Predicting Habitat Suitability of Coptotermes Gestroi (Isoptera: Rhinotermitidae) with Species Distribution Models

Total Page:16

File Type:pdf, Size:1020Kb

Predicting Habitat Suitability of Coptotermes Gestroi (Isoptera: Rhinotermitidae) with Species Distribution Models HOUSEHOLD AND STRUCTURAL INSECTS Predicting Habitat Suitability of Coptotermes gestroi (Isoptera: Rhinotermitidae) With Species Distribution Models 1,2 3 1 HOU-FENG LI, IKUKO FUJISAKI, AND NAN-YAO SU J. Econ. Entomol. 106(1): 311Ð321 (2013); DOI: http://dx.doi.org/10.1603/EC12309 ABSTRACT Coptotermes gestroi (Wasmann) is an important structural pest reported from Asia, PaciÞc islands, North America, Caribbean islands, South America, and Indian Ocean islands. This study summarized previous records of C. gestroi and its synonyms, presenting 184 infested counties from 24 countries. Based on the geo-references occurrence locations and global raster data of climate, geography, and human population, C. gestroi were found most commonly in warm, high precipitation, low altitude, and human populated areas. By using species distribution models, we predicted its current infested area (model 1), habitat suitability (model 2), and probability of introduction (model 3) on a global scale. The results showed its recorded locations and the predicted distribution of the present day are similar, but the suitable habitat is larger than its current distribution. The patterns of the introduction frequency (model 3) and habitat suitability (model 2) are inconsistent. Temperate cities with high introduction risk are located in Europe, United Sates, northeastern China, and Japan where habitat suitability is low and hence successful colonization is unlikely. In tropics and subtropics, habitat suitability of C. gestroi is high. We speculate that continuous urbanization and increasing human population will increase its introduction frequency and cause further extension in fast developing tropical and subtropical countries. KEY WORDS invasive species, species distribution model, urban pest, subterranean termite Urban environments are characterized by manmade (King and Spink 1969, Messenger et al. 2005). Only a construction and designed landscape but are also few termite species reach cosmopolitan distribution shaped by natural climate and geography. Some ar- (Gay 1967, Evans 2010). Their peridomestic habitat is thropods adapted to urban habitats could reproduce in affected by outdoor climatic and geographic factors large numbers, resulting in esthetic damage, economic that probably limit their colonization and further ex- loss, and human health threats (Robinson 2005). Do- tension in introduced area. mestic pests, such as Germen cockroach (Appel 1995), In tropical and subtropical areas, the genus, Cop- Pharaoh ant (Wheeler 1910), and stored food beetles totermes, is the most signiÞcant group, including Ϸ70 (Hill 2002) complete their life cycles indoors with described species (Vargo and Husseneder 2009, Con- limited food, water, and harborage, and have been stantino 2011) and one third of which considered pests spread around the world through commerce. Subter- (Edwards and Mill 1986, Su and Scheffrahn 2000). Six ranean termites (Rhinotermitidae) are important ur- Coptotermes species have been recorded as invasive ban pests. The most damaging subterranean species pests, and Coptotermes gestroi (Wasmann) and Cop- occur in three genera, Coptotermes, Heterotermes, and, totermes formosanus Shiraki, have the largest distribu- Reticulitermes (Edwards and Mill 1986), with a com- tion (Evans 2010), and are the most often occurring bined global economic impact of $40 billion annually in tropical and temperate areas, respectively (Su (Rust and Su 2012). In urban environments, subter- 2003). The distribution of C. formosanus had been well ranean termites live in the peridomestic area and usu- documented (Tamashiro and Su 1987). However, no ally nest in soil. Their subterranean gallery system and global distribution of C. gestroi has been available aboveground mud tubes could extend over a hundred because of the long-standing confusion of its taxon- meters connecting underground nests and food omy. C. gestroi was Þrst described from Myanmar, and sources such as tree stumps, dead branches of living then several synonyms were created from other Asian tree, gardening wood, and wooded constructions countries, such as C. heimi (Wasmann 1902) and C. parvulus Holmgren 1913a from India, C. havilandi Hol- 1 Department of Entomology and Nematology, Fort Lauderdale mgren 1911a