Pericentromeric Satellite Repeat Expansions Through RNA-Derived DNA Intermediates in Cancer
Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer Francesca Bersania, Eunjung Leeb,c, Peter V. Kharchenkob,d, Andrew W. Xub, Mingzhu Liua,e, Kristina Xegaa, Olivia C. MacKenziea, Brian W. Brannigana, Ben S. Wittnera, Hyunchul Jungf, Sridhar Ramaswamya,g, Peter J. Parkb,c,h, Shyamala Maheswarana,i, David T. Tinga,g,1,2, and Daniel A. Habera,e,g,1,2 aMassachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129; bCenter for Biomedical Informatics, Harvard Medical School, Boston, MA 02115; cDivision of Genetics, Brigham and Women’s Hospital, Boston, MA 02115; dHematology/Oncology Program, Children’s Hospital, Boston, MA 02115; eHoward Hughes Medical Institute, Chevy Chase, MD 20815; fSamsung Medical Center, Seoul 135-710, Korea; gDepartment of Medicine, Massachusetts General Hospital, Boston, MA 02114; hInformatics Program, Children’s Hospital, Boston, MA 02115; and iDepartment of Surgery, Massachusetts General Hospital, Boston, MA 02114 Edited by Carol Prives, Columbia University, New York, NY, and approved October 5, 2015 (received for review September 11, 2015) Aberrant transcription of the pericentromeric human satellite II In establishing models to study the molecular basis of HSATII (HSATII) repeat is present in a wide variety of epithelial cancers. In RNA overexpression in cancer, we found that growth of cells deriving experimental systems to study its deregulation, we under nonadherent conditions is sufficient to trigger induction of observed that HSATII expression is induced in colon cancer cells this satellite repeat. Unexpectedly, under these and other condi- cultured as xenografts or under nonadherent conditions in vitro, but tions, we uncovered that these repeated transcripts are reverse- it is rapidly lost in standard 2D cultures.
[Show full text]