Mediastinal Emphysema: Aetiology, Diagnosis, and Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Mediastinal Emphysema: Aetiology, Diagnosis, and Treatment Thorax: first published as 10.1136/thx.21.4.325 on 1 July 1966. Downloaded from Thorax (1966), 21, 325. Mediastinal emphysema: aetiology, diagnosis, and treatment J. M. GRAY AND G ILLIAN C. HANSON F om Whipps Cross Hospital, London E.lJ, and the Obstetric Unit, Forest Gate Hospital, London E.lJ Mediastinal emphysema is a condition frequently Macklin (1944) thought that this condition arose omitted in the differential diagnosis of retrosternal following rupture of marginal alveoli producing chest pain; it is generally benign but on occasions pulmonary interstitial emphysema and later can be fatal. Little has been written about this pneumomediastinum. The cause of rupture is condition, and, although rare, it has probably been difficult to establish; but rupture probably does misdiagnosed or has not been detected in the past. not occur unless one at least of the following is present: overinflation, relative increase of intra- pulmonary pressure as compared with that on the AETIOLOGICAL CLASSIFICATION chest wall, or decreased pulmonary circulation. Gordon (1936) and Kjaergaard (1933) maintained 1. Rupture of marginal alveoli into the pul- that ruptured blebs caused spontaneous pneumo- monary interstitial tissue and thence to the thorax despite the fact that in many of the cases mediastinum which came to necropsy no ruptured pleural blebs 2. Mixed aetiological factors (The mode of were found. Scott (1957) stated that usually a production is not yet certain.) pneumothorax is produced by rupture of an (a) Spontaneous pneumomediastinum alveolus or bulla directly through the visceral (b) Trauma to the chest wall pleura, and he postulated that air might enter the http://thorax.bmj.com/ 3. Air entering the mediastinum from the deep mediastinum by passing through the mediastinal fascial planes of the neck pleura from the pleural cavity. 4. Air entering the mediastinum from the retroperitoneal space Trauma to the chest wall The mechanism of 5. Perforation of the trachea, bronchus, or mediastinal emphysema following closed chest oesophagus into the mediastinum injuries is uncertain. The most likely cause is compression of one part of the chest followed by RUPTURE OF MARGINAL ALVEOLI INTO PULMONARY increased intra-alveolar pressure and rupture of on October 4, 2021 by guest. Protected copyright. INTERSTITIAL TISSUE some alveoli, with development of pulmonary interstitial emphysema followed by mediastinal The mechanism of production of pulmonary emphysema. interstitial emphysema of the lungs and its spread into the mediastinum has been described by AIR ENTERING MEDIASTINUM FROM DEEP FASCIAL Macklin and Macklin (1944). They emphasized PLANES OF THE NECK (Forbes, Salmon, and that a pressure gradient must exist between the Herweg, 1947; Work, 1943) This may be the alveolus and the underlying connective tissue so path followed during thyroidectomy or tonsillec- that air can pass from the alveolus into the tomy and in deep wounds of the neck. However, tissues. in thyroidectomy and tonsillectomy a raised intra- Pneumomediastinum follows the development alveolar pressure secondary to outlet airway of pulmonary interstitial emphysema, since air obstruction may be the primary factor, air tends to follow the path of least resistance and entering the mediastinum from the lung travels along the vascular sheaths to the hilus. interstices. MIXED AETIOLOGICAL FACTORS AIR ENTERING MEDIASTINUM FROM RETROPERITONEAL SPACE If air accumulates in the retroperitoneum Spontaneous pneumomediastinum Macklin and it may travel alongside the aorta or the oesophagus 325 Thorax: first published as 10.1136/thx.21.4.325 on 1 July 1966. Downloaded from 326 J. M. Gray and Gillian C. Hanson into the mediastinum. This may follow perfora- CLINICAL FEATURES The most common symptom tion of the stomach or intestine or may occur of mediastinal emphysema is pain, and the after perirenal insufflation. important clinical findings