from Malaysia, C. vastator Light 1929 Research and Education Center, University of Florida, 3205 College from the Philippines, C. pacificus Light 1932 from In- Ave., Ft. Lauderdale, FL 33314. donesia, and C. obliquus Xia and He 1986 and C. yax- 2 Department of Wildlife Ecology and Conservation, Fort Lauder- ianensis Li 1986 from China. In the 20th century, C. dale Research and Education Center, University of Florida, 3205 College Ave., Ft. Lauderdale, FL 33314. gestroi was introduced to other geographic areas in- 3 Corresponding author, e-mail: houfeng@uß.edu. cluding PaciÞc islands, North America, Caribbean is- 0022-0493/13/0311Ð0321$04.00/0 ᭧ 2013 Entomological Society of America 312 JOURNAL OF ECONOMIC ENTOMOLOGY Vol. 106, no. 1 lands, South American, and Indian Ocean islands (Gay Materials and Methods 1967). The synonyms of C. gestroi were adopted in- Locations Sampled. Published literature containing dividually at different geographic areas for many de- collection records of C. gestroi and its synonyms were cades. In light of recent taxonomic studies (Roonwal reviewed. The Þrst documented year in each country, and Chhotani 1962; Gay 1967; Kirton and Brown 2003; recorded species name, identiÞed material, and ref- Yeap et al. 2007, 2010; Li et al. 2011), the C. parvulus, erences were tabulated (Table 1). To establish a reg- C. pacificus, C. havilandi, C. vastator, C. heimi, C. ular resolution database for worldwide distribution obliquus, and C. yaxianensis were proven to be junior simulation, only county records or smaller adminis- synonyms of C. gestroi. Currently, C. gestroi is consid- trative regions were used for current study. If multiple ered the most destructive structural pest in South- locations were documented in a county, we randomly east Asia (Kirton and Azmi 2005, Lee et al. 2007), selected one location. If no speciÞc location was men- India (Roonwal and Chhotani 1989, referred as C. tioned in a county, physical middle point was chosen. heimi), and Brazil (Constantino 2002, referred as C. In total, 184 county records of 24 countries were ob- havilandi). C. gestroi continually extended its infes- tained from 66 publications (Table 1). Coordinates of tation in newly invaded areas, including Taiwan (Li the 184 observation points were estimated by using et al. 2009) and Florida (Su et al. 1997, Scheffrahn Google Earth software. In addition, background ref- and Su 2005). erence points were selected at 0.5 degree interval, In addition to the taxonomic confusion, obtaining a which approximately correspond to a county size, on global distribution map through Þeld survey is always terrestrial area between 40 degrees north and south time-consuming and Þnancially challenging. Previous latitude where most termite species were found (Egg- termite surveys were geographically scattered and de- leton 2000). In total, 30,385 background reference pendant on work of few scientists. Sampling bias points were obtained. caused by different investigators and different original Environmental Factors. To describe ecological research purposes remain uncorrected because of niche of C. gestroi and to predict its current distribu- sparse information on previous sampling methods. We tion area, habitat suitability, and possibility of intro- have no idea if many of the areas that show an absence duction in worldwide scale, publicly available global of C. gestroi truly lack this species or just have not been raster data of environmental factors were used. properly surveyed yet. To overcome these limitations, Monthly minimum and maximum temperatures, pre- the current study reviews published literature with cipitation and altitude, which were representative of several hundreds of collection records of C. gestroi 1950Ð2000 (Hijimas et al. 2005), were obtained from (Table 1) to obtain its recorded occurrence locations WorldClim (2010). From monthly minimum and (Fig. 1A), and by using species distribution models to maximum temperatures and precipitation, we de- predict its current areas of infestation (Fig. 1B). Spe- rived annual minimum and maximum temperatures cies distribution models or ecological niche models and precipitation. Moderate Resolution Imaging are frequently used to predict the potential range of Spectroradiometer (MODIS)/terra land cover type exotic species (Peterson and Vieglais 2001, Welk et al. 2007 data with the International Geosphere-Biosphere 2002) to assess invasion potential. A common ap- Programme (IGBP) vegetation classiÞcation scheme, proach is to parameterize models based on the