The Corot Satellite: the Search for Earth-Like Planets

Total Page:16

File Type:pdf, Size:1020Kb

The Corot Satellite: the Search for Earth-Like Planets sis_13_2_RZ:Layout 1 16.11.2009 11:40 Uhr Seite 15 Cutting-edge-science Image courtesy of ESA The CoRoT satellite: the search for Earth-like planets Malcolm Fridlund from the European Space Agency (ESA) describes the search for extra-solar planets and explains how they can help us to understand the origin of life on Earth. Artist’s impression of the Jupiter-sized extra-solar plan- et HD 189733b, now known to have methane and water in its atmos- phere (from studies with the Hubble and Spitzer Space Telescopes). Methane is the first organic molecule to be found on an extra-solar planet. The discover- ies come from spectroscopic stud- ies of light from the parent star that has passed through the CoRoT planet’s atmosphere This article on the search On 27 December 2006, the French for exoplanets can trigger space agency CNES (Centre National w1 scientific discussions on d’Etudes Spatiales), ESA and their w2 what life is, and why we partners launched the CoRoT satel- Earth and the stellar surface (a plane- are interested in studying lite to search for small Earth-like plan- tary transit). the physical and chemical ets outside our Solar System (extra- All three phenomena can be studied characteristics of celestial solar planets, or exoplanets) and by measuring the changes in the light bodies. It can also be used detect ‘starquakes’. The satellite’s emission of the observed stars. The as a basis for philosophi- name is derived from Convection convection from the interior of a star cal and social discussions (Co), Rotation (Ro) and planetary causes the intensity of the light it about the relationship of Transits (T), and its scientific objec- emits to increase or decrease by a few humans with possible tives are to study the rotation of stars parts per million. Areas of intense alien life forms. and the convection – the upwelling of magnetic activity inhibit convection, hot gas – from the stellar interior, and forming areas of reduced surface tem- REVIEW Marco Nicolini, Italy to detect planets that pass between perature which are visible as darker www.scienceinschool.org Science in School Issue 13 : Autumn 2009 15 sis_13_2_RZ:Layout 1 16.11.2009 11:40 Uhr Seite 16 As we go to press CoRoT first caught sight of a planet transiting the star And not only that: it is only 2.5 million km away from CoRoT-7, to the left of Orion in the constellation of its host star, or 23 times closer than Mercury is to the Monoceros (the Unicorn), about 500 light-years away, Sun, which also makes it the closest known planet to its in Spring 2008. However, confirming the planet’s host star. It is so close that it must experience extreme nature took months with large ground-based tele- conditions, which make it uninhabitable to life as we scopes, so its discovery wasn’t officially announced know it: the probable temperature on its ‘day face’ is until 3 February 2009. above 2000 degrees Celsius, but minus 200 degrees To measure the planet’s mass and density, astronomers Celsius on its ‘night face’. then used the High Accuracy Radial velocity Planet The calculated density is close to that of Earth, suggest- Searcher (HARPS) spectrograph attached to the 3.6 m ing that the planet’s composition is similarly rocky. telescope at the European Southern Observatory’sw4 La Theoretical models suggest that the planet may have Silla Observatory in Chile, performing the longest set of lava or boiling oceans on its surface. observations (70 hours) on this machine so far. On 16 The astronomers found from their dataset that CoRoT-7 September 2009, the results were finally announced. hosts another exoplanet slightly further away from the The planet, known as CoRoT-7b, is about the mass of star than CoRoT-7b. Designated CoRoT-7c, it circles its Earth, which puts it among the lightest known exoplan- host star in 3 days and 17 hours and has a mass about ets. With a diameter less than twice that of Earth, it is eight times that of Earth. Unlike CoRoT-7b, this sister also the smallest exoplanet measured so far. planet does not pass between its star and Earth, so Every 20.4 hours, CoRoT-7b eclipses a small fraction astronomers cannot measure its radius and thus its den- (one part in 3000) of the light of its star for a little over sity. one hour. Orbiting its star at a speed of more than The finding brings astronomers ever closer to discover- 750 000 km/h, more than seven times faster than ing inhabitable extra-solar planets, but such