Genomics of Speciation and Introgression in Princess Cichlid fishes from Lake Tanganyika

Total Page:16

File Type:pdf, Size:1020Kb

Genomics of Speciation and Introgression in Princess Cichlid fishes from Lake Tanganyika Molecular Ecology (2016) 25, 6143–6161 doi: 10.1111/mec.13767 Genomics of speciation and introgression in Princess cichlid fishes from Lake Tanganyika HUGO F. GANTE,* MICHAEL MATSCHINER,† MARTIN MALMSTRØM,† KJETILL S. JAKOBSEN,† SISSEL JENTOFT†‡ and WALTER SALZBURGER*† *Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland, †Department of Biosciences, CEES (Centre for Ecological and Evolutionary Synthesis), University of Oslo, 0316 Oslo, Norway, ‡Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway Abstract How variation in the genome translates into biological diversity and new species origi- nate has endured as the mystery of mysteries in evolutionary biology. African cichlid fishes are prime model systems to address speciation-related questions for their remarkable taxonomic and phenotypic diversity, and the possible role of gene flow in this process. Here, we capitalize on genome sequencing and phylogenomic analyses to address the relative impacts of incomplete lineage sorting, introgression and hybrid speciation in the Neolamprologus savoryi-complex (the ‘Princess cichlids’) from Lake Tanganyika. We present a time-calibrated species tree based on whole-genome sequences and provide strong evidence for incomplete lineage sorting in the early phases of diversification and multiple introgression events affecting different stages. Importantly, we find that the Neolamprologus chromosomes show centre-to-periphery biases in nucleotide diversity, sequence divergence, GC content, incomplete lineage sorting and rates of introgression, which are likely modulated by recombination den- sity and linked selection. The detection of heterogeneous genomic landscapes has strong implications on the genomic mechanisms involved in speciation. Collinear chro- mosomal regions can be protected from gene flow and harbour incompatibility genes if they reside in lowly recombining regions, and coupling can evolve between non- physically linked genomic regions (chromosome centres in particular). Simultaneously, higher recombination towards chromosome peripheries makes these more dynamic, evolvable regions where adaptation polymorphisms have a fertile ground. Hence, dif- ferences in genome architecture could explain the levels of taxonomic and phenotypic diversity seen in taxa with collinear genomes and might have contributed to the spec- tacular cichlid diversity observed today. Keywords: genomic landscapes, introgressive hybridization, linked selection, Neolamprologus, recombination bias, whole-genome sequencing Received 7 January 2016; revision received 30 May 2016; accepted 11 July 2016 emerged forms (sensu Mayr 1963; Coyne & Orr 2004). Introduction Once a topic of disagreement with botanists, the perva- The origin of new species – the process of speciation – siveness of introgressive hybridization, defined as the has traditionally been viewed as a strictly bifurcating effective flow of genes beyond species boundaries process, in which one biological species splits into two (Anderson 1949; Barton & Bengtsson 1986), is no longer distinct entities as a consequence of the evolution of disputed by zoologists. The detection of hybridization complete reproductive isolation between the newly and introgression between sister and nonsister species became commonplace with the introduction of molecu- Correspondence: Hugo F. Gante, Fax: +41 61 267 03 01; lar markers in evolutionary studies (Dowling & Secor E-mail: [email protected] 1997; Arnold 2006). In particular, advances in © 2016 John Wiley & Sons Ltd 6144 H. F. GANTE ET AL. genotyping methods and DNA sequencing have had a combinations of parental genes, a mechanistic role of major impact on our understanding of the nature of hybrid ‘filters’ shapes the properties of introgressed species boundaries. chromosomal segments [or chromosomal blocks (Han- Earlier views of reproductive isolation as a property son 1959; Martinsen et al. 2001)]. Therefore, the key fac- of species and, hence, of whole genomes gradually tor to effective interspecific gene flow is the ratio shifted towards a view where individual genes or speci- between selection and recombination in hybrids (Barton fic regions of the genome are responsible for keeping & Bengtsson 1986; Baird 1995). species’ distinctiveness (Wu 2001; Baack & Rieseberg Detection of introgression vs. incomplete lineage sorting 2007; Smadja & Butlin 2011; Feder et al. 2012). Further- and the characterization of hybridization remain major more, empirical studies are making it increasingly clear challenges (Abbott et al. 2013). Recent advances in that interspecific gene flow is an integral part of the genome-wide typing and whole-genome sequencing have speciation process, with manifold potential evolutionary provided unprecedented resolution to identify polymor- impacts (Abbott et al. 2013). For instance, while phisms for adaptation to different niches or characterize hybridization may lead to the fusion of species, it has the patterns of interspecific gene flow, including the detec- been suggested that interspecific gene flow may in fact tion of hybrid speciation, adaptive introgression and fuel rapid diversification by providing an abundant incomplete lineage sorting in a number of systems (Pollard source of potentially adaptive genetic variation (See- et al. 2006; Kulathinal et al. 2009; Pardo-Diaz et al. 2012; hausen 2004; Berner & Salzburger 2015). In addition, Heliconius Genome Consortium 2012; Cui et al. 2013; Pease new alleles introduced by introgression may not only & Hahn 2013; Keller et al. 2013; Nadeau et al. 2013; Martin be more abundant than alleles originating by mutation, et al. 2013; Poelstra et al. 2014; Roesti et al. 2014, 2015; Gom- but could also be more beneficial. This is likely because pert et al. 2014; Huerta-Sanchez et al. 2014; Berg et al. 2015; – in contrast to alleles arising de novo by mutation – Eaton et al. 2015; Fontaine et al. 2015; Lamichhaney et al. introgressed alleles have already been exposed to natu- 2015; Liu et al. 2015; Malinsky et al. 2015; Norris et al. 2015; ral selection, albeit in the genomic background of the but see Cruickshank & Hahn 2014). Rapidly diversifying introgression donor (Sætre 2013). Finally, introgression groups are particularly prone to incomplete lineage sort- can also lead to the establishment of stable hybrid lin- ing, and they are also the ones with the largest potential eages that are reproductively isolated from parental for consequential introgression and hybrid speciation, species, following distinct evolutionary and ecological because of incipient isolation and exploitation of empty trajectories (Arnold 2006). Hybrid speciation through ecological niches. Therefore, the application of genomic polyploidization has been shown to be particularly data to study these groups will be of major importance for common in flowering plants and ferns, but a number of understanding the mechanisms of speciation and factors cases of homoploid hybrid species have also been docu- affecting interspecific gene flow. mented, both in animals and in plants (DeMarais et al. Here, we employ whole-genome sequencing in combi- 1992; Rieseberg et al. 2003; Baack & Rieseberg 2007; nation with phylogenomic analyses to examine the inter- Mallet 2007; Mavarez & Linares 2008; Paun et al. 2009; play between genome architecture, speciation, and Nolte & Tautz 2010; Salazar et al. 2010; Hermansen et al. interspecific gene flow (isolation vs. introgression vs. 2014; Sousa-Santos et al. 2014; Trier et al. 2014). incomplete lineage sorting) in a group of East African Cline theory and hybrid zone studies have been cichlid fishes. African cichlids constitute the largest extremely influential to our understanding of the extant vertebrate radiation, with several hundreds of spe- dynamics of introgression. Coupling operating between cies inhabiting lakes and associated river drainages isolation loci is maintained by linkage disequilibrium (Turner et al. 2001; Salzburger 2009; Salzburger et al. and contributes to limit gene flow when related species 2014). Cichlids have thus become favourite model organ- come into contact, whereas recombination acts in the isms for studying speciation mechanisms and factors that opposite direction, eroding the association between promote or retard diversification (Kocher 2004; See- physically linked loci (e.g. Haldane 1948; Barton 1983; hausen 2006; Gante & Salzburger 2012; Santos & Salzbur- Barton & Bengtsson 1986; Baird 1995; Gavrilets 2004; ger 2012; Wagner et al. 2012). In addition, five species of Bierne et al. 2011; Flaxman et al. 2014). Breaking down African cichlids from different lineages and geographical linkage with genes under negative selection allows origins have had their genomes recently sequenced (Bra- introgression