native which differentiates 16 land cover classes (Friedl et al. 2002), were obtained from NASA the Warehouse In- range of species and use the deÞned environmental ventory Search Tool (2010). Gridded Population of correlates to predict the adventive range (Welk et al. the World (GPW) version three (Center for Interna- 2002, Richardson and Thuiller 2007). Various methods tional Earth Science Information Network [CIESIN] have been developed that allow predictions using ex- 2005), which depicts the human population density in isting species occurrence data to understand the 2010, was obtained from Web site of the Center for mechanism of speciesÕ arrange shifts in the face of International Earth Science Information Network
Recommended publications
  • Intrusion Pathway of Invasive Asian Subterranean Termite, Coptotermes Gestroi (Wasmann) from the Neotropics Into the Indian Ma
    RESEARCH COMMUNICATIONS Intrusion pathway of invasive Asian Southeast Asia. In the Neotropical region, C. gestroi was first described as C. vastator and then under the name C. subterranean termite, Coptotermes havilandi Holmgren it spread from Asia to Brazil in gestroi (Wasmann) from the 1936, into the Caribbean4, and into peninsular Florida, Neotropics into the Indian mainland USA5. Along with the junior synonyms for C. gestroi, such as 6 1, 2 the destructive C. heimi (Wasmann) , confusion and T. Venkatesan *, C. M. Kalleshwaraswamy , misidentification with other valid species of the genus 1 1 Ankita Gupta and T. R. Ashika have also commonly occurred. In Southeast Asia, C. ge- 1ICAR-National Bureau of Agricultural Insect Resources, Post Box No. stroi was sometimes wrongly identified as C. travians 2491, H.A. Farm Post, Hebbal, Bengaluru 560 024, India (Haviland), whereas the true C. travians was also misi- 2 Department of Entomology, College of Agriculture, University of dentified as C. havilandi in peninsular Malaysia7. In the Agricultural and Horticultural Sciences, Shivamogga 577 204, India Pacific Islands, C. gestroi was mistakenly identified as C. 8,9 10 Coptotermes is one of the most widespread subterra- formosanus in Guam . As described by Li et al. , the nean termite genus of economic significance with few following are all now considered as junior synonyms of species considered as truly invasive. Coptotermes C. gestroi: C. havilandi Holmgren, C. heimi (Wasmann), gestroi (Wasmann) is also known to be invasive and C. javanicus Kemner, C. obliqus Xia and He, C. pacificus has taxonomic confusion on its correct identity. Origi- Light, C.
    [Show full text]
  • Overview and Current Status of Non-Native Termites (Isoptera) in Florida§
    Scheffrahn: Non-Native Termites in Florida 781 OVERVIEW AND CURRENT STATUS OF NON-NATIVE TERMITES (ISOPTERA) IN FLORIDA§ Rudolf H. Scheffrahn University of Florida, Fort Lauderdale Research & Education Center, 3205 College Avenue, Davie, Florida 33314, U.S.A E-mail; [email protected] §Summarized from a presentation and discussions at the “Native or Invasive - Florida Harbors Everyone” Symposium at the Annual Meeting of the Florida Entomological Society, 24 July 2012, Jupiter, Florida. ABSTRACT The origins and status of the non-endemic termite species established in Florida are re- viewed including Cryptotermes brevis and Incisitermes minor (Kalotermitidae), Coptotermes formosanus, Co. gestroi, and Heterotermes sp. (Rhinotermitidae), and Nasutitermes corniger (Termitidae). A lone colony of Marginitermes hubbardi (Kalotermitidae) collected near Tam- pa was destroyed in 2002. A mature colony of an arboreal exotic, Nasutitermes acajutlae, was destroyed aboard a dry docked sailboat in Fort Pierce in 2012. Records used in this study were obtained entirely from voucher specimen data maintained in the University of Flori- da Termite Collection. Current distribution maps of each species in Florida are presented. Invasion history suggests that established populations of exotic termites, without human intervention, will continue to spread and flourish unabatedly in Florida within climatically suitable regions. Key Words: Isoptera, Kalotermitidae, Rhinotermitidae, Termitidae, non-endemic RESUMEN Se revisa el origen y el estatus de las especies de termitas no endémicas establecidas en la Florida incluyendo Cryptotermes brevis y Incisitermes menor (Familia Kalotermitidae); Coptotermes formosanus, Co. gestroi y Heterotermes sp. (Familia Rhinotermitidae) y Nasu- titermes corniger (Familia Termitidae). Una colonia individual de Marginitermes hubbardi revisada cerca de Tampa fue destruida en 2002.
