High Power Polarized Vs. Low Power Direct EDXRF
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bibliography
Bibliography F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (John Wiley & Sons, New York, New York, USA, 1986) V. Balashov, Interaction of Particles and Radiation with Matter (Springer, Berlin, Heidelberg, New York, 1997) British Journal of Radiology, Suppl. 25: Central Axis Depth Dose Data for Use in Radiotherapy (British Institute of Radiology, London, UK, 1996) J.R. Cameron, J.G. Skofronick, R.M. Grant, The Physics of the Body, 2nd edn. (Medical Physics Publishing, Madison, WI, 1999) S.R. Cherry, J.A. Sorenson, M.E. Phelps, Physics in Nuclear Medicine, 3rd edn. (Saunders, Philadelphia, PA, USA, 2003) W.H. Cropper, Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking (Oxford University Press, Oxford, UK, 2001) R. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (John Wiley & Sons, New York, NY, USA, 1985) R.D. Evans, TheAtomicNucleus(Krieger, Malabar, FL USA, 1955) H. Goldstein, C.P. Poole, J.L. Safco, Classical Mechanics, 3rd edn. (Addison Wesley, Boston, MA, USA, 2001) D. Greene, P.C. Williams, Linear Accelerators for Radiation Therapy, 2nd Edition (Institute of Physics Publishing, Bristol, UK, 1997) J. Hale, The Fundamentals of Radiological Science (Thomas Springfield, IL, USA, 1974) W. Heitler, The Quantum Theory of Radiation, 3rd edn. (Dover Publications, New York, 1984) W. Hendee, G.S. Ibbott, Radiation Therapy Physics (Mosby, St. Louis, MO, USA, 1996) W.R. Hendee, E.R. Ritenour, Medical Imaging Physics, 4 edn. (John Wiley & Sons, New York, NY, USA, 2002) International Commission on Radiation Units and Measurements (ICRU), Electron Beams with Energies Between 1 and 50 MeV,ICRUReport35(ICRU,Bethesda, MD, USA, 1984) International Commission on Radiation Units and Measurements (ICRU), Stopping Powers for Electrons and Positrons, ICRU Report 37 (ICRU, Bethesda, MD, USA, 1984) 646 Bibliography J.D. -
Main Attributes of Nuclides Presented in This Book
Appendix A Main Attributes of Nuclides Presented in This Book Data given in TableA.1 can be used to determine the various decay energies for the specific radioactive decay examples as well as for the nuclear activation examples presented in this book. M stands for the nuclear rest mass; M stands for the atomic rest mass. The data were obtained from the NIST and are based on CODATA 2010 as follows: 1. Data for atomic masses M are given in atomic mass constants u and were obtained from the NIST at: (http://www.physics.nist.gov/pml/data/comp.cfm). 2. Rest mass of proton mp, neutron mn, electron me, and of the atomic mass constant u are from the NIST (http://www.physics.nist.gov/cuu/constants/index. html) as follows: −27 2 mp = 1.672 621 777×10 kg = 1.007 276 467 u = 938.272 046 MeV/c (A.1) −27 2 mn = 1.674 927 351×10 kg = 1.008 664 916 u = 939.565 379 MeV/c (A.2) −31 −4 2 me = 9.109 382 91×10 kg = 5.485 799 095×10 u = 0.510 998 928 MeV/c (A.3) − 1u= 1.660 538 922×10 27 kg = 931.494 060 MeV/c2 (A.4) 3. For a given nuclide, its nuclear rest energy was determined by subtracting the 2 rest energy of all atomic orbital electrons (Zmec ) from the atomic rest energy M(u)c2 as follows 2 2 2 Mc = M(u)c − Zmec = M(u) × 931.494 060 MeV/u − Z × 0.510 999 MeV. -
Bohr Shell Model of the Atom
Shell model of the atom Mr. Nderitu In 1922, Nobel prize winner Niels Bohr revised Rutherford's model by suggesting that • The electrons were confined into clearly defined orbits. • They could jump between these orbits, but could not freely spiral inward or outward in intermediate states. • An electron must absorb or emit specific amounts of energy for transition between these fixed orbits. Bohr extended the model of Hydrogen to give an approximate model for heavier atoms. This gave a physical picture which reproduced many known atomic properties for the first time. 1 Heavier atoms have more protons in the nucleus, and more electrons to cancel the charge. Bohr's idea was that each discrete orbit could only hold a certain number of electrons. After that orbit is full, the next level would have to be used. This gives the atom a shell structure , in which each shell corresponds to a Bohr orbit. This model is even more approximate than the model of hydrogen, because it treats the electrons in each shell as non-interacting. But the repulsions of electrons are taken into account somewhat by the phenomenon of screening . The electrons in outer orbits do not only orbit the nucleus, but they also orbit the inner electrons, so the effective charge Z that they feel is reduced by the number of the electrons in the inner orbit. For example, the lithium atom has two electrons in the lowest 1S orbit, and these 2 orbit at Z=2. Each one sees the nuclear charge of Z=3 minus the screening effect of the other, which crudely reduces the nuclear charge by 1 unit. -
Please Read: an Urgent Appeal from Wikipedia Founder Jimmy Wales $2.6M Left $13.4M (USD) Raised
Please read: An urgent appeal from Wikipedia founder Jimmy Wales $2.6M left $13.4M (USD) raised Electron shell From Wikipedia, the free encyclopedia Jump to: navigation, search Periodic table with electron shells An electron shell may be thought of as an orbit followed by electrons around an atom nucleus. Because each shell can contain only a fixed number of electrons, each shell is associated with a particular range of electron energy, and thus each shell must fill completely before electrons can be added to an outer shell. The electrons in the outermost shell determine the chemical properties of the atom (see Valence shell). For an explanation of why electrons exist in these shells see electron configuration.[1] Contents [hide] 1 History 2 Shells 3 Subshells 4 Number of electrons in each shell 5 Valence shells 6 List of elements with electrons per shell 7 See also 8 References [edit] History The shell terminology comes from Arnold Sommerfeld's modification of the Bohr model. Sommerfeld retained Bohr's planetary model, but added additional mildly elliptical orbits (characterized by additional quantum numbers l and m) to explain the fine spectroscopic structure of some elements.[2] The multiple electrons with the same principal quantum number (n) had close orbits that formed a "shell" of finite thickness instead of the infinitely thin circular orbit of Bohr's model. The existence of electron shells was first observed experimentally in Charles Barkla's and Henry Moseley's X-ray absorption studies. Barkla labeled them with the letters K, L, M, N, O, P, and Q.