of neutral or positively selected loci that wand et al. 2014). One of these lineages, the tribe Lam- would otherwise be prevented from crossing species prologini, comprises almost half of the entire cichlid boundaries due to Hill–Robertson interference (Hill & diversity in Lake Tanganyika (Gante & Salzburger 2012; Robertson 1966; Barton & Bengtsson 1986; Charlesworth Wagner et al. 2012). Lamprologines show complex eco- 2009). Because selection acts particularly strongly on logical, morphological, trophic and behavioural attri- early-generation hybrids that carry maladaptive butes, representing a radiation within the cichlid © 2016 John Wiley & Sons Ltd SPECIATION AND GENE FLOW IN NEOLAMPROLOGUS 6145 radiation (Stiassny 1997). Unlike other highly diverse
Recommended publications
  • Phylogeny of a Rapidly Evolving Clade: the Cichlid Fishes of Lake Malawi
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5107–5110, April 1999 Evolution Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa (adaptive radiationysexual selectionyspeciationyamplified fragment length polymorphismylineage sorting) R. C. ALBERTSON,J.A.MARKERT,P.D.DANLEY, AND T. D. KOCHER† Department of Zoology and Program in Genetics, University of New Hampshire, Durham, NH 03824 Communicated by John C. Avise, University of Georgia, Athens, GA, March 12, 1999 (received for review December 17, 1998) ABSTRACT Lake Malawi contains a flock of >500 spe- sponsible for speciation, then we expect that sister taxa will cies of cichlid fish that have evolved from a common ancestor frequently differ in color pattern but not morphology. within the last million years. The rapid diversification of this Most attempts to determine the relationships among cichlid group has been attributed to morphological adaptation and to species have used morphological characters, which may be sexual selection, but the relative timing and importance of prone to convergence (8). Molecular sequences normally these mechanisms is not known. A phylogeny of the group provide the independent estimate of phylogeny needed to infer would help identify the role each mechanism has played in the evolutionary mechanisms. The Lake Malawi cichlids, however, evolution of the flock. Previous attempts to reconstruct the are speciating faster than alleles can become fixed within a relationships among these taxa using molecular methods have species (9, 10). The coalescence of mtDNA haplotypes found been frustrated by the persistence of ancestral polymorphisms within populations predates the origin of many species (11). In within species.
    [Show full text]
  • Functional Aspects of Emotions in Fish
    Behavioural Processes 100 (2013) 153–159 Contents lists available at ScienceDirect Behavioural Processes jou rnal homepage: www.elsevier.com/locate/behavproc Functional aspects of emotions in fish ∗ Silje Kittilsen Norwegian School of Veterinary Science, Norway a r t i c l e i n f o a b s t r a c t Article history: There is an ongoing scientific discussion on whether fish have emotions, and if so how they experience Received 19 March 2013 them? The discussion has incorporated important areas such as brain anatomy and function, physiological Received in revised form and behavioural responses, and the cognitive abilities that fish possess. Little attention has however, been 10 September 2013 directed towards what functional aspects emotions ought to have in fish. If fish have emotions – why? Accepted 11 September 2013 The elucidation of this question and an assessment of the scientific evidences of emotions in fish in an evolutionary and functional framework would represent a valuable contribution in the discussion on Keywords: whether fish are emotional creatures. Here parts of the vast amount of literature from both biology and Emotions Behaviour psychology relating to the scientific field of emotions, animal emotion, and the functional aspects that Cognition emotions fulfil in the lives of humans and animals are reviewed. Subsequently, by viewing fish behaviour, Psychology physiology and cognitive abilities in the light of this functional framework it is possible to infer what Fish functions emotions may serve in fish. This approach may contribute to the vital running discussion on Evolution the subject of emotions in fish. In fact, if it can be substantiated that emotions are likely to serve a function in fish similar to that of other higher vertebrate species, the notion that fish do have emotions will be strengthened.