planets Earth’s motion around the Sun, it is the fastest-orbiting would need to be further from their star to support life exoplanet known. as we know it. Artist’s impression of Corot-7b Image courtesy of ESO / L. Calcada BACKGROUND 16 Science in School Issue 13 : Autumn 2009 www.scienceinschool.org sis_13_2_RZ:Layout 1 16.11.2009 11:40 Uhr Seite 17 Cutting-edge-science Image courtesy of ESA starspots. As the star rotates, its light This plot shows the transit output changes by a very small of the first exoplanet amount, depending on the number of discovered by CoRoT: starspots on the hemisphere that has 1.000 CoRoT-Exo-1b. The transit rotated into view – so monitoring the results in a decrease in 0.995 the luminosity of the Sun- starspots tells us how fast the star is like parent star when the 0.990 rotating. Finally, when a planet in planet passes in front of it orbit around a star passes between 0.985 every 1.51 days. It is a the CoRoT satellite and the star, it can very hot Jupiter-like giant Normalised flux be detected as a small dip occurring 0.980 planet, similar to Jupiter also in mass (as deter- periodically in the star’s light output. 0.975 mined by spectroscopic Planetary transits are used to detect -0.05 0.00 0.05 observations from the exoplanets, while the convection and ground) and 1.49 +/- Phase rotation measurements are used to 0.08 times Jupiter’s radius characterise the star around which the discovered planets orbit. CoRoT will also be used for astroseismology: detecting acoustical waves generated diameter – was designed specifically Extraterrestrial life deep inside a star that send ripples for this purpose. The only instrument Why is it important important to across its surface, known as ‘star- on board is a camera that takes one know how common Earth-like (i.e. quakes’. The exact nature of the rip- picture every 32 seconds. The on- small and rocky) planets are? Firstly, ples allows astronomers to calculate board computer then measures the because we would like to know the star’s precise mass, age and chem- light (changes) from each star, and, whether our planet is unique. ical composition. In this article, how- over time, produces a light curve. Furthermore, finding Earth-like plan- ever, we will concentrate on the The spacecraft is directed at the same ets outside our Solar System may help search for exoplanets. spot in the sky for up to 150 days at a us to understand how life arose on Measuring these phenomena time, simultaneously observing up to Earth about 3.5 billion years ago. requires a space telescope with a very 12 000 stars. The longer it remains Based on a hypothesis made more precise photometer (or light meter). pointed towards the same stars, the than 30 years ago, scientists assume Unlike the larger Hubble Space more transits it can see (see diagram that all types of ‘life’ work the same Telescope (launched in 1990), CoRoT above). as that on Earth, and that alien life – which measures only 30 cm in CoRoT can detect planets that are forms would have the same sort of close to their star – taking up to 50-75 metabolism as ours. Therefore, days to circle it (i.e. this is the length researchers base their search on what of their ‘year’) – and can find planets happened on Earth. Although the Observations in zone 2 as small as our own Earth. The shape process by which life on Earth first of the light curve (see diagram above) emerged is still not known, it is Observations in zone 1 tells us how the planet is moving, believed to be linked to the presence how the outer layers of the star of liquid water on a hard, rocky plan- behave, and also the size of the plan- etary surface. So if there are any other Orbital plane et. Once a planet has been detected by Earth-like planets, have any of them CoRoT, astronomers can observe the evolved life? star and its planetary system with Finding an extra-solar planet as Image courtesy of ESA other types of instruments on very small as Earth is difficult. How much Earth orbit large telescopes on the ground, and harder would it be to observe life learn more about it. forms at such distances? It would be CoRoT is pointed in the same direction Already, the CoRoT satellite has particularly difficult if they were just for more than 150 days at a time, before found several large planets. It is now bacteria, which were the only living the Earth’s movement around the Sun also beginning to pick up what we organisms on Earth for the first few leads to the unwanted effect of the Sun’s think are small planets. This should billion years and still outnumber rays entering the telescope.
