Lightning Fires in a Brazilian Savanna National Park: Rethinking Management Strategies

Total Page:16

File Type:pdf, Size:1020Kb

Lightning Fires in a Brazilian Savanna National Park: Rethinking Management Strategies DOI: 10.1007/s002670010124 Lightning Fires in a Brazilian Savanna National Park: Rethinking Management Strategies MA´ RIO BARROSO RAMOS-NETO lightning fires started in the open vegetation (wet field or VAˆ NIA REGINA PIVELLO* grassy savanna) at a flat plateau, an area that showed signifi- Departamento de Ecologia, Instituto de Biocieˆ ncias cantly higher fire incidence. On average, winter fires burned Universidade de Sa˜ o Paulo larger areas and spread more quickly, compared to lightning Rua do Mata˜o fires, and fire suppression was necessary to extinguish them. Travessa 14, Sa˜ o Paulo, S.P., Brazil 05508-900 Most lightning fires were patchy and extinguished primarily by rain. Lightning fires in the wet season, previously considered ABSTRACT / Fire occurrences and their sources were moni- unimportant episodes, were shown to be very frequent and tored in Emas National Park, Brazil (17°49Ј–18°28ЈS; 52°39Ј– probably represent the natural fire pattern in the region. Light- 53°10ЈW) from June 1995 to May 1999. The extent of burned ning fires should be regarded as ecologically beneficial, as area and weather conditions were registered. Forty-five fires they create natural barriers to the spread of winter fires. The were recorded and mapped on a GIS during this study. Four present fire management in the park is based on the burning fires occurred in the dry winter season (June–August; 7,942 of preventive firebreaks in the dry season and exclusion of any ha burned), all caused by humans; 10 fires occurred in the other fire. This policy does not take advantage of the beneficial seasonally transitional months (May and September) (33,386 effects of the natural fire regime and may in fact reduce biodi- ha burned); 31 fires occurred in the wet season, of which 30 versity. The results presented here stress the need for reevalu- were caused by lightning inside the park (29,326 ha burned), ating present policies and management procedures concern- and one started outside the park (866 ha burned). Wet season ing fire in cerrado conservation areas. There is a consensus that fire has been occurring in even be an important cause for fires; however, studies tropical savannas for thousands of years, shaping the to confirm or to reject this hypothesis do not exist.” landscape and selecting for adapted flora and fauna. It The cerrado biome is the second largest realm in has also been accepted that ancient fires were caused by Brazil, occupying over 1.8 million km2 on the Brazilian natural events, mostly lightning, but also by volcanic Central Plateau, at altitudes from 300 to 1,000 m above activity and friction between rocks. Nevertheless, after sea level (Ab’Saber 1971). Although patches of forest humans came to gather in social groups, they became and grassland forms appear in the cerrado landscape, it the main cause of wildfires, greatly increasing the fire is dominated by savanna forms, in a gradient from open frequency and changing fire regimes, from cool wet- grassy to woodland savannas. The more open the sa- season fires to more intense dry-season fires (Komarek vanna structure, the more fire prone it is. On the other hand, forest patches are not fire prone and only burn 1972, Edwards 1984, Coutinho 1990, Goldammer 1993, when fire is intense. Pyne 1993, Whelan 1995). The tropical humid climate in the cerrado region, However, the belief that almost all tropical fires at with a dry winter (3–6 months) and a wet summer, present are anthropogenic has not been adequately imposes a strong seasonality to the vegetation, espe- demonstrated. Lightning fire outbreaks are poorly doc- cially grasses, which dry out in the winter. At this time umented in tropical ecosystems, although there are of the year, cattle grazers used to burn cerrados to some records (Tutin and others 1996, Middleton and promote grass regrowth and to supply palatable forage others 1997). In Brazil, it was probably this lack of to cattle. Subsistence farmers also used to burn arable recorded fire strikes that led to the opinion that light- areas to prepare the land for cultivation in the wet ning fires are rare in cerrados, the Brazilian savannas. season. Therefore, cerrados managed in these ways As Soares (1994) states “in cerrados...lightning might (almost all, except the natural reserves) sustain little fuel to be burned by natural lightning fires in the next KEY WORDS: Wildfire; Lightning; Brazilian savanna; Cerrado; Fire man- wet season. agement; Emas National Park Hence, especially because of the management that humans apply to cerrados, the burning season runs *Author to whom correspondence should be addressed. from May to September, when the herbaceous vegeta- Environmental Management Vol. 26, No. 6, pp. 675–684 © 2000 Springer-Verlag New York Inc. 676 M. B. Ramos-Neto and V. R. Pivello tion is dry and more flammable, and fire spreads easily tool, for