    [Show full text]
  • Spatial Models of Speciation 1.0Cm Modelos Espaciais De Especiação
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA CAROLINA LEMES NASCIMENTO COSTA SPATIAL MODELS OF SPECIATION MODELOS ESPACIAIS DE ESPECIAÇÃO CAMPINAS 2019 CAROLINA LEMES NASCIMENTO COSTA SPATIAL MODELS OF SPECIATION MODELOS ESPACIAIS DE ESPECIAÇÃO Thesis presented to the Institute of Biology of the University of Campinas in partial fulfill- ment of the requirements for the degree of Doc- tor in Ecology Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutora em Ecologia Orientador: Marcus Aloizio Martinez de Aguiar ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA CAROLINA LEMES NASCIMENTO COSTA, E ORIENTADA PELO PROF DR. MAR- CUS ALOIZIO MARTINEZ DE AGUIAR. CAMPINAS 2019 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Costa, Carolina Lemes Nascimento, 1989- C823s CosSpatial models of speciation / Carolina Lemes Nascimento Costa. – Campinas, SP : [s.n.], 2019. CosOrientador: Marcus Aloizio Martinez de Aguiar. CosTese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. Cos1. Especiação. 2. Radiação adaptativa (Evolução). 3. Modelos biológicos. 4. Padrão espacial. 5. Macroevolução. I. Aguiar, Marcus Aloizio Martinez de, 1960-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. Informações para Biblioteca Digital Título em outro idioma: Modelos espaciais de especiação Palavras-chave em inglês: Speciation Adaptive radiation (Evolution) Biological models Spatial pattern Macroevolution Área de concentração: Ecologia Titulação: Doutora em Ecologia Banca examinadora: Marcus Aloizio Martinez de Aguiar [Orientador] Mathias Mistretta Pires Sabrina Borges Lino Araujo Rodrigo André Caetano Gustavo Burin Ferreira Data de defesa: 25-02-2019 Programa de Pós-Graduação: Ecologia Powered by TCPDF (www.tcpdf.org) Comissão Examinadora: Prof.
    [Show full text]
  • Perret Manuscrit VF
    Année 2020 ÉVOLUTION DE LA REPRODUCTION COOPÉRATIVE : ÉTUDE CHEZ UN CICHLIDÉ, NEOLAMPROLOGUS PULCHER THÈSE pour obtenir le diplôme d’État de DOCTEUR VÉTÉRINAIRE présentée et soutenue publiquement devant la Faculté de Médecine de Créteil (UPEC) le 17 décembre 2020 par Alexis Élie Jean PERRET né le 21 avril 1994 à Courcouronnes (Essonne) sous la direction de Caroline GILBERT PrésiDent du jury : M. Jean-ClauDe PAIRON Professeur à la Faculté de Médecine de CRÉTEIL 1er Assesseur : Mme Caroline GILBERT Professeur à l’EnvA 2nd Assesseur : M. Pascal ARNÉ Maître de Conférences à l’EnvA Octobre 2020 Liste des personnes intervenant dans l’enseignement Professeurs émérites : Pr Combrisson Hélène, Pr Enriquez Brigitte, Directeur : Pr Christophe Degueurce Pr Panthier Jean-Jacques, Pr Bernard Paragon Directeur des formations : Pr Henry Chateau Directeurs honoraires : MM. les Professeurs C. Pilet, B. Toma, Directrice de la scolarité et de la vie étudiante : Dr Catherine Colmin A.-L. Parodi, R. Moraillon, J.-P. Cotard, J.-P. Mialot & M. Gogny Département d’Elevage et de Pathologie des Équidés et des Carnivores (DEPEC) Chef du département : Pr Grandjean Dominique - Adjoint : Pr Blot Stéphane Discipline : anesthésie, réanimation, urgences, soins intensifs Unité pédagogique de médecine de l’élevage et du sport - Pr Verwaerde Patrick* - Dr Cabrera Gonzales Joaquin, Chargé d’enseignement contractuel - Pr Fontbonne Alain Unité pédagogique de clinique équine - Pr Grandjean Dominique* - Pr Audigié Fabrice - Dr Hoummady Sara, Chargée d’enseignement contractuelle