Recommended publications
  • Asteroseismology with Corot, Kepler, K2 and TESS: Impact on Galactic Archaeology Talk Miglio’S
    Asteroseismology with CoRoT, Kepler, K2 and TESS: impact on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 AsteroseismologyPlato as it is : a Legacy with CoRoT Mission, Kepler for Galactic, K2 and TESS: impactArchaeology on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 Galactic Archaeology strives to reconstruct the past history of the Milky Way from the present day kinematical and chemical information. Why is it Challenging ? • Complex mix of populations with large overlaps in parameter space (such as Velocities, Metallicities, and Ages) & small volume sampled by current data • Stars move away from their birth places (migrate radially, or even vertically via mergers/interactions of the MW with other Galaxies). • Many are the sources of migration! • Most of information was confined to a small volume Miglio, Chiappini et al. 2017 Key: VOLUME COVERAGE & AGES Chiappini et al. 2018 IAU 334 Quantifying the impact of radial migration The Rbirth mix ! Stars that today (R_now) are in the green bins, came from different R0=birth Radial Migration Sources = bar/spirals + mergers + Inside-out formation (gas accretion) GalacJc Center Z Sun R Outer Disk R = distance from GC Minchev, Chiappini, MarJg 2013, 2014 - MCM I + II A&A A&A 558 id A09, A&A 572, id A92 Two ways to expand volume for GA • Gaia + complementary photometric information (but no ages for far away stars) – also useful for PIC! • Asteroseismology of RGs (with ages!) - also useful for core science PLATO (miglio’s talk) The properties at different places in the disk: AMR CoRoT, Gaia+, K2 + APOGEE Kepler, TESS, K2, Gaia CoRoT, Gaia+, K2 + APOGEE PLATO + 4MOST? Predicon: AMR Scatter increases towards outer regions Age scatter increasestowars outer regions ExtracGng the best froM GaiaDR2 - Anders et al.
    [Show full text]
  • Multiple Star Systems Observed with Corot and Kepler
    Multiple star systems observed with CoRoT and Kepler John Southworth Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK Abstract. The CoRoT and Kepler satellites were the first space platforms designed to perform high-precision photometry for a large number of stars. Multiple systems dis- play a wide variety of photometric variability, making them natural benefactors of these missions. I review the work arising from CoRoT and Kepler observations of multiple sys- tems, with particular emphasis on eclipsing binaries containing giant stars, pulsators, triple eclipses and/or low-mass stars. Many more results remain untapped in the data archives of these missions, and the future holds the promise of K2, TESS and PLATO. 1 Introduction The CoRoT and Kepler satellites represent the first generation of astronomical space missions capable of large-scale photometric surveys. The large quantity – and exquisite quality – of the data they pro- vided is in the process of revolutionising stellar and planetary astrophysics. In this review I highlight the immense variety of the scientific results from these concurrent missions, as well as the context provided by their precursors and implications for their successors. CoRoT was led by CNES and ESA, launched on 2006/12/27,and retired in June 2013 after an irre- trievable computer failure in November 2012. It performed 24 observing runs, each lasting between 21 and 152days, with a field of viewof 2×1.3◦ ×1.3◦, obtaining light curves of 163000 stars [42]. Kepler was a NASA mission, launched on 2009/03/07and suffering a critical pointing failure on 2013/05/11. It observed the same 105deg2 sky area for its full mission duration, obtaining high-precision light curves of approximately 191000 stars.
    [Show full text]
  • Data Mining in the Spanish Virtual Observatory. Applications to Corot and Gaia
    Highlights of Spanish Astrophysics VI, Proceedings of the IX Scientific Meeting of the Spanish Astronomical Society held on September 13 - 17, 2010, in Madrid, Spain. M. R. Zapatero Osorio et al. (eds.) Data mining in the Spanish Virtual Observatory. Applications to Corot and Gaia. Mauro L´opez del Fresno1, Enrique Solano M´arquez1, and Luis Manuel Sarro Baro2 1 Spanish VO. Dep. Astrof´ısica. CAB (INTA-CSIC). P.O. Box 78, 28691 Villanueva de la Ca´nada, Madrid (Spain) 2 Departamento de Inteligencia Artificial. ETSI Inform´atica.UNED. Spain Abstract Manual methods for handling data are impractical for modern space missions due to the huge amount of data they provide to the scientific community. Data mining, understood as a set of methods and algorithms that allows us to recover automatically non trivial knowledge from datasets, are required. Gaia and Corot are just a two examples of actual missions that benefits the use of data mining. In this article we present a brief summary of some data mining methods and the main results obtained for Corot, as well as a description of the future variable star classification system that it is being developed for the Gaia mission. 1 Introduction Data in Astronomy is growing almost exponentially. Whereas projects like VISTA are pro- viding more than 100 terabytes of data per year, future initiatives like LSST (to be operative in 2014) and SKY (foreseen for 2024) will reach the petabyte level. It is, thus, impossible a manual approach to process the data returned by these surveys. It is impossible a manual approach to process the data returned by these surveys.
