Reconstruction of Dynamic and Reversible Color Change Using

Total Page:16

File Type:pdf, Size:1020Kb

Reconstruction of Dynamic and Reversible Color Change Using www.nature.com/scientificreports OPEN Reconstruction of Dynamic and Reversible Color Change using Refectin Protein Received: 16 November 2018 Tiantian Cai1, Kui Han2, Peilin Yang1, Zhou Zhu1, Mengcheng Jiang2, Yanyi Huang2 & Can Xie1,3 Accepted: 13 March 2019 Cephalopods have remarkable ability to change their body color across a wide range of wavelengths, Published: xx xx xxxx yet the structural basis remains largely unknown. Refectin, a protein family assumed to be responsible for structural color in cephalopods, has unique features of higher-order assembly that are tightly regulated by aromatic molecules. Here, we reconstructed the dynamic and reversible color change using purifed refectin protein and demonstrated how the conformational change and the status of assembly led to the change in optical properties. In addition, optical spectral and structural analyses indicated that the “cephalopod-blue” primarily resulted from wavelength-dependent light scattering rather than refection. Our results suggest a possible role of refectin in color dynamics. The in vitro reconstruction system we present here may serve as an initial step for designing bio-inspired optical materials based on refectin protein. Colors in nature are primarily mediated by pigmentary or structural elements or a combination of both1–3. In con- trast to pigment-derived colors, structural colors are produced by the physical interactions of the incident light with micro- or nano-structures1,4. Structural colors are bright, ofen iridescent, and widely used by living organ- isms for camoufaging or signaling5. Blue pigments are rare with limited reports in the animal kingdom, such as blue crustacyanin in lobsters6,7 and blue-green bile pigments in butterfies8. Terefore, structural colorations con- tribute to most of brilliant observed in some butterfies9, birds3,10, and mammals2 and even in the dynamic color change in cephalopods11, which represent one of the most unique and sophisticated coloration systems in nature. Cephalopods, the animal group including octopus, cuttlefsh and squid, are masters at manipulating their body coloration and patterns for camoufage or intra-species communication12,13. Tis remarkable ability of ceph- alopods depends on their unique skin structure containing multiple types of cells located in diferent layers with diferent functions14. Pigment-containing sacs in chromatophores located in the dermal layer are innervated and partially responsible for color change over the range of a few seconds15. Structural color change mediated by refectin-formed insoluble platelets in iridophores or spheres in leucophores beneath chromatophores requires a longer amount of time1. Refectin, a protein family named because of its high-refractive index, is expressed exclusively in cephalo- pods16. Te photonic properties of refectin have attracted considerable attention and intensive investigations for a long time. Te structural colors in cephalopods are suggested by multi-layer interference when incident light refected by periodically layered refectin platelets in iridophores17,18, and several experimental validations have been carried out at protein19,20 and cellular levels18, however, the structural basis of the color change pro- cess remains unknown. Refectin also exhibits multifaceted features both in vivo and in vitro1,16,17,20–27. It forms ribbon-shaped, cup-shaped and discoidal platelets in iridophores of diferent species14; spheres with various diameters in leucophores23 and chromatophores in vivo28; and either globular “refectin bricks” from self-assembly or huge platelet structures with diferent shapes from higher order assembly in vitro26. Te plasticity and the mul- tifaceted features of platelet “Bragg refector” in cephalopods can be traced to the special amino acid composition in protein sequence16, extremely low solubility in biochemistry16,26, and remarkable assembly ability of the refec- tin protein structure17,20,25,26,29. However, the connection between the complexity of structural color change in cephalopods and the structural/assembly status change of refectin protein remains unresolved. 1State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China. 2Biodynamic Optical Imaging Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, College of Engineering, and School of Life Sciences, Peking University, Beijing, China. 3Beijing Computational Science Research Center, The Chinese Academy of Engineering Physics, Beijing, 100084, China. Tiantian Cai and Kui Han contributed equally. Correspondence and requests for materials should be addressed to Y.H. (email: [email protected]) or C.X. (email: [email protected]) SCIENTIFIC REPORTS | (2019) 9:5201 | https://doi.org/10.1038/s41598-019-41638-8 1 www.nature.com/scientificreports/ www.nature.com/scientificreports a b Marker Applying the (KDa) reflectin c d e 170 protein 130 100 70 Substrate 55 40 Rotating 35 fhg 25 Drying 15 Figure 1. Film formation and coloration of Refectin. (a), SDS-PAGE of purifed Refectin (SoRef2). (b) Schematic of the spin-coating process. (c) Negative-staining EM image of Refectin (SoRef2) particles with no aromatic molecules. (d,e) Negative-staining EM image of Refectin (SoRef2) incubated with imidazole (Refectin/Imidazole) (d) and histamine (Refectin/Histamine) (e). (f) Film generated by spin coating the Refectin sample in (c). (g) Film generated by spin coating the Refectin/Imidazole sample in (d). (h) Film generated by spin coating