are subcutaneous emphysema predominantly in the neck, oblitera- PERFORATION OF TRACHEA, BRONCHUS, OR OESO- tion of the cardiac dullness, and peculiar sounds PHAGUS INTO MEDIASTINUM Disease or trauma audible over the heart. In addition to these occasionally causes rupture of the trachea or features there may be evidence of pneumothorax. bronchi. Rupture of the trachea may be caused Mediastinal emphysema may arise when the by a sudden increase of pressure in the tracheo- patient is at rest and may be symptomless, or the bronchial tree against a closed glottis or as a patient may notice some swelling and/or crepitus result of a shearing force (Rubin and Rubin, in the neck. Subcutaneous emphysema may be the 1961). Rupture of the oesophagus may be due to only clinical evidence for the presence of pneumo- a large number of causes, the site of the rupture mediastinum. Frequently the patient givies a depending on the aetiology. Pen2trating wounds history of coughing, vomiting, or sudden exertion. generally involve the cervical oesophagus and Pain is a frequent complaint ; it is usually retro- rarely produce mediastinal emphysema. Foreign sternal and may radiate to the shoulders and bodies often lodge in the oesophagus at the level down both arms; it is sharp and aggravated by of the aortic arch crossing the left main bronchus. inspiration and sometimes by swallowing. In addi- Instrumentation remains the most frequent tion, there is usually a feeling of oppression or cause of oesophageal rupture (Anderson, 1952; constriction often associated with dyspnoea. Smith and Tanner, 1956). With a diseased oeso- Hamman (1945) attributed the retrosternal pain phagus the most common site of rupture is at to distension and dissection of the mediastinal that level, but when not diseased the rupture tissues with air. generally takes place at the narrowest point in Subcutaneous emphysema may be the only the oesophagus, namely at or just below the clinical evidence for the presence of pneumo- pharyngo-oesophageal orifice. mediastinum and is due to air dissecting upwards In spontaneous rupture the site involved is between the fascial layers of the neck (Hollins- generally in the lower 8 cm. of the oesophagus head, 1962). It is often detectable initially as a http://thorax.bmj.com/ and is usually a vertical tear on the left superficial crackling sound when a stethoscope is posterolateral wall. Several explanations have applied to the chest wall or neck. The apex beat been giv;en for this site. First, the left side of the may not be palpable, the cardiac dullness is oesophagus is not supported by connective tissue, diminished or absent, and the heart sounds are and, secondly, there appears to be an intrinsic distant. Hamman's sign (Hamman, 1934, 1937) weakness in the muscle wall at this point was at one time thought to be diagnostic of (Mackler, 1952). Increased intraluminal pressure mediastinal emphysema (Hamman, 1937, 1939; within the oesophagus plays an important part in Muller, 1888). The sign is present in 50%0 of cases rupture of the lower third, and rupture may arise (Sulavik, 1962) but may also be heard in left- on October 4, 2021 by guest. Protected copyright. in labour (Kennard, 1950), during severe sided pneumothorax (Scott, 1957), dilated lower asthmatic seizures (Mitchell, Derbes, and Aken- oesophagus, bullous emphysema of the lingular head, 1955), during strenuous exercise (Griffith, segments, pneumoperitoneum with a high left 1932), and after vomiting secondary to increased diaphragm, and gastric dilatation (Sulavik, 1962). intracranial pressure (Cushing, 1932; Fincher and The sounds arz generally heard best along the left Swanson, 1949). Many patielnts, however, give sternal edge, third to sixth intercostal space, they histories suggestive of previous gastro-intestinal may vary in intensity and are intensified when the disease, peptic ulcer, alcoholism, or gluttony. patient is sitting up or lying in the left lateral Barrett (1946) postulated that the cricopharyngeal decubitus position. The sounds occur synchro- sphincter in these patients