    [Show full text]
  • 50 Years of Existence of the European Southern Observatory (ESO) 30 Years of Swiss Membership with the ESO
    Federal Department for Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI 50 years of existence of the European Southern Observatory (ESO) 30 years of Swiss membership with the ESO The European Southern Observatory (ESO) was founded in Paris on 5 October 1962. Exactly half a century later, on 5 October 2012, Switzerland organised a com- memoration ceremony at the University of Bern to mark ESO’s 50 years of existence and 30 years of Swiss membership with the ESO. This article provides a brief summary of the history and milestones of Swiss member- ship with the ESO as well as an overview of the most important achievements and challenges. Switzerland’s route to ESO membership Nearly twenty years after the ESO was founded, the time was ripe for Switzerland to apply for membership with the ESO. The driving forces on the academic side included the Universi- ty of Geneva and the University of Basel, which wanted to gain access to the most advanced astronomical research available. In 1980, the Federal Council submitted its Dispatch on Swiss membership with the ESO to the Federal Assembly. In 1981, the Federal Assembly adopted a federal decree endorsing Swiss membership with the ESO. In 1982, the Swiss Confederation filed the official documents for ESO membership in Paris. In 1982, Switzerland paid the initial membership fee and, in 1983, the first year’s member- ship contributions. High points of Swiss participation In 1987, the Federal Council issued a federal decree on Swiss participation in the ESO’s Very Large Telescope (VLT) to be built at the Paranal Observatory in the Chilean Atacama Desert.
    [Show full text]
  • A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra
    A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Diamond-Lowe, Hannah Zoe. 2020. A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365825 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra A DISSERTATION PRESENTED BY HANNAH ZOE DIAMOND-LOWE TO THE DEPARTMENT OF ASTRONOMY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SUBJECT OF ASTRONOMY HARVARD UNIVERSITY CAMBRIDGE,MASSACHUSETTS MAY 2020 c 2020 HANNAH ZOE DIAMOND-LOWE.ALL RIGHTS RESERVED. ii Dissertation Advisor: David Charbonneau Hannah Zoe Diamond-Lowe A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra ABSTRACT Decades of ground-based, space-based, and in some cases in situ measurements of the Solar System terrestrial planets Mercury, Venus, Earth, and Mars have provided in- depth insight into their atmospheres, yet we know almost nothing about the atmospheres of terrestrial planets orbiting other stars.
    [Show full text]
  • Photometry of Be Stars in the Vicinity of COROT Primary Targets for Asteroseismology
    Comm. in Asteroseismology Vol. 143, 2003 Photometry of Be stars in the vicinity of COROT primary targets for asteroseismology J. Guti´errez-Soto1, J. Fabregat1, J. Suso2, A.M. Hubert3, M. Floquet3 and R. Garrido4 1 Observatori Astron`omic, Universitat de Val`encia 2 Instituto Ciencia de los Materiales, Universitat de Val`encia 3GEPI, Observatoire de Paris-Meudon 4Instituto de Astrof´ısica de Andaluc´ıa Abstract We present differential photometry of Be stars close to potential COROT pri- mary targets for asteroseismology. Several stars are found to be short pe- riod variables. We propose them to be considered as secondary targets in the COROT asteroseismology fields. Introduction The observation of classical Be stars by COROT will provide important keys to understand the physics of these objects and the nature of the Be phenomenon. In particular, the detection of photospheric multiperiodicity will confirm the presence of non radial pulsations (nrp) as the origin of the short term variability. COROT observations will allow the study of the beat phenomenon of nrp modes and its relation with recurrent outbursts and the building of the circumstellar disc. Our group is proposing the observation of Be stars as secondary targets for the asteroseismology fields. A sample of stars in the vicinity of the main target candidates is under study for this purpose. Hubert et al. (2001, 2003) presented the selected objects and performed a study of their short term variability using Hipparcos photometric data. We have obtained new ground based photometry with a more suitable time sampling to further characterize their variability. 2 Photometry of Be stars in the vicinity of COROT primary targets for asteroseismology Observations and data analysis Observations were done at the 0.9 m telescope of the Observatorio de Sierra Nevada (Granada, Spain).