    [Show full text]
  • A Single Endemic and Three Exotic Species of the Termite Genus Coptotermes (Isoptera, Rhinotermitidae) in the New World 333-348 73 (2): 333 – 348 20.8.2015
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2015 Band/Volume: 73 Autor(en)/Author(s): Scheffrahn Rudolf H., diverse Artikel/Article: A single endemic and three exotic species of the termite genus Coptotermes (Isoptera, Rhinotermitidae) in the New World 333-348 73 (2): 333 – 348 20.8.2015 © Senckenberg Gesellschaft für Naturforschung, 2015. A single endemic and three exotic species of the termite genus Coptotermes (Isoptera, Rhinotermitidae) in the New World Rudolf H. Scheffrahn *, 1, Tiago F. Carrijo 2, Jan Křeček 1, Nan-Yao Su 1, Allen L. Szalanski 3, James W. Austin 4, James A. Chase 5 & John R. Mangold 5 1 Fort Lauderdale Research and Education Center, 3205 College Avenue, Davie, Florida 33314, USA; Rudolf H. Scheffrahn * [[email protected]]; Jan Křeček [[email protected]]; Nan-Yao Su [[email protected]] — 2 Museu de Zoologia, Universidade de São Paulo, Av. Nazaré 481, 04263-000, São Paulo, SP, Brasil; Tiago F. Carrijo [[email protected]] — 3 Department of Entomology, 319 Agri. Bldg., University of Arkansas, Fayetteville, AR 72701, USA; Allen L. Szalanski [[email protected]] — 4 BASF Corporation, 26 Davis Drive, P.O. Box 13528, Research Triangle Park, NC 27709, USA; James W. Austin [[email protected]] — 5 Terminix International, 860 Ridge Lake Boulevard, Memphis, Tennessee 38120, USA; James A. Chase [[email protected]]; John R. Mangold [[email protected]] — * Correspond ing author Accepted 06.vii.2015. Published online at www.senckenberg.de/arthropod-systematics on 07.viii.2015. Editor in charge: Julia Goldberg.
    [Show full text]
  • Morphometric Analysis of Coptotermes Spp. Soldier Caste (Blattodea: Rhinotermitidae) in Indonesia and Evidence of Coptotermes Gestroi Extreme Head-Capsule Shapes
    insects Article Morphometric Analysis of Coptotermes spp. Soldier Caste (Blattodea: Rhinotermitidae) in Indonesia and Evidence of Coptotermes gestroi Extreme Head-Capsule Shapes Bramantyo Wikantyoso 1,2,*, Shu-Ping Tseng 3, Setiawan Khoirul Himmi 2 , Sulaeman Yusuf 2 and Tsuyoshi Yoshimura 1 1 Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; [email protected] 2 Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI) Jl. Raya Bogor km 46 Cibinong, Bogor 16911, Indonesia; [email protected] (S.K.H.); [email protected] (S.Y.) 3 Department of Entomology, University of California, 900 University Avenue, Riverside, CA 92521, USA; [email protected] * Correspondence: [email protected] Simple Summary: The morphological characteristics of the soldier caste in termites provide valuable taxonomic information at the species level. Head-shape variation in soldiers was often used as an indicative characteristic in some genera. While species with egg-shaped and waterdrop-shaped head capsule (HC), Coptotermes gestroi and C. curvignathus, respectively, are familiar in Indonesia, neither a measurement nor head index may avoid the subjectivity of shape interpretation. We conducted linear Citation: Wikantyoso, B.; Tseng, S.-P.; and geometric morphometrics analyses of soldiers’ HC of Coptotermes spp. obtained from various Himmi, S.K.; Yusuf, S.; Yoshimura, T. locations in Indonesia. Although subtle differences were observed, the posterior parts of the HC Morphometric Analysis of laterally expanded in a gradual manner in C. gestroi, C. sepangensis, and C. curvignathus in that order. Coptotermes spp. Soldier Caste Furthermore, three extreme head-shape variations of C.