    [Show full text]
  • Effects of Increased Temperature And
    EFFECTS OF INCREASED TEMPERATURE AND DECREASED FOOD QUALITY ON METABOLISM AND GROWTH OF AN ALGIVOROUS CICHLID, TROPHEUS DUBOISI, AND EFFECT OF FOOD HABIT ON THE FIELD METABOLISM OF AFRICAN CICHLIDS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By LESLEY YU-JUNG KIM B.S., The Ohio State University, 2011 2014 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL September 2, 2014 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Lesley Yu-Jung Kim ENTITLED Effect of Increased Temperature and Decreased Food Quality on Metabolism and Growth of an Algivorous cichlid, Tropheus duboisi, and Effect of Food Habit on the Field Metabolism of African Cichlids BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. __________________________ Yvonne Vadeboncoeur, Ph.D. Thesis Director __________________________ David Goldstein, Ph.D. Chair, Department of Biological Sciences Committee on Final Examination __________________________ Yvonne Vadeboncoeur, Ph.D. __________________________ Lynn Hartzler, Ph.D. __________________________ Volker Bahn, Ph.D. __________________________ Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School ABSTRACT Kim, Lesley Yu-Jung. M.S. Department of Biological Sciences, Wright State University, 2014. Effect of increased temperature and decreased food quality on metabolism and growth of an algivorous cichlid, Tropheus duboisi, and effect of food habit on the field metabolism of African Cichlids. The metabolic rate of an organism is influenced by mass, temperature, and diet. Climate change is anticipated to increase ambient temperatures of aquatic systems and decrease the quality of food available to algivorous fish.
    [Show full text]
  • Neolamprologus Brichardi, a Singular Tanganyika Cichlid Text & Photos: José María Cid Ruiz
    Neolamprologus brichardi, a singular Tanganyika cichlid Text & Photos: José María Cid Ruiz This species of attractive appearance and unique parental behavior, is one of the many endemic species that make the Lake Tanganyika (East Africa, originated 3-7 million years ago), a unique ecosystem with excep- tional biodiversity, such as is credited by 250 cichlid species and other 150 fish species from different families that inhabit its waters. As is well known, Neolamprologus brichardi1 (Poll,1974), was initially descri- bed as a subspecies of Lamprologus savoryi (L.savoryi elongatus) (Trewavas & Poll, 1952). The species has a laterally compressed body, which together with its long caudal in the form of "lyre", conveys an impression of great slender- ness. It's really a beautiful cichlid, with a uniform beige color on which stands out a peculiar drawing behind and below the eye, consisting of two black spots and a third spot in yellow-orange. It also highlights a metallic blue iridescence under the eye and at the edge of the fins. In the literature it is cited with sizes Averaging the various references consulted, we would consider a temperature in up to 10 cm, but generally, more developed adult males do not exceed the 8-9 shallow waters of 25-26 ° C. The pH in the majority of sample points has a value cm and females always measure something less. of 8.4 but there are areas with measurements of 9.2. Total hardness is moved in a range of GH: 7-11°d, while carbonate hardness ranges KH: 15 to 18°d.