    [Show full text]
  • Imaging the Dynamical Atmosphere of the Red Supergiant Betelgeuse in the CO first Overtone Lines with VLTI/AMBER,
    A&A 529, A163 (2011) Astronomy DOI: 10.1051/0004-6361/201016279 & c ESO 2011 Astrophysics Imaging the dynamical atmosphere of the red supergiant Betelgeuse in the CO first overtone lines with VLTI/AMBER, K. Ohnaka1,G.Weigelt1,F.Millour1,2, K.-H. Hofmann1, T. Driebe1,3, D. Schertl1,A.Chelli4, F. Massi5,R.Petrov2,andPh.Stee2 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: [email protected] 2 Observatoire de la Côte d’Azur, Departement FIZEAU, Boulevard de l’Observatoire, BP 4229, 06304 Nice Cedex 4, France 3 Deutsches Zentrum für Luft- und Raumfahrt e.V., Königswinterer Str. 522-524, 53227 Bonn, Germany 4 Institut de Planétologie et d’Astrophysique de Grenoble, BP 53, 38041 Grenoble Cedex 9, France 5 INAF-Osservatorio Astrofisico di Arcetri, Instituto Nazionale di Astrofisica, Largo E. Fermi 5, 50125 Firenze, Italy Received 7 December 2010 / Accepted 12 March 2011 ABSTRACT Aims. We present one-dimensional aperture synthesis imaging of the red supergiant Betelgeuse (α Ori) with VLTI/AMBER. We reconstructed for the first time one-dimensional images in the individual CO first overtone lines. Our aim is to probe the dynamics of the inhomogeneous atmosphere and its time variation. Methods. Betelgeuse was observed between 2.28 and 2.31 μm with VLTI/AMBER using the 16-32-48 m telescope configuration with a spectral resolution up to 12 000 and an angular resolution of 9.8 mas. The good nearly one-dimensional uv coverage allows us to reconstruct one-dimensional projection images (i.e., one-dimensional projections of the object’s two-dimensional intensity distri- butions).
    [Show full text]
  • Eso 16 Metre Very Large Telescope: the Linear Array Concept
    767 ESO 16 METRE VERY LARGE TELESCOPE: THE LINEAR ARRAY CONCEPT Daniel Enard European Southern Observatory Karl-Schwarzschild-Str. 2, D-8046 Garching Introduction: Historical background and present organization VLT preliminary studies were initiated at ESO as early as 1978 (1). After ESO's move from Geneva to Munich (1980) a study group chaired first by R. Wilson, then by J.P. Swings was set up and among a number of conceptual ideas that were analysed, the concept of a "limited array" emerged as the most attractive (2). A significant driver was then, interferometry; however after a theoretical analysis performed by F. Roddier and P. Lena (3), it became clear that interferometry with large telescopes would not be cost-effective in the visible range. In the IR, the situation would be more favorable but the overall efficiency would depend on factors that are not reliably known at present. The conclusion was that it might be difficult to justify a huge investment too exclusively oriented towards interferometry, such as an array of movable large telescopes, but on the other hand the possibility of a coherent coupling in the IR should be maintained as a prime requirement since new developments in detectors and in adaptive optics could make it effective and scientifically very rewarding. After the ESO VLT workshop in Cargese it was decided to create a fully dedicated project group in order to carry out the preliminary studies. This group was effectively created in October '83 and is expected to be fully operational by the end of '84. The project group will be advised on scientific matters by a Scientific Working Group and specialized sub-groups whose task is basically to define the various instruments and to study their feasibility; these studies will be essential to set the detailed scientific objectives and to define the relevant telescope requirements.