the Refectin/Histamine sample in (e). Te scale bars in (c–e) represent 100 nm, whereas the scale bars in (f–h) represent 2 mm. One method to circumvent the question is to reconstruct the dynamic color change process with purifed refectin protein in vitro, thereby reducing the complexity of biological processes into simple molecular interac- tions, thus the structural/assembly status and optical features can be monitored at the same time. Here, refectin protein was spin coated to form thin solid flms to mimic the platelet structures in cephalopod iridophores. Using this clean-cut approach, the dynamic structural color change process from colorless to white and blue was successfully regenerated in vitro. We demonstrated that the blue coloration (here named “cephalopod-blue”) was only produced by higher-order assembly of refectin proteins in the presence of aromatic triggers. Refection and transmission spectra indicate that “cephalopod-blue” is a result of wavelength-dependent light scattering, as confrmed by structural analysis of the refectin flms. Te results outlined here may facilitate further design of bio-inspired photonic materials, and may provide biological implications to our understanding of the structural color change in cephalopods. Results Coloration of refectin. Recombinant refectin proteins have been applied in numerous studies to fabri- cate refectin flms to elucidate the origin of refectin-based structural colors17,19,20,30,31. In these studies, refectin proteins were dissolved in organic solvents, such as hexafuoroisopropanol (HFIP) or trifuoroacetic acid (TFA), followed by fow coating or spin coating. Tin-flm interference was suggested as one possible mechanism of coloration. With multiple refectin proteins purifed in mild bufer solution (represented by SoRef2 from Sepia ofcinalis, EsRef1a from Euprymna scolopes and DpRefA2 from Doryteuthis pealeii), we previously demonstrated tightly regulated hierarchical assembly of refectin, and this ability was even preserved by its single domain26. To explore how the assembly status of refectin may afect structural coloration, we revisited the structure-optics rela- tionship by spin-coated refectin at diferent assembly stages. One refectin, SoRef2 (GenBank: HE687200.1), was expressed and purifed to homogeneity (Fig. 1a), incubated with or without aromatic reagents (imidazole and his- tamine), and then spin coated as described19 (Fig. 1b). In contrast to refectin proteins in organic solvents, refec- tin proteins were added to bufer solution to maintain their conformation. Transmission electron microscopes (TEM) were used to monitor refectin conformation and assembly status with various refectin/reagents ratios (Fig. S1). We observed hierarchical assembly as reported previously26. Both small globular particles (Fig. 1c) from self-assembly and huge platelet structures (Fig. 1d,e) from higher-order assembly in diferent refectin samples in the absence or presence of aromatic stimulus were observed, respectively. To our surprise, the appearance color of the flm depended on the treatment of refectin protein. Film formed by self-assembled refectin without aromatic molecules remains colorless (Fig. 1f), whereas flms formed by higher-order assembled refectin protein incubated with imidazole (Fig. 1g) and histamine (Fig. 1h) exhibit similar blue color. Multiple refectin genes exist in cephalopods, and diferent refectin proteins exhibit specifc distributions in vivo, which may suggest diferent roles in the structural color change process32. To investigate whether diferent refectin proteins are responsible for diferent optical features, two more representative refectin proteins from Sepia ofcinalis (SoRef1, GenBank: HE687199.1 and SoRef8, GenBank: HE687206.1) were selected based on sequence similarity analysis (Fig. S2a,b), expressed and purifed (Fig. S2c,h). Similar structures and assembly fea- tures compared with SoRef2 were confrmed by TEM with or without
Recommended publications
  • Pharaoh Cuttlefish, Sepia Pharaonis, Genome Reveals Unique Reflectin
    fmars-08-639670 February 9, 2021 Time: 18:18 # 1 ORIGINAL RESEARCH published: 15 February 2021 doi: 10.3389/fmars.2021.639670 Pharaoh Cuttlefish, Sepia pharaonis, Genome Reveals Unique Reflectin Camouflage Gene Set Weiwei Song1,2, Ronghua Li1,2,3, Yun Zhao1,2, Herve Migaud1,2,3, Chunlin Wang1,2* and Michaël Bekaert3* 1 Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China, 2 Collaborative Innovation Centre for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China, 3 Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom Sepia pharaonis, the pharaoh cuttlefish, is a commercially valuable cuttlefish species across the southeast coast of China and an important marine resource for the world fisheries. Research efforts to develop linkage mapping, or marker-assisted selection have been hampered by the absence of a high-quality reference genome. To address this need, we produced a hybrid reference genome of S. pharaonis using a long-read Edited by: platform (Oxford Nanopore Technologies PromethION) to assemble the genome and Andrew Stanley Mount, short-read, high quality technology (Illumina HiSeq X Ten) to correct for sequencing Clemson University, United States errors. The genome was assembled into 5,642 scaffolds with a total length of 4.79 Gb Reviewed by: and a scaffold N of 1.93 Mb. Annotation of the S. pharaonis genome assembly Simo Njabulo Maduna, 50 Norwegian Institute of Bioeconomy identified a total of 51,541 genes, including 12 copies of the reflectin gene, that enable Research (NIBIO), Norway cuttlefish to control their body coloration.