    [Show full text]
  • Testing the Potential of Environmental DNA Methods for Surveying Lake Tanganyika's Highly Diverse Fish Communities Christopher J
    Testing the potential of environmental DNA methods for surveying Lake Tanganyika's highly diverse fish communities Christopher James Doble A thesis submitted for the degree of Doctor of Philosophy Department of Genetics, Evolution and Environment University College London April 2020 1 Declaration I, Christopher James Doble, confirm the work presented in this thesis is my own. Where information has been derived from other sources, I confirm this has been indicated in the thesis. Christopher James Doble Date: 27/04/2020 2 Statement of authorship I planned and undertook fieldwork to the Kigoma region of Lake Tanganyika, Tanzania in 2016 and 2017. This included obtaining research permits, collecting environmental DNA samples and undertaking fish community visual survey data used in Chapters three and four. For Chapter two, cichlid reference database sequences were sequenced by Walter Salzburger’s research group at the University of Basel. I extracted required regions from mitochondrial genome alignments during a visit to Walter’s research group. Other reference sequences were obtained by Sanger sequencing. I undertook the DNA extractions and PCR amplifications for all samples, with the clean-up and sequencing undertaken by the UCL Sequencing facility. I undertook the method development, DNA extractions, PCR amplifications and library preparations for each of the next generation sequencing runs in Chapters three and four at the NERC Biomolecular Analysis Facility Sheffield. Following training by Helen Hipperson at the NERC Biomolecular Analysis Facility in Sheffield, I undertook the bioinformatic analysis of sequence data in Chapters three and four. I also carried out all the data analysis within each chapter. Chapters two, three and parts of four have formed a manuscript recently published in Environmental DNA (Doble et al.
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences Yoichiro Azuma1, Yoshinori Kumazawa*2,3, Masaki Miya4, Kohji Mabuchi1 and Mutsumi Nishida1 Address: 1Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan, 2Division of Material Science and Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan, 3Department of Information and Biological Sciences, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya 467-8501, Japan and 4Department of Zoology, Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba 260-8682, Japan Email: Yoichiro Azuma - [email protected]; Yoshinori Kumazawa* - [email protected]; Masaki Miya - [email protected]; Kohji Mabuchi - [email protected]; Mutsumi Nishida - [email protected] * Corresponding author Published: 23 July 2008 Received: 18 March 2008 Accepted: 23 July 2008 BMC Evolutionary Biology 2008, 8:215 doi:10.1186/1471-2148-8-215 This article is available from: http://www.biomedcentral.com/1471-2148/8/215 © 2008 Azuma et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Recent advances in DNA sequencing and computation offer the opportunity for reliable estimates of divergence times between organisms based on molecular data.
    [Show full text]
  • The Influence of Social-Grouping on Territorial Defense Behavior in the Black-Crested Titmouse (Baeolophus Atricristatus) Borger, Mirjam J.; Johnson, Lauren E
    University of Groningen The influence of social-grouping on territorial defense behavior in the black-crested titmouse (Baeolophus atricristatus) Borger, Mirjam J.; Johnson, Lauren E. ; Salazar, Nathaly O.; Dreghorn, Cameron L. ; Komdeur, Jan; Murphy, Troy G. Published in: Behavioral Ecology and Sociobiology DOI: 10.1007/s00265-020-02925-x IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Borger, M. J., Johnson, L. E., Salazar, N. O., Dreghorn, C. L., Komdeur, J., & Murphy, T. G. (2020). The influence of social-grouping on territorial defense behavior in the black-crested titmouse (Baeolophus atricristatus). Behavioral Ecology and Sociobiology, 74, [141]. https://doi.org/10.1007/s00265-020-02925-x Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Direct Benefits and Evolutionary Transitions to Complex Societies