fails to relax during the nously with the heart beat, are 'crunching' in attempt at vomiting, and this, most often asso- character (Hamman, 1937), and are generally ciated with a full stomach, raises the pressure associated with systole but may be heard in within the oesophagus sufficiently high to produce diastole. If these sounds are heard in the presence rupture. of subcutaneous emphysema of the chest wall or In most instances rupture of the oesophagus is neck, then mediastinal emphysema from whatever probably the result of multiple factors, including cause can be diagnosed. Pneumothorax is a fre- incoordination, weakness of the oesophageal wall, quent accompaniment. This is generally small and and an increased pressure within the oesophagus. left-sided and occurs in one-third of cases of Thorax: first published as 10.1136/thx.21.4.325 on 1 July 1966. Downloaded from Mediastinal emphysema: aetiology, diagnosis, and treatment 327 pneumomediastinum (Hamman, 1945). Tension rupture is the chest radiograph, and that if this pneumothorax may develop, and, since the lung is taken early it may show localized mediastinal is splinted by interstitial air, the size of the emphysema in the lower part of the medistinum pneumothorax may have no relation to the before the development of generalized mediastinal intrapleural pressure (Nicholas, 1958). and/or subcutaneous emphysema, hydrothorax, Spontaneous mediastinal emphysema is generally or hydropneumothorax. In the neck, the radio- a benign condition which subsides with no graph may show on
Recommended publications
  • Anatomical Overview
    IKOdontogenetic infection is spreaded Možné projevy zlomenin a zánětů IKPossible signs of fractures or inflammations Submandibular space lies between the bellies of the digastric muscles, mandible, mylohyoid muscle and hyoglossus and styloglossus muscles IK IK IK IK IK Submandibulární absces Submandibular abscess IK Sběhlý submandibulární absces Submandibular abscess is getting down IK Submental space lies between the mylohyoid muscles and the investing layer of deep cervical fascia superficially IK IK Spatium peritonsillare IK IK Absces v peritonsilární krajině Abscess in peritonsilar region IK Fasciae Neck fasciae cervicales Demarcate spaces • fasciae – Superficial (investing): • f. nuchae, f. pectoralis, f. deltoidea • invests m. sternocleidomastoideus + trapezius • f. supra/infrahyoidea – pretrachealis (middle neck f.) • form Δ, invests infrahyoid mm. • vagina carotica (carotic sheet) – Prevertebral (deep cervical f.) • Covers scaleni mm. IK• Alar fascia Fascie Fascia cervicalis superficialis cervicales Fascia cervicalis media Fascia cervicalis profunda prevertebralis IKsuperficialis pretrachealis Neck spaces - extent • paravisceral space – Continuation of parafaryngeal space – Nervous and vascular neck bundle • retrovisceral space – Between oesophagus and prevertebral f. – Previsceral space – mezi l. pretrachealis a orgány – v. thyroidea inf./plx. thyroideus impar • Suprasternal space – Between spf. F. and pretracheal one IK– arcus venosus juguli 1 – sp. suprasternale suprasternal Spatia colli 2 – sp. pretracheale pretracheal 3 –
    [Show full text]
  • Of the Pediatric Mediastinum
    MRI of the Pediatric Mediastinum Dianna M. E. Bardo, MD Director of Body MR & Co-Director of the 3D Innovation Lab Disclosures Consultant & Speakers Bureau – honoraria Koninklijke Philips Healthcare N V Author – royalties Thieme Publishing Springer Publishing Mediastinum - Anatomy Superior Mediastinum thoracic inlet to thoracic plane thoracic plane to diaphragm Inferior Mediastinum lateral – pleural surface anterior – sternum posterior – vertebral bodies Mediastinum - Anatomy Anterior T4 Mediastinum pericardium to sternum Middle Mediastinum pericardial sac Posterior Mediastinum vertebral bodies to pericardium lateral – pleural surface superior – thoracic inlet inferior - diaphragm Mediastinum – MR Challenges Motion Cardiac ECG – gating/triggering Breathing Respiratory navigation Artifacts Intubation – LMA Surgical / Interventional materials Mediastinum – MR