    [Show full text]
  • Physics of Structural Colors
    HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US Physics of structural colors This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2008 Rep. Prog. Phys. 71 076401 (http://iopscience.iop.org/0034-4885/71/7/076401) The Table of Contents and more related content is available Download details: IP Address: 132.72.138.1 The article was downloaded on 02/07/2008 at 16:04 Please note that terms and conditions apply. IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS Rep. Prog. Phys. 71 (2008) 076401 (30pp) doi:10.1088/0034-4885/71/7/076401 Physics of structural colors S Kinoshita, S Yoshioka and J Miyazaki Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan E-mail: [email protected] Received 3 September 2007, in final form 16 January 2008 Published 6 June 2008 Online at stacks.iop.org/RoPP/71/076401 Abstract In recent years, structural colors have attracted great attention in a wide variety of research fields. This is because they are originated from complex interaction between light and sophisticated nanostructures generated in the natural world. In addition, their inherent regular structures are one of the most conspicuous examples of non-equilibrium order formation. Structural colors are deeply connected with recent rapidly growing fields of photonics and have been extensively studied to clarify their peculiar optical phenomena. Their mechanisms are, in principle, of a purely physical origin, which differs considerably from the ordinary coloration mechanisms such as in pigments, dyes and metals, where the colors are produced by virtue of the energy consumption of light.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Protonic Conduction and Photochemical Modification of Protein Reflectin THESIS Submitted In
    UNIVERSITY OF CALIFORNIA, IRVINE Protonic Conduction and Photochemical Modification of Protein Reflectin THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Chemical and Biochemical Engineering by Yegor Van Dyke Thesis Committee: Professor Alon A. Gorodetsky, Chair Professor Hung D. Nguyen Professor Frank G. Shi 2016 Chapter 1 © 2016 American Chemical Society Chapter 2 © 2016 Gorodetsky Group Chapter 3 © 2016 Yegor Van Dyke TABLE OF CONTENTS LIST OF FIGURES ....................................................................................................................... iii ACKNOWLEDGMENTS ............................................................................................................. vi ABSTRACT OF THE THESIS .................................................................................................... vii CHAPTER 1: Photochemical Doping of Protonic Transistors from a Cephalopod Protein ..................................................................................................................... 1 1.1 Abstract ..................................................................................................................................... 1 1.2 Introduction ………….............................................................................................................. 4 1.3 Experimental Section ................................................................................................................ 5 1.3.1 Preparation of Wild-Type and Mutant Reflectins
    [Show full text]
  • Pollia Condensata Has an Extraordinary Blue Fruit Known for Its High Intensity Reflectivity, and Glittery Appearance
    LIVING LIGHT 2018 3 CONTENTS Introduction ....................................................... 3 Scientific commitee ............................................. 4 Local organising commitee ................................... 4 Graphics ............................................................ 4 History .............................................................. 5 Timetable .......................................................... 6 Find us .............................................................11 Abstracts, invited lectures ...................................13 Abstracts, lectures .............................................21 Abstracts, posters ..............................................67 List of participants .............................................92 Contacts...........................................................96 Sponsors ..........................................................97 Notes ...............................................................98 4 5 INTRODUCTION Dear Living Light 2018 Participant, It is an honour for us to host such an exciting meeting in Cambridge and we thank you for joining us! We designed the meeting with the intention of maximising interaction between the participants and with the hope that you will go back home with a new set of collaborators and friends which are as passionate as you are about working at the interface between biology, chemistry, physics, and engineering! We truly hope that you will enjoy the conference and we ask for your collaboration to keep the meeting
