Thrombolysis with recombinant divided into three treatment groups: Group A (tirofiban alone, tissue plasminogen activator (rtPA) is the only proven beneficial n=68), group B (tirofiban plus thrombolytic therapy, n=26), therapy in AIS, and this is received by <2% of patients (1). The and group C (tirofiban as a ‘bridging therapy’, n=26). Risk inaccessibility of this treatment to the majority of patients is due factors, stroke severity, initial imaging, treatment regimens, to a number of factors: A lack of adequate transport facilities complications and long‑term outcomes were analyzed. In and infrastructure, including facilities for thrombolysis in most total, eight patients (6.7%) [six patients (23.1%) in group B centers; the high cost of tPA; and a lack of awareness among and two patients (7.7%) in group C] had hemorrhage during the public and doctors (2).
    [Show full text]
  • Summary of the Product Characteristics
    Tirofiban hydrochloride Hikma Pharma GmbH SUMMARY OF PRODUCT CHARACTERISTICS 1 NAME OF THE MEDICINAL PRODUCT <TIROFIBAN>® *50 micrograms/mL Solution for infusion <TIROFIBAN>® *250 micrograms/mL Concentrate for solution for infusion 2 QUALITATIVE AND QUANTITATIVE COMPOSITION <TIROFIBAN> Solution: 1 ml of solution for infusion contains 56 micrograms of tirofiban hydrochloride monohydrate which is equivalent to 50 micrograms Tirofiban. This medicinal product contains 31 mmol (or 715 mg) sodium per bag (250 ml). To be taken into consideration by patients on a controlled sodium diet. <TIROFIBAN> Concentrate: 1 ml of concentrate for solution for infusion contains 281 micrograms of tirofiban hydrochloride monohydrate which is equivalent to 250 micrograms Tirofiban. 50 ml of concentrate for solution for infusion contains 14,05 mg of tirofiban hydrochloride monohydrate which is equivalent to 12,5 mg Tirofiban. This medicinal product contains less than 1 mmol sodium (23 mg) per vial (50 ml), i.e. essentially ‘sodium- free’. For the full list of excipients, see section 6.1. 3 PHARMACEUTICAL FORM <TIROFIBAN> Solution: Solution for Infusion (250 ml bag) A clear, colourless solution. <TIROFIBAN> Concentrate: Concentrate for solution for infusion. A clear, colourless concentrated solution. * in the following document the abbreviated terms detailed below are used. • <TIROFIBAN> means <TIROFIBAN> Solution for Infusion or <TIROFIBAN> Concentrate for Solution for Infusion. • <TIROFIBAN> Solution will be used when referring to <TIROFIBAN> Solution for Infusion
    [Show full text]
  • The Role of Low-Molecular-Weight Heparin in the Management of Acute Coronary Syndromes Marc Cohen, MD, FACC Newark, New Jersey
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ElsevierJournal - ofPublisher the American Connector College of Cardiology Vol. 41, No. 4 Suppl S © 2003 by the American College of Cardiology Foundation ISSN 0735-1097/03/$30.00 Published by Elsevier Science Inc. doi:10.1016/S0735-1097(02)02901-7 The Role of Low-Molecular-Weight Heparin in the Management of Acute Coronary Syndromes Marc Cohen, MD, FACC Newark, New Jersey A substantial number of clinical studies have consistently demonstrated that low-molecular- weight heparin (LMWH) compounds are effective and safe alternative anticoagulants to unfractionated heparins (UFHs). They have been found to improve clinical outcomes in acute coronary syndromes and to provide a more predictable therapeutic response, longer and more stable anticoagulation, and a lower incidence of UFH-induced thrombocytopenia. Of the several LMWH agents that have been studied in large clinical trials, including enoxaparin, dalteparin, and nadroparin, not all have shown better efficacy than UFH. Enoxaparin is the only LMWH compound to have demonstrated sustained clinical and economic benefits in comparison with UFH in the management of unstable angina/ non–ST-segment elevation myocardial infarction (NSTEMI). Also, LMWH appears to be a reliable and effective antithrombotic treatment as adjunctive therapy in patients undergoing percutaneous coronary intervention. Clinical trials with enoxaparin indicate that LMWH is effective and safe in this indication, with or without the addition of a glycoprotein IIb/IIIa inhibitor. The efficacy demonstrated by enoxaparin in improving clinical outcomes in unstable angina/NSTEMI patients has led to investigations of its role in the management of ST-segment elevation myocardial infarction.