Sequences ECG gated/triggered sequences SSFP – black blood SE – IR – GRE Non- ECG gated/triggered sequences mDIXON (W, F, IP, OP), eTHRIVE, turbo SE, STIR, DWI Respiratory – triggered, radially acquired T2W MultiVane, BLADE, PROPELLER Mediastinum – MR Sequences MRA / MRV REACT – non Gd enhanced Gd enhanced sequences THRIVE, mDIXON, mDIXON XD Mediastinum – Contents Superior Mediastinum PVT Left BATTLE: Phrenic nerve Vagus nerve Structures at the level of the sternal angle Thoracic duct Left recurrent laryngeal nerve (not the right) CLAPTRAP Brachiocephalic veins Cardiac plexus Aortic arch (and its 3 branches) Ligamentum arteriosum Thymus Aortic arch (inner concavity) Trachea Pulmonary
    [Show full text]
  • MSS 1. a Patient Presented to a Traumatologist with a Trauma Of
    MSS 1. A patient presented to a traumatologist with a trauma of shoulder. What wall of axillary cavity contains foramen trilaterum and foramen quadrilaterum? a) anterior b) posterior c) lateral d) medial e) intermediate 2. A patient presented to a traumatologist with a trauma of leg, which he had sustained at a sport competition. Upon examination, damage of posterior muscle, that is attached to calcaneus by its tendon, was found. This muscle is: a) triceps surae b) tibialis posterior c) popliteus d) fibularis longus e) fibularis brevis 3. In the course of a cesarean section, an incision was made in the pubic area and vagina of rectus abdominis muscle was cut. What does anterior wall of the vagina of rectus abdominis muscle consist of? A. aponeurosis of m. transversus abdominis, m. obliquus internus abdominis. B. aponeurosis of m. transversus abdominis, m. pyramidalis. C. aponeurosis of m. obliquus internus abdominis, m. obliquus externus abdominis. D. aponeurosis of m. transversus abdominis, m. obliquus externus abdominis. E. aponeurosis of m. transversus abdominis, m. obliquus internus abdominis 4. A 30 year-old woman complained of pain in the lower part of her forearm. Traumatologist found that her radio-carpal joint was damaged. This joint is: A. complex, ellipsoid B.simple, ellipsoid C.complex, cylindrical D.simple, cylindrical E.complex condylar 5. A woman was brought by an ambulance to the emergency department with a trauma of the cervical part of her vertebral column. Radiologist diagnosed a fracture of a nonbifid spinous processes of one of her cervical vertebrae. Spinous process of what cervical vertebra is fractured? A.VI.
    [Show full text]
  • Pneumomediastinum After Cervical Stab Wound
    Pneumomediastinum After Cervical Stab Wound * ^ Chad Correa, BS and Emily Ma, MD *University of California, Riverside, School of Medicine, Riverside, CA ^University of California, Irvine, Department of Emergency Medicine, Orange, CA Correspondence should be addressed to Chad Correa, BS at [email protected] Submitted: October 1, 2017; Accepted: November 20, 2017; Electronically Published: January 15, 2018; https://doi.org/10.21980/J87P79 Copyright: © 2018 Correa, et al. This is an open access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) License. See: http://creativecommons.org/licenses/by/4.0/ Empty Line Calibri Size 12 Video Link: https://youtu.be/c8IYed1fnoE Video Link: https://youtu.be/q_cFK1atwlE Return: Calibri Size 10 9 mpty Line Calibri Siz History of present illness: A 21-year old female presented to the emergency department with a stab wound to the left neck. She reported that her boyfriend had fallen off a ladder and subsequently struck her in the back of the neck with the scissors he had been working with. She was alert and in minimal distress, speaking in full sentences, and lungs were clear to auscultation bilaterally. Examination of the neck showed a 0.5cm linear wound at the base of the proximal left clavicle (Zone 1). Cranial nerves were grossly intact, and the patient was moving all extremities spontaneously. Significant findings: Anteroposterior (AP) chest X-ray showed subcutaneous emphysema of the neck, surrounding the trachea (red arrows), right side greater than left, and a streak of gas adjacent to the aortic arch (white arrow).