    [Show full text]
  • The Optical Janus Effect: Asymmetric Structural Color Reflection Materials
    The Optical Janus Effect: Asymmetric Structural Color Reflection Materials The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation England, Grant T., Calvin Russell, Elijah Shirman, Theresa Kay, Nicolas Vogel, and Joanna Aizenberg. 2017. “The Optical Janus Effect: Asymmetric Structural Color Reflection Materials.” Advanced Materials 29 (29) (June 6): 1606876. doi:10.1002/adma.201606876. Published Version doi:10.1002/adma.201606876 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37235483 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP DOI: 10.1002/ ((please add manuscript number)) Article type: Full Paper The Optical Janus Effect: Asymmetric Structural Color Reflection Materials Grant T. Englanda, Calvin Russella, Elijah Shirmanab, Theresa Kayb, Nicolas Vogelc, and Joanna Aizenberg*abd aJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, USA bWyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, USA cInstitute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany dDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, USA Keywords: structural color, absorption, multilayer, photonic crystals, thin film. Abstract: Structurally colored materials are often used for their resistance to photobleaching and their complex viewing direction-dependent optical properties. Frequently, absorption has been added to these types of materials in order to improve the color saturation by mitigating the effects of nonspecific scattering that is present in most samples due to imperfect manufacturing procedures.
    [Show full text]
  • Condition and Brightness of Structural Blue-Green: Motmot Tail-Racket Brightness Is Related to Speed of Feather Growth in Males, but Not in Females
    Trinity University Digital Commons @ Trinity Biology Faculty Research Biology Department 7-2012 Condition and Brightness of Structural Blue- Green: Motmot Tail-Racket Brightness is Related to Speed of Feather Growth in Males, But Not in Females Troy G. Murphy Trinity University, [email protected] Tiffany T. Pham Trinity University Follow this and additional works at: https://digitalcommons.trinity.edu/bio_faculty Part of the Biology Commons Repository Citation Murphy, T. G. and Pham, T. T. (2012), Condition and brightness of structural blue-green: Motmot tail-racket brightness is related to speed of feather growth in males, but not in females. Biological Journal of the Linnean Society, 106(3), 673–681. doi: 10.1111/ j.1095-8312.2012.01891.x This Article is brought to you for free and open access by the Biology Department at Digital Commons @ Trinity. It has been accepted for inclusion in Biology Faculty Research by an authorized administrator of Digital Commons @ Trinity. For more information, please contact [email protected]. bs_bs_banner Biological Journal of the Linnean Society, 2012, 106, 673–681. With 3 figures Condition and brightness of structural blue-green: motmot tail-racket brightness is related to speed of feather growth in males, but not in females TROY G. MURPHY* and TIFFANY T. PHAM Trinity University, Department of Biology, One Trinity Place, San Antonio, TX 78212, USA Received 21 November 2011; revised 18 January 2012; accepted for publication 19 January 2012bij_1891 673..681 Coloration plays an important role in sexual and social communication, and in many avian species both males and females maintain elaborate colours. Recent research has provided strong support for the hypothesis that elaborate female traits can be maintained by sexual or social selection; however, most research on female ornamentation has focused on pigment-based colours, and less is known about how structural colours are maintained.