    [Show full text]
  • Spatially Resolved Ultraviolet Spectroscopy of the Great Dimming
    Draft version August 13, 2020 A Typeset using L TEX default style in AASTeX63 Spatially Resolved Ultraviolet Spectroscopy of the Great Dimming of Betelgeuse Andrea K. Dupree,1 Klaus G. Strassmeier,2 Lynn D. Matthews,3 Han Uitenbroek,4 Thomas Calderwood,5 Thomas Granzer,2 Edward F. Guinan,6 Reimar Leike,7 Miguel Montarges` ,8 Anita M. S. Richards,9 Richard Wasatonic,10 and Michael Weber2 1Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, MS-15, Cambridge, MA 02138, USA 2Leibniz-Institut f¨ur Astrophysik Potsdam (AIP), Germany 3Massachusetts Institute of Technology, Haystack Observatory, 99 Millstone Road, Westford, MA 01886 USA 4National Solar Observatory, Boulder, CO 80303 USA 5American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 6Astrophysics and Planetary Science Department, Villanova University, Villanova, PA 19085, USA 7Max Planck Institute for Astrophysics, Karl-Schwarzschildstrasse 1, 85748 Garching, Germany, and Ludwig-Maximilians-Universita`at, Geschwister-Scholl Platz 1,80539 Munich, Germany 8Institute of Astronomy, KU Leuven, Celestinenlaan 200D B2401, 3001 Leuven, Belgium 9Jodrell Bank Centre for Astrophysics, University of Manchester, M13 9PL, Manchester UK 10Astrophysics and Planetary Science Department, Villanova University, Villanova, PA 19085 USA (Received June 26, 2020; Revised July 9, 2020; Accepted July 10, 2020; Published August 13, 2020) Submitted to ApJ ABSTRACT The bright supergiant, Betelgeuse (Alpha Orionis, HD 39801) experienced a visual dimming during 2019 December and the first quarter of 2020 reaching an historic minimum 2020 February 7−13. Dur- ing 2019 September-November, prior to the optical dimming event, the photosphere was expanding. At the same time, spatially resolved ultraviolet spectra using the Hubble Space Telescope/Space Tele- scope Imaging Spectrograph revealed a substantial increase in the ultraviolet spectrum and Mg II line emission from the chromosphere over the southern hemisphere of the star.
    [Show full text]
  • The Thermal Emission of the Young and Massive Planet Corot-2B at 4.5 and 8 Mu M
    University of Central Florida STARS Faculty Bibliography 2010s Faculty Bibliography 1-1-2010 The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 mu m M. Gillon A. A. Lanotte T. Barman N. Miller B. -O. Demory See next page for additional authors Find similar works at: https://stars.library.ucf.edu/facultybib2010 University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Gillon, M.; Lanotte, A. A.; Barman, T.; Miller, N.; Demory, B. -O.; Deleuil, M.; Montalbán, J.; Bouchy, F.; Cameron, A. Collier; Deeg, H. J.; Fortney, J. J.; Fridlund, M.; Harrington, J.; Magain, P.; Moutou, C.; Queloz, D.; Rauer, H.; Rouan, D.; and Schneider, J., "The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 mu m" (2010). Faculty Bibliography 2010s. 186. https://stars.library.ucf.edu/facultybib2010/186 Authors M. Gillon, A. A. Lanotte, T. Barman, N. Miller, B. -O. Demory, M. Deleuil, J. Montalbán, F. Bouchy, A. Collier Cameron, H. J. Deeg, J. J. Fortney, M. Fridlund, J. Harrington, P. Magain, C. Moutou, D. Queloz, H. Rauer, D. Rouan, and J. Schneider This article is available at STARS: https://stars.library.ucf.edu/facultybib2010/186 A&A 511, A3 (2010) Astronomy DOI: 10.1051/0004-6361/200913507 & c ESO 2010 Astrophysics The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 μm, M.