    [Show full text]
  • The Management of Childhood Drowning in a Tertiary Hospital in Indonesia: a Case Report
    J Med Sci, Volume 53, Number 2, 2021 April: 199-205 Journal of the Medical Sciences (Berkala Ilmu Kedokteran) Volume 53, Number 2, 2021; 199-205 http://dx.doi.org/10.19106/JMedSci005302202111 The management of childhood drowning in a tertiary hospital in Indonesia: a case report Dyah Kanya Wati,1* I Gde Doddy Kurnia Indrawan, 2Nyoman Gina Henny Kristianti,3 Felicia Anita Wijaya,3 Desak Made Widiastiti Arga3, Arya Krisna Manggala3 1Department of Child Health, Faculty of Medicine Universitas Udayana/Sanglah General Hospital, Denpasar, Bali, 2Department of Child Health, Wangaya General Hospital, Denpasar, Bali, 3Faculty of Medicine Universitas Udayana, Denpasar, Bali, Indonesia ABSTRACT Submited: 2020-10-09 The World Health Organization (WHO) stated that drowning becomes the Accepted : 2021-01-28 third leading cause of death from unintentional injury. Furthermore it was reported more than 372,000 cases of death annually among children due to drowning accident. Inappropriate of resuscitation attempt, delay in early management, inappropriate monitoring and evaluation lead to drowning complications riks even death. However, studies concerning the management of childhood drowning in Indonesia is limited. Here, we reported a case of childhood drowning in Sanglah General Hospital in Denpasar, Bali. An 8 years old girl arrived at the hospital with deterioration of consciousness after found drowning in the swimming pool. The management of the case was performed according to the recent literature guidelines. The first attempt was performed by resuscitation, followed by pharmacological interventions using corticosteroids, non-invasive ventilation and series of laboratory examination. With regular follow up, patient showed good recovery and prognosis. ABSTRAK Badan Kesehatan Dunia (WHO) menyatakan bahwa tenggelam merupakan penyebab kematian ketiga terbanyak akibat trauma yang tidak disengaja.
    [Show full text]
  • An Unusual Cause of Subcutaneous Emphysema, Pneumomediastinum and Pneumoperitoneum
    Eur Respir J CASE REPORT 1988, 1, 969-971 An unusual cause of subcutaneous emphysema, pneumomediastinum and pneumoperitoneum W.G. Boersma*, J.P. Teengs*, P.E. Postmus*, J.C. Aalders**, H.J. Sluiter* An unusual cause of subcutaneous emphysema, pneumomediastinum and Departments of Pulmonary Diseases* and Obstetrics pneumoperitoneum. W.G. Boersma, J.P. Teengs, P.E. Postmus, J.C. Aalders, and Gynaecology**, State University Hospital, H J. Sluiter. Oostersingel 59, 9713 EZ Groningen, The Nether­ ABSTRACT: A 62 year old female with subcutaneous emphysema, pneu­ lands. momediastinum and pneumoperitoneum, was observed. Pneumothorax, Correspondence: W.G. Boersma, Department of however, was not present. Laparotomy revealed a large Infiltrate In the Pulmonary Diseases, State University Hospital, Oos­ left lower abdomen, which had penetrated the anterior abdominal wall. tersingel 59, 9713 EZ Groningen, The Nether­ Microscopically, a recurrence of previously diagnosed vulval carcinoma lands. was demonstrated. Despite Intensive treatment the patient died two months Keywords: Abdominal inftltrate; necrotizing fas­ later. ciitis; pneumomediastinum; pneumoperitoneum; Eur Respir ]., 1988, 1, 969- 971. subcutaneous emphysema; vulval carcinoma. Accepted for publication August 8, 1988. The main cause of subcutaneous emphysema is a defect 38·c. There were loud bowel sounds and abdominal in the continuity of the respiratory tract. Gas in the soft distension. The left lower quadrant of the abdomen was tissues is sometimes of abdominal origin. The most fre­ tender, with dullness on examination. Recto-vaginal quent source of the latter syndrome is perforation of a examination revealed no abnonnality. The left upper leg hollow viscus [1]. In this case report we present a patient had increased in circumference.
    [Show full text]
  • Barotrauma Or Lung Frailty?