    [Show full text]
  • Coptotermes Formosanus and Coptotermes Gestroi (Blattodea: Rhinotermitidae) Exhibit Quantitatively Different Tunneling Patterns
    Research Article Coptotermes formosanus and Coptotermes gestroi (Blattodea: Rhinotermitidae) exhibit quantitatively different tunneling patterns Nirmala K. Hapukotuwa1, and J. Kenneth Grace2 1 Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 3050 Maile Way, Gilmore 310, Honolulu, HI 96822, USA; E-mail: nirmala@ hawaii.edu 2 Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 3050 Maile Way, Gilmore 310, Honolulu, HI 96822, USA; E-mail: [email protected] Abstract Tunneling behavior and the spatial dispersion of tunnels constructed by the subterranean termites Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (formerly known as C. vastator Light) (Blattodea: Rhinotermitidae) were examined in foraging arenas. The results indicated that these two termite species construct quantitatively different tunnel systems, supporting visual observations made in earlier studies. Coptotermes gestroi constructed thin, highly branched tunnels; while C. formosanus tended to construct wider, and less branched tunnels. Tunnels of C. gestroi showed more spatial dispersion than those of C. formosanus and this species constructed a larger number of tunnels compared to C. formosanus. The presence or absence of food (wood) within the arena did not influence the tunneling pattern of either species. Although previous observations have suggested that these two termite species exhibit different tunneling behaviors, this is the first quantification of the differences. Comparative studies of the foraging behavior of subterranean termite species contribute to our understanding of their distribution and ecology, and may help to improve pest management programs, particularly those based on placement of toxic baits.
    [Show full text]
  • University of Florida Thesis Or Dissertation
    PHYLOGEOGRAPHY, INTERSPECIFIC COMPETITION, AND CONTROL OF Coptotermes formosanus AND Coptotermes gestroi (ISOPTERA: RHINOTERMITIDAE) IN TAIWAN By HOU-FENG LI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Hou-Feng Li 2 To my parents for their unconditional love and support 3 ACKNOWLEDGMENTS I sincerely thank my mentor, Dr. Nan-Yao Su, for guiding me on the scientific road for the past five years. He gave me so much freedom, trust, and financial support on my research and helped me to become a better writer. He delivered great values and philosophy of science which equipped me for life. It is my honor to inherit his intelligent genes. I would like to express my gratitude to Dr. Rudolf Scheffrahn for teaching and supporting me on termite taxonomy research. He shared his knowledge, specimens, and references with me and offered many value suggestions on my work. It is always nice to enjoy the beauty of termites with him. I also thank another two committee members, Dr. William H. Kern, Jr. and Dr. Samira Daroub, who delivered excellent entomology and pedology courses for the essential training and reviewed this dissertation. I learned how to be a good instructor by observing their instructions. I profusely thank Dr. Robin Giblin-Davis, “the fifth committee member”, and his research team including Dr. Natsumi Kanzaki, Dr. Weimin Ye, Dr. Dorota Porazinska, and Barbra Center in helping and encouraging me on phylogenetic research. Dr. Giblin- Davis also reviewed many of my manuscripts and offered precious advice.
    [Show full text]
  • Preferences of Coptotermes Formosanus Shiraki and Coptotermes Gestroi (Wasmann) (Blattodea: Rhinotermitidae) Among Three Commercial Wood Species Nirmala K
    Insects 2011, 2, 499-508; doi:10.3390/insects2040499 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Preferences of Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae) among Three Commercial Wood Species Nirmala K. Hapukotuwa * and J. Kenneth Grace College of Tropical Agriculture & Human Resources, University of Hawaii at Manoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-808-956-2462; Fax: +1-808-956-2460. Received: 13 October 2011; in revised form: 3 November 2011 / Accepted: 8 November 2011 / Published: 25 November 2011 Abstract: The Formosan subterranean termite, Coptotermes formosanus Shiraki, and the Asian subterranean termite, Coptotermes gestroi (Wasmann), are both pests of wood in service in Hawaii and Florida. We conducted a laboratory study using method modified from those described in standard E1-09 of the American Wood Protection Association (AWPA 2009) to assess the termite resistance of three commercially available wood species used in regions of the USA where both termite species occur: Douglas fir, Pseudotsuga menziessii, southern yellow pine, Pinus spp. and redwood, Sequoia sempervirens. A multiple-choice (three-choice) assay was used for four weeks (28 days) in order to simulate field conditions of food choice and assess termite feeding preferences under 28 °C and 72–80% RH. 400 termites (360 workers: 40 soldiers) were released into each test jar. Five replicates and two controls of each wood species were used with each termite species. Termite mortality was recorded at the end of the test; and wood wafers were oven-dried and weighed before and after termite exposure to determine the mass loss due to termite feeding, and rated visually on a 0 (failure) to 10 (sound) scale.