    [Show full text]
  • The European Extremely Large Telescope
    30-m telescopes Markus Kasper (ESO) With inputs from S. Ramsay, R. Davies, N. Thatte and B. Brandl Overview of the talk Why big telescopes? Extremely Large Telescopes ELT 1st generation instruments: MICADO/MAORY, HARMONI, METIS Planetary Camera & Spectrograph (PCS) – 2nd gen, tbc Disclaimer: This is a Euro-centric presentation, US 30-m telescopes are progressing on similar time-scale with similar instruments ELT, Sagan Worshop, July 2021 The Extremely Large Telescope https://xkcd.com/1294/ Why build an extremely large telescope? Astronomers today have access to a huge number of telescopes On the ground and in space Not just for visible light, but X- ray, radio …. The biggest telescopes no longer have of a monolithic circular aperture Mirror segmentation makes large telescopes possible ELT, Sagan Worshop, July 2021 Why build larger (aperture) telescopes? Resolving power 휆 휃 ≃ 1.22 퐷 Light gathering power ~ 퐴 ∝ 퐷2 Imaging speed for point sources ∝ 퐷4 ELT, Sagan Worshop, July 2021 Adaptive Optics (AO) makes ground-based telescopes diffraction limited Seeing disk AO Airy disk ELT, Sagan Worshop, July 2021 The effect of telescope size The Hubble Space Telescope The Very Large Telescope The Extremely Large Telescope 2.4m diameter 8m diameter 39m diameter ELT, Sagan Worshop, July 2021 ELT vs VLT: The power of large telescopes Big telescopes collect more flux ( 퐷2) Consider diffraction limited point source (Airy pattern area) ➢ Collected point source flux 퐷2 ➢ AO concentrates flux onto a smaller patch on the sky ( 1/퐷2) ➢ Sky noise stays constant
    [Show full text]
  • 2014 Science with the Hubble Space
    Beyond HST: The Universe in High-Definition – UVOIR Space Astronomy in 2030 Julianne Dalcanton & Marc Postman Science with HST IV Meeting Rome, Italy March 18, 2014 Long History of Large Space UVOIR Telescope Concepts • VLST – 10m-16m concept (ca. 1989) • SUVO – 4m concept (ca. 1998-1999) • Workshop on 10m - 30m VLST (2003) • MUST – 10m concept (ca. 2004-2005) • ATLAST – 8m-16m concepts (ca. 2008-2010) • EUVO – European 8m concept (ca. 2013) • Modular Assembled 20m concept (ca. 2013) Scientifically compelling for over 2 decades! (Average Aperture Diameter – 13.5 meters) “Can we find another planet like Earth orbiting a nearby star? To find such a planet would complete the revolution, started by Copernicus nearly 500 years ago, that displaced the Earth as the center of the universe… The observational challenge is great but armed with new technologies… astronomers are poised to rise to it.” - U.S. 2010 Astronomy Decadal Review This is a question whose answer is sought by all of humanity and the search will demand international cooperation. The path has been laid ! for characterizing Earth 2.0 Kepler Hubble Spitzer CoRoT Ground-based Coronagraphs Gaia WFIRST 30-m class telescopes TESS JWST PLATO !"#$%&'('$)*+%&'($,)(%&$+-%$%&'('./$ Thick Atmosphere Methane Oxygen Fraction with terrestrial planets = !Earth FractionWater with detectable biosignature = fBio OpticalIf : ! Near-Infrared $ f ~ 1 then D ~ 4m Earth Bio0'12'($('#-2%#$ 8-meterTel 16-meter The signature of life is encoded inf the < 1 then D 8m spectrum! Earthof the Earth$ Bio $ tel ~ 70 !Earth $ fBio << 1 then DTel ~ 16m a > 12 Earths $ 60 50 40 30 # 4 Earths 20 4-meter 10 of total integration time of total integration time 0 Above: Distribution of all FGK stars within 45 pc of the Sun Number of Exo-Earths in 1 year 2-m 4-m 8-m 16-m where a R=70 spectrum of an Earth-twin could be acquired Telescope Size in <500 ksec shown as a function of telescope aperture.
    [Show full text]