example, in the North American Yellowstone from farmlands to natural areas. Early fires in May–June and Everglades national parks and in the Australian are usually cool fires and burn the area patchily as the Kakadu and Uluru national parks, among many others vegetation still has high water content. As the dry sea- (Saxon 1984, Parsons and others 1986, Schullery 1989, son continues the curing status of the grass layer in- Australian National Parks and Wildlife Service 1991, creases and fire intensity also tends to increase. Fire Conroy and others 1997, Russel-Smith 1997). outbreaks peak by the end of the dry season (July– In Brazilian protected areas, where an antifire policy August) (Coutinho 1990, Pivello 1992, Mistry 1998). In prevails, the consequence has been the occurrence of the early wet season (September–October), fire occur- periodic and severe wildfires, when fuels accumulate rences decrease, although the vegetation is still able to and fire becomes inevitable, threatening animals and carry a fire (H. S. Miranda, personal communication). humans. In Emas National Park and Chapada dos Vea- Present-day discussion on the causes of wildland deiros National Park, for example, severe fires occur fires, a subject explored since the 1970s (Komarek every 3–4 years (Redford 1985, Pivello 1992, 1996, Piv- 1972, Edwards 1984), is not only a matter of conjecture; ello and Coutinho 1992, Franc¸a and Setzer 1997). Se- it may be important to management approaches and vere wildfires in Emas National Park occurred in 1975, policies for conservation areas. Yet, little concern given 1978, 1985, 1988, 1991, and 1994 and burned 74–93% to the natural fire dynamics in Brazil, and the miscon- of the 132,133 ha of the park, killing a number of ceptions about fire effects in natural environments led vertebrates (I.B.D.F. 1981, Redford 1985, Silveira and the governmental sectors responsible for nature con- others 1996, Franc¸a and Setzer 1997). Furthermore, servation to reject any fire in cerrado conservation ar- the critical problem of invasions of alien grasses in eas, either natural or prescribed. The environmental cerrados (Pivello et al. 1999a, 1999b) could, in some legislation, although very conservative, has permitted cases, be controlled by low-intensity prescribed fires the use of fire since 1989 for managing nature reserves (Pivello 1992, Pivello and Norton 1996). (Federal Decree No. 97635 from 10 April 1989) but, in The objective of this study is to demonstrate the fact, decision-makers in the governmental body rarely importance of lightning fires in the cerrados and to allow fire management in parks and reserves, even emphasize the need to consider the beneficial effects of though it can be a very useful and cheap management these fires in management strategies. It is also impor- tool. tant to stress that we are justifying the use of prescribed Several environmental benefits may be brought by fires to manage savannas, and not tropical forests, as fire in savannas, especially the stimulus to nutrient the functioning and dynamics of these ecosystems are recycling and to sprouting, fruiting, and seeding of totally different; as a rule, fire seriously damages trop- several plant species; it also increases the vigor and ical forests (see Nepstad and others 1999). palatability of a number of herbaceous species. Differ- ent fire regimes (fire type, frequency, intensity, and The Study Area season) may favor distinct groups of species or may consume more or less intensively the accumulated fuel Emas National Park is located in the core region of (Warming 1908, Coutinho 1980, 1982, 1990, Kruger the cerrado biome, the Brazilian savanna, in the SW of 1984, Christensen 1985, Pivello 1992, Pivello and Goia´s State, Central Brazil (17°49Ј–18°28ЈS and 52°39Ј– Coutinho 1992, 1996, Whelan 1995, Pivello and Norton 53°10ЈW) (Figure 1). It is the largest (132,133 ha) and 1996). Such fire outcomes may result in management most important protected cerrado area, because of its ends, as wildfire control, food supply to native fauna, diverse flora and fauna (I.B.D.F. 1981, Redford 1987). weed control, and the maintenance of biodiversity and In this park, cerrado fauna is abundant and easily ob- ecological processes (Pivello 1992, Pivello and served. Several threatened species, including the giant Coutinho 1996, Pivello and Norton 1996). armadillo (Priodontes maximus), giant anteater (Myrme- As fire consumes the fuel, burned patches may act as cophaga tridactyla), pampa cat (Felis colocolo) and puma firebreaks to unburned areas and management burn- (Felis concolor), still occur there (Redford 1983, ings can be used to avoid the spread of wildfires. Still, a Machado and others 1998). savanna landscape formed by a mosaic of unburned Regional climate is tropical and humid, with wet patches and patches burned at different time intervals summers and dry winters (June–August), typical of sa- is able to maintain a great variety of both sun-loving vannas (zonobiome II, according to Walter and Lieth) fire-prone species and those from woodland savanna.