    [Show full text]
  • Structure, Self-Assembly, and Properties of a Truncated Reflectin Variant
    Structure, self-assembly, and properties of a truncated reflectin variant Mehran J. Umerania,1, Preeta Pratakshyab,1, Atrouli Chatterjeec, Juana A. Cerna Sanchezd, Ho Shin Kime, Gregor Ilcf, Matic Kovaciˇ cˇf, Christophe Magnang, Benedetta Marmirolih, Barbara Sartorih, Albert L. Kwansae, Helen Orinsc, Andrew W. Bartlettc, Erica M. Leungc, Zhijing Fenga, Kyle L. Naughtoni, Brenna Norton-Bakerb, Long Phana, James Longc, Alex Allevatoa, Jessica E. Leal-Cruza, Qiyin Linj, Pierre Baldig, Sigrid Bernstorffk, Janez Plavecf, Yaroslava G. Yinglinge, and Alon A. Gorodetskya,b,c,2 aDepartment of Materials Science and Engineering, University of California, Irvine, CA 92697; bDepartment of Chemistry, University of California, Irvine, CA 92697; cDepartment of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697; dDepartment of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697; eDepartment of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695; fSlovenian NMR Centre, National Institute of Chemistry, 1000 Ljubljana, Slovenia; gDepartment of Computer Science, University of California, Irvine, CA 92697; hInstitute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria; iDepartment of Physics and Astronomy, University of California, Irvine, CA 92697; jIrvine Materials Research Institute, University of California, Irvine, CA 92697; and kElettra–Sincrotrone Trieste, 34149 Trieste, Italy Edited by Jacqueline K. Barton, California Institute of Technology,
    [Show full text]
  • Changes in Reflectin Protein Phosphorylation Are Associated with Dynamic Irides
    Classification: Biochemistry Changes in reflectin protein phosphorylation are associated with dynamic irides- cence in squid Michi Izumi*, Alison M. Sweeney*, Daniel DeMartini*, James C. Weaver*, Meghan L. Pow- ers*, Andrea Tao*, Tania V. Silvas*, Ryan M. Kramer†, Wendy J. Crookes-Goodson†, Lydia M. ‡ † ‡ Mäthger , Rajesh R. Naik , Roger T. Hanlon and Daniel E. Morse* *Institute for Collaborative Biotechnologies, Materials Research Laboratory, California Nano- Systems Institute and the Department of Molecular, Cellular and Developmental Biology, Uni- versity of California, Santa Barbara, Santa Barbara, CA 93106; †Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433; ‡Marine Biolog- ical Laboratory, Woods Hole, MA 02543 §To whom correspondence should be addressed. E-mail: [email protected], [email protected] Corresponding author: Daniel E. Morse University of California, Santa Barbara, Santa Barbara, CA 93106 Tel: 805-893-7442 Fax: 805-893-2998 Manuscript information: Number of text pages; 21 Number of figures; 6 Abbreviations: ACh, acetylcholine; mAChRs, muscarinic acetylcholine receptors; DTT, dithiothreitol; HPLC, high performance liquid chromatography; IEF, isoelectric focusing; PVDF, polyvinylidene fluoride; HRP, horseradish peroxidase; MALDI-TOF MS, matrix-assisted laser desorption time-of-flight mass spectroscopy; RM, reflectin mo- tif; PKC, protein kinase C Abstract Many cephalopods exhibit remarkable dermal iridescence, a component of their complex, dynamic camouflage
    [Show full text]
  • Light-Matter Interaction and the Structural Coloration of Birds
    Light-Matter Interaction and the Structural Coloration of Birds Carmem Maia Gilardoni Research Paper Top Master in Nanoscience, Zernike Institute for Advanced Materials Supervised by: Prof. Dr. Doekele Stavenga [February-March 2016] Contents 1 Introduction 1 2 Bird Feather Structure 2 3 Physical Models 5 3.1 Maxwell's Equations . .5 3.2 Finite Difference Time Domain (FDTD) Formalism . .6 3.3 Band Structure Formalism . .7 3.3.1 The Eigenvalue Problem in Frequency Domain . .7 3.3.2 The Periodic Dielectric . .8 3.4 Effective Medium Description . 10 3.4.1 Thin Film Theory . 10 3.4.2 The Transfer Matrix . 12 3.4.3 Homogenization of the Refractive Index . 13 4 Application of the Models 16 5 Conclusion 19 Abstract Birds feathers have evolved showing an impressive pallet of colors and optical effects generated by the diverse arrangement of keratin, melanin and air in their barbules. Small changes to only a few parameters in the structure of the barbules are responsible for varied optical features. In order to understand the role of each parameter involved in the description of the photonic structures responsible for the structural coloration of birds, valid physical models for these arrangements must be obtained. We develop a description of the physical models generally applied to the description of the structure of the barbules, specifically the complete solution of Maxwell's equations in the time domain (FDTD) or in the frequency domain (photonic band structure), and the thin-film description of the structure through the effective-medium theory for the refractive index. In the context of the papers analyzed in this report, potential applications of an effective- medium theory for complex photonic structures are identified.