    [Show full text]
  • GP Iib/Iiia Adult Cardiology Treatment Dosing and Monitoring Guidelines
    GP IIb/IIIa Inhibitor Adult Cardiology Treatment Dosing and Monitoring Guidelines During times of eptifibatide shortage, the following guidance is available for tirofiban usei Eptifibatide (Integrilin®) Tirofiban (Aggrastat®) Dosing Loading dose: 180 mcg/kg IV bolus (max: 22.6 mg) Loading dose: 25 mcg/kg IV over 5 minutes ii ACS Maintenance infusion: 2 mcg/kg/minute (max: 15 mg/hr) up to 72 hours Maintenance infusion: 0.15 mcg/kg/minute continued for up to 18 (until discharge or CABG surgery) hours st 1 Loading dose: 180 mcg/kg IV bolus (max: 22.6 mg) Loading dose: 25 mcg/kg IV over 5 minutes ii PCI Maintenance infusion: 2 mcg/kg/minute (max: 7.5 mg/hr) continued for Maintenance infusion: 0.15 mcg/kg/minute continued for up to 18 up to 18 to 24 hours hours 2nd loading dose: 180 mcg/kg IV bolus (max: 22.6 mg) should be administered 10 minutes after the first bolus Dose Adjustment For CrCl ≤ 50 mL/minute: For CrCl ≤ 60 mL/minute: 1st loading dose: 180 mcg/kg IV bolus (max: 22.6 mg) Loading dose: 25 mcg/kg IV over 5 minutes Maintenance infusion: 2 mcg/kg/minute (max 7.5 mg/hr) Maintenance infusion: 0.075 mcg/kg/minute continued for up to 18 2nd loading dose (if PCI): 180 mcg/kg IV bolus (max: 22.6 mg) should be hours administered 10 minutes after the first bolus For end-stage renal disease: CONTRAINDICATED Contraindications − Severe hypersensitivity reaction to eptifibatide − Severe hypersensitivity reaction to tirofiban − History of bleeding diathesis or evidence of active abnormal bleeding − A history of thrombocytopenia following prior
    [Show full text]
  • Summary of the Product Characteristics
    Tirofiban hydrochloride Welding GmbH & Co.KG 1.3 Product Information SUMMARY OF THE PRODUCT CHARACTERISTICS 1 NAME OF THE MEDICINAL PRODUCT <TIROFIBAN>® *50 micrograms/mL Solution for infusion <TIROFIBAN>® *250 micrograms/mL Concentrate for solution for infusion 2 QUALITATIVE AND QUANTITATIVE COMPOSITION <TIROFIBAN> Solution: 1 ml of solution for infusion contains 56 micrograms of Tirofiban hydrochloride monohydrate which is equivalent to 50 micrograms Tirofiban. This medicinal product contains 31 mmol (or 715 mg) sodium per bag (250 ml). To be taken into consideration by patients on a controlled sodium diet. <TIROFIBAN> Concentrate: 1 ml of concentrate for solution for infusion contains 281 micrograms of Tirofiban hydrochloride monohydrate which is equivalent to 250 micrograms Tirofiban. 50 ml of concentrate for solution for infusion contains 70.2514,05 mg of Tirofiban hydrochloride monohydrate which is equivalent to 62.512,5 mg Tirofiban. This medicinal product contains less than 1 mmol sodium (23 mg) per vial (50 ml), i.e. essentially ‘sodium- free’. For excipients, see section 6.1. 3 PHARMACEUTICAL FORM <TIROFIBAN> Solution: Solution for Infusion (250 ml bag) A clear, colourless solution. <TIROFIBAN> Concentrate: Concentrate for solution for infusion. A clear, colourless concentrated solution. * in the following document the abbreviated terms detailed below are used. • <TIROFIBAN> means <TIROFIBAN> Solution for Infusion or <TIROFIBAN> Concentrate for Solution for Infusion. • <TIROFIBAN> Solution will be used when referring to <TIROFIBAN>
    [Show full text]
  • Product Monograph
    PRODUCT MONOGRAPH Pr AGGRASTAT® tirofiban hydrochloride injection 12.5 mg / 250 mL tirofiban (5 mg / 100 mL in bags of 250 mL) Sterile Solution for Intravenous Infusion only Platelet aggregation inhibitor Cipher Pharmaceuticals Inc. Date of Revision: 2345 Argentia Road, Suite 100A July 24, 2018 Mississauga, Ontario L5N 8K4 Submission Control No.: 218105 AGGRASTAT® - Product Monograph Page 1 of 31 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION ........................................................ 3 SUMMARY PRODUCT INFORMATION........................................................................ 3 INDICATIONS AND CLINICAL USE ............................................................................. 3 CONTRAINDICATIONS ................................................................................................... 3 WARNINGS AND PRECAUTIONS ................................................................................. 4 ADVERSE REACTIONS ................................................................................................... 7 DRUG INTERACTIONS ................................................................................................. 11 DOSAGE AND ADMINISTRATION ............................................................................. 12 OVERDOSAGE ................................................................................................................ 17 ACTION AND CLINICAL PHARMACOLOGY ............................................................ 17 STORAGE AND STABILITY ........................................................................................