    ORIGINAL ARTICLE COVID-19 Pneumomediastinum and subcutaneous emphysema in COVID-19: barotrauma or lung frailty? Daniel H.L. Lemmers 1,2,6, Mohammed Abu Hilal1,6, Claudio Bnà3, Chiara Prezioso4,5, Erika Cavallo4,5, Niccolò Nencini 4,5, Serena Crisci4,5, Federica Fusina 4 and Giuseppe Natalini4 ABSTRACT Background: In mechanically ventilated acute respiratory distress syndrome (ARDS) patients infected with the novel coronavirus disease (COVID-19), we frequently recognised the development of pneumomediastinum and/or subcutaneous emphysema despite employing a protective mechanical ventilation strategy. The purpose of this study was to determine if the incidence of pneumomediastinum/subcutaneous emphysema in COVID-19 patients was higher than in ARDS patients without COVID-19 and if this difference could be attributed to barotrauma or to lung frailty. Methods: We identified both a cohort of patients with ARDS and COVID-19 (CoV-ARDS), and a cohort of patients with ARDS from other causes (noCoV-ARDS). Patients with CoV-ARDS were admitted to an intensive care unit (ICU) during the COVID-19 pandemic and had microbiologically confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. NoCoV-ARDS was identified by an ARDS diagnosis in the 5 years before the COVID-19 pandemic period. Results: Pneumomediastinum/subcutaneous emphysema occurred in 23 out of 169 (13.6%) patients with CoV-ARDS and in three out of 163 (1.9%) patients with noCoV-ARDS (p<0.001). Mortality was 56.5% in CoV-ARDS patients with pneumomediastinum/subcutaneous emphysema and 50% in patients without pneumomediastinum (p=0.46). CoV-ARDS patients had a high incidence of pneumomediastinum/subcutaneous emphysema despite the − use of low tidal volume (5.9±0.8 mL·kg 1 ideal body weight) and low airway pressure (plateau pressure 23±4 cmH2O).
    [Show full text]
  • Ministry of Education and Science of Ukraine Sumy State University 0
    Ministry of Education and Science of Ukraine Sumy State University 0 Ministry of Education and Science of Ukraine Sumy State University SPLANCHNOLOGY, CARDIOVASCULAR AND IMMUNE SYSTEMS STUDY GUIDE Recommended by the Academic Council of Sumy State University Sumy Sumy State University 2016 1 УДК 611.1/.6+612.1+612.017.1](072) ББК 28.863.5я73 С72 Composite authors: V. I. Bumeister, Doctor of Biological Sciences, Professor; L. G. Sulim, Senior Lecturer; O. O. Prykhodko, Candidate of Medical Sciences, Assistant; O. S. Yarmolenko, Candidate of Medical Sciences, Assistant Reviewers: I. L. Kolisnyk – Associate Professor Ph. D., Kharkiv National Medical University; M. V. Pogorelov – Doctor of Medical Sciences, Sumy State University Recommended for publication by Academic Council of Sumy State University as а study guide (minutes № 5 of 10.11.2016) Splanchnology Cardiovascular and Immune Systems : study guide / С72 V. I. Bumeister, L. G. Sulim, O. O. Prykhodko, O. S. Yarmolenko. – Sumy : Sumy State University, 2016. – 253 p. This manual is intended for the students of medical higher educational institutions of IV accreditation level who study Human Anatomy in the English language. Посібник рекомендований для студентів вищих медичних навчальних закладів IV рівня акредитації, які вивчають анатомію людини англійською мовою. УДК 611.1/.6+612.1+612.017.1](072) ББК 28.863.5я73 © Bumeister V. I., Sulim L G., Prykhodko О. O., Yarmolenko O. S., 2016 © Sumy State University, 2016 2 Hippocratic Oath «Ὄμνυμι Ἀπόλλωνα ἰητρὸν, καὶ Ἀσκληπιὸν, καὶ Ὑγείαν, καὶ Πανάκειαν, καὶ θεοὺς πάντας τε καὶ πάσας, ἵστορας ποιεύμενος, ἐπιτελέα ποιήσειν κατὰ δύναμιν καὶ κρίσιν ἐμὴν ὅρκον τόνδε καὶ ξυγγραφὴν τήνδε.