    [Show full text]
  • Elucidating the Role of Nanostructured Pigment Granules in the Dynamic Coloration of Cephalopods: a Pathway Towards New Bioinspired Materials
    Elucidating the Role of Nanostructured Pigment Granules in the Dynamic Coloration of Cephalopods: A Pathway Towards New Bioinspired Materials by Thomas L. Williams B.A. in Chemistry, Colby College A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy February 14th, 2019 Dissertation directed by Leila Deravi Professor of Chemistry and Chemical Biology 1 Acknowledgements First, I would like to sincerely extend my gratitude to my advisor, Prof. Leila Deravi, for an incredible amount of direction, advice, and patience. I would also like to thank my dissertation committee members: Profs. Steven Lopez, Eugene Smotkin, and Rudi Seitz. Each of you have contributed significantly to this work and to my growth as a chemist through your comments and guidance. Thanks to my family, who have always been supportive of my academic endeavors. I also need to extend my thanks to all the current and previous members of the Biomaterials Design Group, especially Christopher Dibona, Dr. Sean Dinneen, Dr. Amrita Kumar, and Camille Martin, aka Team Pigment, for their assistance, advice and support. I would also like to thank Conor Gomes, Cassandra Martin, and Dr. Jeff Paten for their insight and friendship. I would also like to thank Northeastern University and the Department of Chemistry and Chemical Biology for the opportunity to work and study here. I would like to specifically thank Prof. Jared Auclair and Dr. John de la Parra for their assistance with mass spectrometry, as well as Prof. Jason Guo, for his assistance with NMR.
    [Show full text]
  • Advanced Methods for Studying Pigments and Coloration Using Avian Specimens*,†
    CHAPTER THREE Advanced Methods for Studying Pigments and Coloration Using Avian Specimens*,† Kevin J. Burns, Kevin J. McGraw, Allison J. Shultz, Mary C. Stoddard, and Daniel B. Thomas Abstract. Advanced analyses of feathers, eggs, and usage, limitations, and other considerations for other colorful tissues in ornithology collections analyzing museum specimens. Structural colors are revealing fresh insights into the life histories in feathers and the surface coloration of eggs are of birds. Here, we describe the methods used in particularly emphasized. these studies, including high-performance liq- uid chromatography, digital photography, Raman Key Words: digital photography, egg pigmentation, spectroscopy, and spectrophotometry. We use high-performance liquid chromatography, hyper- case studies from across the diversity of birds and spectral imaging, Raman spectroscopy, spectro- from deep in the fossil record to illustrate method photometry, structural coloration. olors are essential for the life history strate- mechanisms of color generation, and the do-or- gies of many animals, including birds (Hill die importance of their colorful displays, birds are Cand McGraw 2006a,b). Bright and vivid col- particular marvels of coloration. Birds have col- ors often function as visual signals, communicat- orful eggs, eyes, plumage, skin, and scales, and ing the quality of an individual to potential mates, can show substantial variation in coloration across rivals, or predators (Hill 1991, Pryke and Griffith species, populations, and individuals. 2006, Maan and Cummings 2012). Muted and The significance and evolution of color varia- dark colors also can be important social signals tion among birds is often revealed through (Møller 1987, Hoi and Griggio 2008, Karubian comparative analyses, and ornithology collec- et al.
    [Show full text]
  • How to Define and Study Structural Proteins As Biopolymer Materials
    Polymer Journal (2020) 52:1043–1056 https://doi.org/10.1038/s41428-020-0362-5 FOCUS REVIEW How to define and study structural proteins as biopolymer materials Keiji Numata 1,2 Received: 1 April 2020 / Revised: 25 April 2020 / Accepted: 27 April 2020 / Published online: 22 May 2020 © The Author(s) 2020. This article is published with open access Abstract Structural proteins, including silk fibroins, play an important role in shaping the skeletons and structures of cells, tissues, and organisms. The amino acid sequences of structural proteins often show characteristic features, such as a repeating tandem motif, that are notably different from those of functional proteins such as enzymes and antibodies. In recent years, materials composed of or containing structural proteins have been studied and developed as biomedical, apparel, and structural materials. This review outlines the definition of structural proteins, methods for characterizing structural proteins as polymeric materials, and potential applications. Definition considered [3], defining a structural protein is even more 1234567890();,: 1234567890();,: difficult and complicated. Therefore, in this focus review, I Proteins are polymers in which the 20 natural amino acids would like to define a structural protein as “a protein that are linked by amide bonds. In addition to the 20 natural possesses a characteristic amino acid sequence or motif amino acids, there are amino acids that are not directly that repeats and forms a skeleton or contributes to the synthesized from ribosomes, such as L-3,4-dihydrox- mechanical properties of a living organism, cell, or mate- yphenylalanine (DOPA), hydroxyproline (Hyp), dityrosine, rial” (Fig. 1). Structural proteins can be globular or fibrillar and selenomethionine, and these compounds are synthe- proteins.
    [Show full text]