    [Show full text]
  • Phylogeography Illuminates Maternal Origins of Exotic Coptotermes Gestroi (Isoptera: Rhinotermitidae)
    Molecular Phylogenetics and Evolution 42 (2007) 612–621 www.elsevier.com/locate/ympev Phylogeography illuminates maternal origins of exotic Coptotermes gestroi (Isoptera: Rhinotermitidae) Tracie M. Jenkins a,*, Susan C. Jones b, Chow-Yang Lee c, Brian T. Forschler d, Zhenbang Chen e, Giancarlo Lopez-Martinez b, Nicola T. Gallagher b, Graham Brown f, Michael Neal f, Brian Thistleton f, Scott Kleinschmidt g a Department of Entomology, University of Georgia, Griffin, GA 30223, USA b Department of Entomology, Ohio State University, Columbus, OH 43210, USA c School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia d Department of Entomology, University of Georgia, Athens, GA 30602, USA e Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA f Northern Territory Government, Department of Primary Industries, GPO Box 3000, Darwin, Northern Territory 0801, Australia g BASF Australia Ltd., Ferny Grove, Queensland 4055, Australia Received 22 July 2005; revised 23 October 2006; accepted 28 November 2006 Available online 9 December 2006 Abstract Coptotermes gestroi, the Asian subterranean termite (AST), is an economically important structural and agricultural pest that has become established in many areas of the world. For the first time, phylogeography was used to illuminate the origins of new found C. gestroi in the US Commonwealth of Puerto Rico; Ohio, USA; Florida, USA; and Brisbane, Australia. Phylogenetic relationships of C. gestroi collected in indigenous locations within Malaysia, Thailand, and Singapore as well as from the four areas of introduction were investigated using three genes (16S rRNA, COII, and ITS) under three optimality criteria encompassing phenetic and cladistic assumptions (maximum parsimony, maximum likelihood, and neighbor-joining).
    [Show full text]
  • Asian Subterranean Termite, Coptotermes Gestroi (=Havilandi) (Wasmann) (Insecta: Blattodea: Rhinotermitidae)1 Rudolf H
    EENY128 Asian Subterranean Termite, Coptotermes gestroi (=havilandi) (Wasmann) (Insecta: Blattodea: Rhinotermitidae)1 Rudolf H. Scheffrahn and Nan-Yao Su2 Introduction Brazil in 1923 and in Barbados in 1937. Recent collections from other West Indian islands include Antigua, Barbuda, Kirton and Brown (2003) determined that “Haviland’s Cuba, Grand Cayman, Grand Turk, Jamaica (Montego subterranean termite,” Coptotermes havilandi Holmgren, Bay and Port Antonio), Little Cayman, Montserrat, Nevis, was a newer second name given to a termite that already Providenciales, Puerto Rico (San Juan), St. Kitts, and on a had the name Coptotermes gestroi (Wasmann). By proper boat from the US Virgin Islands. It has also been collected taxonomic convention, the older name, C. gestroi, must in southern Mexico. be recognized. They also proposed that C. gestroi be given the common name of “Asian subterranean termite.” In 1996, C. gestroi was collected for the first time in the Coptotermes gestroi is a very damaging termite and a continental United States from a storefront and a church threat to wooden structures wherever it occurs. As one in Miami, Florida (Su et al. 1997). In 1999, a colony of C. might expect, C. gestroi is similar in many respects to C. gestroi was discovered infesting a waterfront house in Key formosanus Shiraki, the Formosan subterranean termite. West, Florida. In 2001 a single alate was collected in Lau- General information related to the life history, damage, and derhill, Broward County, Florida. As of 2004, six structures management of C. formosanus is applicable to C. gestroi in Key West have been verifiably infested with C. gestroi.