    [Show full text]
  • Intravenous Tirofiban Therapy for Patients with Capsular Warning Syndrome
    Open access Original article Stroke Vasc Neurol: first published as 10.1136/svn-2018-000163 on 9 January 2019. Downloaded from Intravenous tirofiban therapy for patients with capsular warning syndrome Wei Li, Ya Wu, Xiao-Shu Li, Cheng-Chun Liu, Shu-Han Huang, Chun-Rong Liang, Huan Wang, Li-Li Zhang, Zhi-Qiang Xu, Yan-Jiang Wang, Meng Zhang To cite: Li W, Wu Y, Li X-S, et al. ABSTRACT Although CWS occurs in only about 1.5% Intravenous tirofiban therapy for Background Capsular warning syndrome (CWS) is defined of patients with transient symptoms, the risk patients with capsular warning as recurrent episodes of transient ischaemic attacks ≥3 syndrome. of developing into a permanent deficit is high Stroke and Vascular times during a short time frame. There is no effective 4 Neurology 2019;4: e000163. and often with poor prognosis. Moreover, therapy to stop these attacks. We, herein, report our doi:10.1136/svn-2018-000163 the frequently recurrent attacks cause signif- experience of using intravenous tirofiban to treat CWS. icant disability and great anxiety to patients ► Additional material is Methods All patients with CWS in our hospital from who experience these episodes. Different published online only. To view January 2013 to September 2017 were reviewed. please visit the journal online Patients in tirofiban group (T-group) were treated by therapies have been proposed, including anti- (http:// dx. doi. org/ 10. 1136/ svn- intravenous tirofiban at 0.4 μg/kg/min for 30 min followed coagulation, antiplatelet therapies and even 2018- 000163). by 0.1–0.15 µg/kg/min infusion.
    [Show full text]
  • GUIDELINE for ANTITHROMBOTIC REVERSAL Table 1
    GUIDELINE for ANTITHROMBOTIC REVERSAL This document is intended as a guideline only and should not replace sound clinical judgment Table 1: Reversal for ANTICOAGULANT therapy ANTITHROMBOTIC REVERSAL AGENT COMMENTS DIRECT THROMBIN Short half-life and discontinuation of DTI are primary means of attenuating bleed – Off-label use of INHIBITORS (DTIs) rFVIIa/PCC: support with crystalloid and blood products to facilitate rapid renal clearance of drug – REQUIRES ATTENDING IV: 4 Factor PCC APPROVAL – Argatroban Dose*: 50 units/kg (dose cap at 100 kg to mitigate thrombotic risk) – Document attending – Bivalirudin Administration: Place in empty IV bag and give slow IV push over 10 minutes name in the order (Angiomax®) • Use within 4 hours of reconstitution comments Half-life 10-90 Onset: <30 minutes minutes Caution: thrombotic risk Additional options: PO: – If dabigatran ingested – Dabigatran within 1 hour, consider (Pradaxa®) rFVIIa activated charcoal. Dose*: 100 mcg/kg (dose cap at 100 kg to mitigate thrombotic risk) Half-life 12-17 – Mechanical methods, • May repeat in 2 hours if continued bleeding hours in normal such as dialysis, may be Administration: IV bolus over 3-5 minutes renal function considered as a last • Use within 3 hours of reconstitution resort The aPTT is currently Onset: <30 minutes Caution: thrombotic risk the only readily Recommend not giving available lab test to rFVIIa and PCC together QUALITATIVELY due to high risk of measure dabigatran. thrombosis unless clinical Do not use PT/INR situation warrants FACTOR XA 4 Factor
    [Show full text]