    [Show full text]
  • Title: Recognizing Barotrauma As an Unexpected Complication of High Flow Nasal Cannula
    Title: Recognizing barotrauma as an unexpected complication of high flow nasal cannula Introduction: Spontaneous pneumomediastinum (SPM) is a rare condition defined as free air in the mediastinum without an apparent trauma. It is commonly associated with barotrauma in asthma and COPD patients. High flow nasal cannula (HFNC) has been routinely used for hypoxemic respiratory failure. We present a case of the development of SPM with extensive subcutaneous emphysema with the use of HFNC for hypoxic respiratory failure. Case Presentation: 78 year old Caucasian female with history of interstitial pulmonary fibrosis and COPD was discharged to LTACH after prolonged hospitalization for influenza-A infection complicated by acute on chronic respiratory failure. She was started on supplemental oxygen using HFNC that was progressively increased to 60 liters/min with 100% FiO2 for persistent hypoxia. Over the next four days, she was noted to have worsening facial and neck swelling with progressive dyspnea leading to transfer to the hospital. CT scan of chest noted for extensive pneumomediastinum involving the middle and anterior mediastinum with extensive subcutaneous emphysema throughout the anterior and moderately posterior chest wall extending to lower neck. Lung parenchyma revealed underlying interstitial with patchy airspace disease without evident pneumothorax. She was started on 100% FIO2 with non- rebreather mask. For symptomatic relief, Cardiothoracic surgery performed bilateral anterior chest blowhole incisions and application of negative vacuum-assisted closure on anterior chest with dramatic improvement in subcutaneous emphysema and facial swelling with persistent pneumomediastinum. Patent’s pneumomediastinum and respiratory failure persisted with high oxygen requirement with non- rebreather mask. Due to underlying advanced lung disease and persistent respiratory failure , patient’s family opted for palliative management with comfort measure and patient was transferred to hospice care.
    [Show full text]
  • Inhalation of 1-1-Difluoroethane: a Rare Cause of Pneumopericardium
    Open Access Case Report DOI: 10.7759/cureus.3503 Inhalation of 1-1-difluoroethane: A Rare Cause of Pneumopericardium Erika L. Faircloth 1 , Jose Soriano 2 , Deep Phachu 1 1. Internal Medicine, University of Connecticut, Farmington, USA 2. Internal Medicine, Saint Francis Hosptial and Medical Center, Hartford, USA Corresponding author: Erika L. Faircloth, [email protected] Disclosures can be found in Additional Information at the end of the article Abstract We report a case of a 32-year-old man with a past medical history of ethanol use disorder who was brought in unresponsive after inhaling six to 10 cans of the computer cleaning product, Dust-Off. After regaining consciousness, he endorsed severe, pleuritic chest and anterior neck pain. Labs were notable for elevated cardiac enzymes, acute kidney injury, and his initial electrocardiogram (ECG) revealed a partial right bundle branch block with a prolonged corrected QT interval (QTc). On chest X-ray as well as chest computed tomography, the patient was found to have pneumomediastinum, pneumopericardium, and subcutaneous emphysema. The patient’s course was uneventful and he was discharged home two days later after extensive substance abuse cessation counseling. Intentionally inhaling toxic substances, also known as “huffing,” is a dangerous new trend with significant consequences that clinicians need to be aware of and suspect in young patients presenting with chest pain. We present a rare case of pneumopericardium induced by inhalation of Dust-Off (1-1-difluoroethane). Categories: Cardiac/Thoracic/Vascular Surgery, Cardiology, Internal Medicine Keywords: 1-1-difluoroethane, fluorinated hydrocarbon, cardiology, pneumopericardium, pneumomediastinum, inhalant abuse Introduction 1-1-difluoroethane is a colorless, odorless gas [1].