Recommended publications
  • January — March Year 2017
    VOL 2 ISSUE 01 JANUARY — MARCH YEAR 2017 2016/17 DRY SEASON SUMMARY Dominica's dry season officially runs from December to May each year. The 2016 wet season, which prolonged into December resulting in a delay to the start of the 2016/17 dry season, was recorded as a normal season as it relates to rainfall amounts. A weak La Niña (the cooling of the Eastern Equatorial Pacific Ocean) was observed towards the end of 2016 and a transition to ENSO– neutral is expected during the period January to March 2017. La Niña tends to shift rainfall chances for January-February-March 2017 to above to normal in the southern-most is- lands of the Caribbean. With this occurrence, above to normal rainfall amounts are expected, resulting in less solar radiation and more cooling by clouds and more rainfall than last year. Temperatures are also expected to be closer to normal. IN THIS ISSUE Pg.1 2016/17 Dry-Season Dominica’s Climate Pg.2 Looking back at 2016 Pg.3 2016 Hurricane Season Looking ahead Pg.4 Seasonal Forecast Chart 1. Mid-December ENSO prediction plume DOMINICA’S CLIMATE Rainfall received during the dry season are usually generated by the annual migration of the North Atlantic Subtropical High, low level clouds which move with the easterly trade winds, southward dipping frontal boundaries and trough sys- tems. The dry season runs from December to May when the seas are cooler and thunderstorms and rainfall activity are relatively low. On average approximately 40% of the annual rainfall is recorded in elevated and eastern areas and ap- proximately 25% along the western coast.
    [Show full text]
  • Contribution of Tropical Cyclones to Precipitation Around Reclaimed Islands in the South China Sea
    water Article Contribution of Tropical Cyclones to Precipitation around Reclaimed Islands in the South China Sea Dongxu Yao 1,2, Xianfang Song 1,2,*, Lihu Yang 1,2,* and Ying Ma 1 1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (D.Y.); [email protected] (Y.M.) 2 Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] (X.S.); [email protected] (L.Y.); Tel.: +86-010-6488-9849 (X.S.); +86-010-6488-8266 (L.Y.) Received: 15 September 2020; Accepted: 2 November 2020; Published: 5 November 2020 Abstract: Tropical cyclones (TCs) play an important role in the precipitation of tropical oceans and islands. The temporal and spatial characteristics of precipitation have become more complex in recent years with climate change. Global warming tips the original water and energy balance in oceans and atmosphere, giving rise to extreme precipitation events. In this study, the monthly precipitation ratio method, spatial analysis, and correlation analysis were employed to detect variations in precipitation in the South China Sea (SCS). The results showed that the contribution of TCs was 5.9% to 10.1% in the rainy season and 7.9% to 16.8% in the dry season. The seven islands have the same annual variations in the precipitation contributed by TCs. An 800 km radius of interest was better for representing the contribution of TC-derived precipitation than a 500 km conventional radius around reclaimed islands in the SCS.
    [Show full text]
  • BIRDS of COLOMBIA - MP3 Sound Collection List of Recordings
    BIRDS OF COLOMBIA - MP3 sound collection List of recordings 0003 1 Tawny-breasted Tinamou 1 Song 0:07 Nothocercus julius (26/12/1993 , Podocarpus Cajanuma, Loja, Ecuador, 04.20S,79.10W) © Peter Boesman 0003 2 Tawny-breasted Tinamou 2 Song 0:23 Nothocercus julius (26/5/1996 06:30h, Páramo El Angel (Pacific slope), Carchi, Ecuador, 00.45N,78.03W) © Niels Krabbe 0003 3 Tawny-breasted Tinamou 3 Song () 0:30 Nothocercus julius (12/8/2006 14:45h, Betania area, Tachira, Venezuela, 07.29N,72.24W) © Nick Athanas. 0004 1 Highland Tinamou 1 Song 0:28 Nothocercus bonapartei (26/3/1995 07:15h, Rancho Grande area, Aragua, Venezuela, 10.21N,67.42W) © Peter Boesman 0004 2 Highland Tinamou 2 Song 0:23 Nothocercus bonapartei (10/3/2006 , Choroni road, Aragua, Venezuela, 10.22N,67.35W) © David Van den Schoor 0004 3 Highland Tinamou 3 Song 0:45 Nothocercus bonapartei (March 2009, Rancho Grande area, Aragua, Venezuela, 10.21N,67.42W) © Hans Matheve. 0004 4 Highland Tinamou 4 Song 0:40 Nothocercus bonapartei bonapartei. RNA Reinita Cielo Azul, San Vicente de Chucurí, Santander, Colombia, 1700m, 06:07h, 02-12-2007, N6.50'47" W73.22'30", song. also: Spotted Barbtail, Andean Emerald, Green Violetear © Nick Athanas. 0006 1 Gray Tinamou 1 Song 0:43 Tinamus tao (15/8/2007 18:30h, Nirgua area, San Felipe, Venezuela, 10.15N,68.30W) © Peter Boesman 0006 2 Gray Tinamou 2 Song 0:32 Tinamus tao (4/6/1995 06:15h, Palmichal area, Carabobo, Venezuela, 10.21N,68.12W) (background: Rufous-and-white Wren). © Peter Boesman 0006 3 Gray Tinamou 3 Song 0:04 Tinamus tao (1/2/2006 , Cerro Humo, Sucre, Venezuela, 10.41N,62.37W) © Mark Van Beirs.