    ARTICLES PUBLISHED: 18 APRIL 2017 | VOLUME: 1 | ARTICLE NUMBER: 0137 Direct benefits and evolutionary transitions to complex societies Cody J. Dey1, 2 †, Constance M. O’Connor1 †, Holly Wilkinson3, Susanne Shultz3, Sigal Balshine1 and John L. Fitzpatrick3, 4* The selective forces that drive the evolution of cooperation have been intensely debated. Evolutionary transitions to coop- erative breeding, a complex form of cooperation, have been hypothesized to be linked to low degrees of promiscuity, which increases intragroup relatedness and the indirect (that is, kin selected) benefits of helping. However, ecological factors also promote cooperative breeding, and may be more important than relatedness in some contexts. Identifying the key evolution- ary drivers of cooperative breeding therefore requires an integrated assessment of these hypotheses. Here we show, using a phylogenetic framework that explicitly evaluates mating behaviours and ecological factors, that evolutionary transitions to cooperative breeding in cichlid fishes were not associated with social monogamy. Instead, group living, biparental care and diet type directly favoured the evolution of cooperative breeding. Our results suggest that cichlid fishes exhibit an alternative path to the evolution of complex societies compared to other previously studied vertebrates, and these transitions are driven primarily by direct fitness benefits. ooperative breeding, where individuals in social groups pro- evolution of cooperative societies, because social monogamy is also vide care for offspring that are not their own, is a complex favoured under particular ecological factors14 and therefore apparent Cform of sociality1 that has arisen repeatedly across the animal relationships between monogamy and cooperative breeding could kingdom. Cooperative breeders are of great interest for evolutionary actually be driven by relationships between ecology and coopera- biologists, as individuals that forgo their own reproduction appear tive breeding15,16.
    [Show full text]
  • Cichlids As a Model for the Evolution of Visual Sensitivity Tyrone Clifford Spady University of New Hampshire, Durham
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2006 Cichlids as a model for the evolution of visual sensitivity Tyrone Clifford Spady University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Spady, Tyrone Clifford, "Cichlids as a model for the evolution of visual sensitivity" (2006). Doctoral Dissertations. 331. https://scholars.unh.edu/dissertation/331 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. CICHLIDS AS A MODEL FOR THE EVOLUTION OF VISUAL SENSITIVITY BY TYRONE CLIFFORD SPADY B.S., University of Maryland Baltimore County, 2000 DISSERTATION Submitted to the University of New Hampshire In Partial Fulfillment of the Requirements for the Defense of Doctor of Philosophy in Zoology May, 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3217442 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Evolutionary History of the Lake Tanganyika Cichlid Tribe Lamprologini (Teleostei: Perciformes) Derived from Mitochondrial and Nuclear DNA Data
    Molecular Phylogenetics and Evolution 57 (2010) 266–284 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data Christian Sturmbauer a,*, Walter Salzburger b, Nina Duftner a, Robert Schelly c, Stephan Koblmüller a a Department of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria b Zoological Institute, Evolutionary Biology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland c Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, Central Park West at 79th Street, NY 10024, USA article info abstract Article history: Lake Tanganyika comprises a cichlid species flock with substrate-breeding and mouthbrooding lineages. Received 19 January 2010 While sexual selection via mate choice on male mating color is thought to boost speciation rates in Revised 14 June 2010 mouthbrooding cichlids, this is not the case in substrate-breeding lamprologines, which mostly form sta- Accepted 23 June 2010 ble pairs and lack sexual dichromatism. We present a comprehensive reconstruction of the evolution of Available online 3 July 2010 the cichlid tribe Lamprologini, based upon mtDNA sequences and multilocus nuclear DNA (AFLP) mark- ers. Twelve mtDNA clades were identified, seven of which were corroborated by the AFLP tree. The radi- Keywords: ation is likely to have started about 5.3 MYA, contemporarily with that of the mouthbrooding C-lineage, Molecular phylogeny and probably triggered by the onset of deep-water conditions in Lake Tanganyika. Neither the Congo- nor Speciation Hybridization the Malagarazi River species form the most ancestral branch.
    [Show full text]