  • Estonian Statistics on Medicines 2013 1/44
    Estonian Statistics on Medicines 2013 DDD/1000/ ATC code ATC group / INN (rout of admin.) Quantity sold Unit DDD Unit day A ALIMENTARY TRACT AND METABOLISM 146,8152 A01 STOMATOLOGICAL PREPARATIONS 0,0760 A01A STOMATOLOGICAL PREPARATIONS 0,0760 A01AB Antiinfectives and antiseptics for local oral treatment 0,0760 A01AB09 Miconazole(O) 7139,2 g 0,2 g 0,0760 A01AB12 Hexetidine(O) 1541120 ml A01AB81 Neomycin+Benzocaine(C) 23900 pieces A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+Thymol(dental) 2639 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+Cetylpyridinium chloride(gingival) 179340 g A01AD81 Lidocaine+Cetrimide(O) 23565 g A01AD82 Choline salicylate(O) 824240 pieces A01AD83 Lidocaine+Chamomille extract(O) 317140 g A01AD86 Lidocaine+Eugenol(gingival) 1128 g A02 DRUGS FOR ACID RELATED DISORDERS 35,6598 A02A ANTACIDS 0,9596 Combinations and complexes of aluminium, calcium and A02AD 0,9596 magnesium compounds A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 591680 pieces 10 pieces 0,1261 A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 1998558 ml 50 ml 0,0852 A02AD82 Aluminium aminoacetate+Magnesium oxide(O) 463540 pieces 10 pieces 0,0988 A02AD83 Calcium carbonate+Magnesium carbonate(O) 3049560 pieces 10 pieces 0,6497 A02AF Antacids with antiflatulents Aluminium hydroxide+Magnesium A02AF80 1000790 ml hydroxide+Simeticone(O) DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 34,7001 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 3,5364 A02BA02 Ranitidine(O) 494352,3 g 0,3 g 3,5106 A02BA02 Ranitidine(P)
    [Show full text]
  • Aggrastat (Tirofiban Hydrochloride Injection Premixed)
    ® AGGRASTAT (TIROFIBAN HYDROCHLORIDE INJECTION PREMIXED) ® AGGRASTAT (tirofiban HCl) DESCRIPTION AGGRASTAT* (tirofiban hydrochloride), a non-peptide antagonist of the platelet glycoprotein (GP) IIb/IIIa receptor, inhibits platelet aggregation. Tirofiban hydrochloride monohydrate, a non-peptide molecule, is chemically described as N(butylsulfonyl)-O-[4-(4-piperidinyl)butyl]-L-tyrosine monohydrochloride monohydrate. Its molecular formula is C22H36N2O5S•HCI•H2O and its structural formula is: • HCI • H2 O CH 2 COOH C H NHSO 2CH 2CH 2CH 2CH 3 HN CH 2CH 2 CH2 CH 2O Tirofiban hydrochloride monohydrate is a white to off-white, non-hygroscopic, free- flowing powder, with a molecular weight of 495.08. It is very slightly soluble in water. AGGRASTAT Injection Premixed is supplied as a sterile solution in water for injection, for intravenous use only, in plastic containers of 100 mL or 250 mL. Each 100 mL of the premixed, iso-osmotic intravenous injection contains 5.618 mg tirofiban hydrochloride monohydrate equivalent to 5 mg tirofiban (50 mcg/mL) and the following inactive ingredients: 0.9 g sodium chloride, 54 mg sodium citrate dihydrate, and 3.2 mg citric acid anhydrous. Each 250 mL of the premixed, iso-osmotic intravenous injection contains 14.045 mg tirofiban hydrochloride monohydrate equivalent to 12.5 mg tirofiban (50 mcg/mL) and the following inactive ingredients: 2.25 g sodium chloride, 135 mg sodium citrate dihydrate, and 8 mg citric acid anhydrous. The pH of the solution ranges from 5.5 to 6.5 and may have been adjusted with hydrochloric acid and/or sodium hydroxide. The flexible container is manufactured from a specially designed multilayer plastic (PL 2408).