    [Show full text]
  • Neck Formation and Growth. MAIN TOPOGRAPHIC REGIONS in NECK
    Neck formation and growth. MAIN TOPOGRAPHIC REGIONS IN NECK. ANATOMICAL BACKGROUND FOR URGENT LIFE SAVING PERFORMANCES. orofac Ivo Klepáček orofac Vymezení oblasti krku Extent of the neck region Sensitivní oblasti V1, V2, V3., plexus cervicalis orofac * * * * * orofac** * orofac orofac orofaccranial middle caudal orofac orofac Clinical classification of neck lymph nodes orofacClinical classification of neck lymphatic nodes: I - VI Nodi lymphatici out of regiones above: Perifacial, periparotic, retroauricular, suboccipital, retropharyngeal Metastasa v krčních uzlinách Metastasis in cervical orofaclymphonodi TOPOGRAPHIC REGIONS orofacand SPACES Regio colli anterior anterior neck triangle Trigonae : submentale, submandibulare, caroticum (musculare), regio suprasternalis Triangles : submental, submandibular, carotic (muscular), orofacsuprasternal region podkožní sval na povrchové krční fascii r. colli nervi facialis ovládá napětí kůže krku Platysma orofac proc. mastoideus manubrium sterni, clavicula Sternocleidomastoid m. n.accessorius (XI) + branches sternocleidomastoideus from plexus cervicalis orofac Punctum nervosum (Erb ´s point) : there C5 and C6 nerves are connected, + branches from suprascapulari and subclavian nerves orofacWilhelm Heinrich Erb (1840 - 1921), German neurologist orofac orofac mm. suprahyoid suprahyoidei and et mm. infrahyoid orofacinfrahyoidei muscles orofac Thyroid gland and vascular + nerve bundle in neck orofac orofac Žíly veins orofac štítná žláza příštitné orofactělísko a. thyroidea inferior n. laryngeus inferior
    [Show full text]
  • Clinical Anatomy of the Neck Region
    MINISTRY OF HEALTH OF THE REPUBLIC OF MOLDOVA STATE UNIVERSITY OF MEDICINE AND PHARMACY "NICOLAE TESTEMIȚANU" DEPARTMENT TOPOGRAPHIC ANATOMY AND OPERATIVE SURGERY Gheorghe GUZUN, Radu TURCHIN, Boris TOPOR, Serghei SUMAN CLINICAL ANATOMY OF THE NECK REGION Methodical recommendations for students CHISINAU, 2017 CZU 611.93(076.5) C 57 Lucrarea a fost aprobată de Consiliul Metodic Central al USMF “Nicolae Testemițanu”; proces-verbal nr. 2 din 10.03.2017 Autori: Gheorghe GUZUN – dr. med, conf. univ. Radu TURCHIN – dr.șt.med., conf. univ. Boris TOPOR – dr.hab.șt.med., prof. univ. Serghei SUMAN – dr.hab.șt.med., conf. univ. Recenzenți: Ilia catereniuc – dr.hab.șt.med., prof. univ. Nicolae Fruntașu – dr.hab.șt.med., prof. univ. Machetare: Serghei Suman – dr.hab.șt.med., conf. univ. DESCRIEREA CIP A CAMEREI NAȚIONALE A CĂRȚII Clinical anatomy of the neck region : Methodical recommendations for students / Gheorghe Guzun, Radu Turchin, Boris Topor [et al.] ; State Univ. of Medicine and Pharmacy "Nicolae Testemiţanu", Dep. Topographic Anatomy and Operative Surgery. – Chişinău : S. n., 2017 (Tipogr. "Print-Caro"). – 52 p. : fig. 100 ex. ISBN 978-9975-56-466-3. 611.93(076.5) C 57 ISBN 978-9975-56-466-3. CEP Medicina, 2017 Gheorghe Guzun, Radu Turchin, Viorel Nacu, Boris Topor, 2017. © Gheorghe Guzun, 2017 CLINICAL ANATOMY OF THE NECK The upper limit of the neck (cefalocervical limit) is a conventional line that crosses the lower jaw (basis of mandible) and its angle, the bottom of the external auditory canal, the apex of mastoid process (procesuus mastoideus) and superior nuchal line (linea nuchae superior) to the external occipital protuberance (occipitalis external protuberance).
    [Show full text]