    [Show full text]
  • Redescription of Formosan Subterranean Termite, Coptotermes Formosanus (Blattodea: Rhinotermitidae), with Three New Synonyms from China
    2020 ACTA ENTOMOLOGICA 60(2): 599–608 MUSEI NATIONALIS PRAGAE doi: 10.37520/aemnp.2020.041 ISSN 1804-6487 (online) – 0374-1036 (print) www.aemnp.eu RESEARCH PAPER Redescription of Formosan subterranean termite, Coptotermes formosanus (Blattodea: Rhinotermitidae), with three new synonyms from China Guan-Yu CHEN1), Yun-Ling KE2), Wei-Ren LIANG1) & Hou-Feng LI1,*) 1) Department of Entomology, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan 2) Institute of Zoology, Guangdong Academy of Science. No. 105 Xingang Road West, Guangzhou, 510260, Guangdong *) Corresponding author, e-mail: [email protected] Accepted: Abstract. The Formosan subterranean termite, Coptotermes formosanus Shiraki, 1909, is an 30th October 2020 important structural pest in Mainland China, Japan, Taiwan, Bahamas, and the United States. Published online: Coptotermes formosanus was fi rst described in Japanese, and the morphological description 10th November 2020 was too simple for congeneric species diff erentiation, resulting in confusion in species identi- fi cation. To date, ten junior synonyms of C. formosanus have been reported. To avoid further confusion, we redescribed C. formosanus based on the type specimen and the specimens from the type locality, Taiwan. Most of the Coptotermes Wasmann, 1896 taxonomy has been clarifi ed worldwide and the Chinese case remains an outlier, with many species that need to be revised. We further examined the taxonomic statuses of four Chinese species, C. chang- taiensis Xia & He, 1986, C. hekouensis Xia & He, 1986, C. shanghaiensis Xia & He, 1986, and C. suzhouensis Xia & He, 1986. We proposed that C. changtaiensis, C. hekouensis, and C. suzhouensis are the junior synonyms of C.
    [Show full text]
  • Wordperfect Office Document
    Asian Journal of Applied Sciences, 2015 ISSN 1996-3343 / DOI: 10.3923/ajaps.2015. © 2015 Knowledgia Review, Malaysia Threat of Subterranean Termites Attack in the Asian Countries and their Control: A Review 1,2Eko Kuswanto, 1Intan Ahmad and 1Rudi Dungani 1School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, Indonesia 2Raden Intan State Islamic University of Lampung, Jalan Endro Suratmin 1, Bandar Lampung, 35141, Lampung, Indonesia Corresponding Author: Intan Ahmad, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia ABSTRACT This review focuses on the study of subterranean termites as structural and building pests especially in Asia Tropical countries. Since wood is one of the oldest, most important and most versatile building materials and still widely utilized by home owners in the region. Subterranean termites have long been a serious pest of wooden construction and they are still causing an important problem in most of tropical and subtropical regions. This termite group is build shelter tubes and nest in the soil or on the sides of trees or building constructions and relies principally on soil for moisture. Subterranean termite damage on building and other wooden structure cause costs associated with the prevention and treatment of termite infestation. Termite control, thus, is a realistic problem not only for human life but also for conservation of natural environment. All countries especially Asian countries are now seeking for the safer chemicals or the more effective methods for termite control. A huge amount of research in recent years has been devoted to termite control technologies to reduce environmental contamination and the risk to human health.
    [Show full text]
  • Biology of Invasive Termites: a Worldwide Review
    EN58CH23-Evans ARI 5 December 2012 9:5 Biology of Invasive Termites: A Worldwide Review Theodore A. Evans,1,∗ Brian T. Forschler,2 and J. Kenneth Grace3 1Department of Biological Sciences, National University of Singapore, 117543, Singapore; email: [email protected] 2Department of Entomology, University of Georgia, Athens, Georgia 30602; email: [email protected] 3College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii 96822-2271; email: [email protected] Annu. Rev. Entomol. 2013. 58:455–74 Keywords First published online as a Review in Advance on Cryptotermes, Heterotermes, Coptotermes, introduced species September 27, 2012 The Annual Review of Entomology is online at Abstract ento.annualreviews.org The number of recognized invasive termite species has increased from 17 This article’s doi: in 1969 to 28 today. Fourteen species have been added to the list in the 10.1146/annurev-ento-120811-153554 past 44 years; 10 have larger distributions and 4 have no reported change in Copyright c 2013 by Annual Reviews. distribution, and 3 species are no longer considered invasive. Although most All rights reserved research has focused on invasive termites in urban areas, molecular identifi- ∗ Corresponding author cation methods have answered questions about certain species and found that by 198.137.20.76 on 01/15/13. For personal use only. at least six species have invaded natural forest habitats. All invasive species share three characteristics that together increase the probability of creating viable propagules: they eat wood, nest in food, and easily generate secondary reproductives. These characteristics are most common in two families, the Annu.
    [Show full text]