    [Show full text]
  • Neuraxial Access Or Peripheral Nerve Procedures)
    Management of Periprocedural Anticoagulation (Neuraxial Access or Peripheral Nerve Procedures) Below are guidelines to prevent spinal hematoma following Epidural/Intrathecal/Spinal procedures and perineural hematoma following peripheral nerve procedures. Procedures include epidural injec- tions/infusions, intrathecal injections/infusions/pumps, spinal injections, peripheral nerve catheters, and plexus infusions. Decisions to deviate from guideline recommendations given the specific clinical situation are the decision of the provider. See ‘Additional Comments’ section for more details. PRIOR to Neuraxial/ WHILE Neuraxial/Nerve AFTER Neuraxial/Nerve Comments Nerve Procedure Catheter in Place Procedure How long should I hold prior When can I restart to neuraxial procedure? (i.e. anticoagulants after neuraxial Can I give anticoagulants minimum time between the procedures? (i.e. minimum What additional information do I need to consider for the care of Anticoagulant concurrently with neuraxial, last dose of anticoagulant and time between catheter removal patients? peripheral nerve catheter, or spinal injection OR neuraxial/ or spinal/nerve injection and plexus placement? nerve placement) next anticoagulation dose) Low-Molecular Weight Heparin, Unfractionated Heparin, and Fondaparinux Maximum total heparin dose of 10,000 units per day (5000 SQ Q12 hrs) Unfractionated Heparin 5000 units Q 12 hrs – no time Heparin 5000 units SQ 8 hrs is NOT recommended with concurrent SQ Yes 2 hrs restrictions neuraxial catheter in place Prophylaxis Dosing For IV prophylactic dosing, use ‘treatment’ IV dosing recommendations. Unfractionated Heparin SQ: 8-10 hrs SQ/IV No 2 hrs See ‘Additional Comments’ IV: 4 hrs Treatment Dosing Enoxaparin (Lovenox), Caution in combination with other hemostasis-altering No (Note: May be used for Dalteparin (Fragmin) 12 hrs 4 hrs medications.
    [Show full text]
  • Rescue Treatment with Intra-Arterial Tirofiban Infusion and Emergent Carotid Stenting
    Yonsei Med J 49(5):857 - 859, 2008 DOI 10.3349/ymj.2008.49.5.857 Rescue Treatment with Intra-arterial Tirofiban Infusion and Emergent Carotid Stenting Tae Jin Song,1 Kee Oog Lee,1 Dong Joon Kim,2 and Kyung-Yul Lee1 Departments of 1Neurology and 2Diagnostic Radiology, Yonsei University College of Medicine, Seoul, Korea. Rapid arterial rethrombosis is associated with high-grade role in such rethrombosis following thrombolytic- residual stenosis and usually occurs at the site of the initial induced clot lysis. occlusion, resulting in reocclusion of the recanalized artery. Glycoprotein (GP) IIb/IIIa receptor blockers Platelets may play an active role in such rethrombosis after prevent thrombus formation by inhibiting the thrombolytic-induced clot lysis. Given that glycoprotein IIb/IIIa receptor blockers, like tirofiban, prevent thrombus final common pathway of platelet aggregation. formation by inhibiting the final common pathway of platelet There are three GP IIb/IIIa receptor blockers aggregation, they may be helpful for treating rethrombosis (abciximab, tirofiban, eptifibatide) available for after thrombolysis. A 64-year-old man presented with an acute clinical use. There are significant differences in the ischemic stroke due to internal carotid artery (ICA) occlusion. biological and plasma half-lives of abciximab and The ICA was recanalized by intravenous thrombolysis but the small molecule agents (tirofiban and eptifi- reoccluded shortly after recanalization. The reoccluded ICA batide). Tirofiban is a small, non-peptide molecule was successfully recanalized using intra-arterial tirofiban. A carotid stent was subsequently inserted to relieve severe that has been used intravenously, in combination stenosis and to prevent recurrent stroke.
    [Show full text]