    [Show full text]
  • Parques Nacionais
    National Parks Brazil BrasiParques Nacionails Brasil Parques Nacionais 2 3 4 5 National Parks Brazil BrasiParques Nacionails 6 7 O Brasil em sua imensidão abriga hoje 69 parques nacionais Brazil in its immensity today houses 69 national parks located situados nas cinco macro-regiões, protegendo no Norte áreas de in the five macro-regions, protecting the northern areas of florestas virgens e praticamente intocadas pelo homem, dunas e virgin forests – virtually untouched by man, dunes and rock pinturas rupestres no Nordeste, a exuberância de Mata Atlântica paintings in the Northeast, the exuberance of the Southeast no Sudeste, os Campos Gerais no Sul e uma flora e fauna do Atlantic Forest, Campos Gerais in the South and the exuberant exuberante do Cerrado no Centro-Oeste. Através desta publica- flora and fauna of the Cerrado in the Midwest. Through this ção a Localiza disponibiliza mais uma vez aos seus clientes e publication, Localiza makes available once more to its clients leitores a possibilidade de descoberta de exemplos bem suce- and readers the chance of discovering successful examples didos de manutenção da riqueza natural, legando às próximas of the maintenance of natural wealth, bequeathing to future gerações áreas de rara beleza. Juntas, elas compõem hoje um generations areas of outstanding beauty. Together they rico mosaico de preservação de nossa inigualável biodiversida- compose today a rich mosaic of conservation of our unique de, de nossa história e também nossa cultura. biodiversity, our history and our culture. Apoio Patrocínio Realização 8 9 Em 1876 o engenheiro abolicionista negro André Rebouças, foi precursor ao idealizar que o Brasil In 1876, the abolitionist engineer André Rebouças was a precursor when he idealized that Brazil destinasse parte de seu território para a criação de áreas protegidas com o intuito de salvaguardar would separate part of its territory to create protected areas with the intention to safeguard in a de forma sistemática, legal e organizada, aspectos importantes de nossos ecossistemas regionais.
    [Show full text]
  • The Cerrado-Pantanal Biodiversity Corridor in Brazil
    The Cerrado-Pantanal Biodiversity Corridor in Brazil Pantanal Program Mônica Harris, Erika Guimarães, George Camargo, Cláudia Arcângelo, Elaine Pinto Cerrado Program Ricardo Machado, Mario Barroso, Cristiano Nogueira CI in Brazil • Active since 1988. • Two Hotspots: Atlantic Forest and Cerrado • Three Wilderness Areas: Amazon, Pantanal and Caatinga • Marine Program Cerrado overview • 2,000,000 km2 Savannah • approximately 4,400 of its 10,000 plant species occur nowhere else in the world • 75% loss of the original vegetation cover • Waters from the Cerrado drain into the lower Pantanal Pantanal overview • A 140,000 km2 central floodplain surrounded by a highland belt of Cerrado • Home for at least: – 3,500 species of plants –300fishes –652 birds –102 mammals – 177 reptiles – 40 amphibians • Largest wetland in the world, with extremely high densities of several large vertebrate species The Cerrado – Pantanal Biodiversity Corridor – The Beginning: • Priority Setting Workshop for the Cerrado and the Pantanal (1998) • Partnership:CI, Ministry for the Environment, Funatura, Biodiversitas and UnB. • Priority areas were identified for biodiversity conservation by 250 specialists TheThe ResultsResults:: Priority Areas for the Conservation of the Cerrado and Pantanal Corredores de Biodiversidade Cerrado / Pantanal CorridorsCorridors Chapada dos Guimarães betweenbetween # # thethe CerradoCerrado # Unidade de conservação Pantanal Matogrossense andand thethe Áreas prioritárias Taquaril Emas Rios # Corredores propostos PantanalPantanal Pantanal Rio
    [Show full text]
  • IUCN Evaluation of Nominations of Natural and Mixed Properties to the World Heritage List
    WHC-01/CONF.207/INF.4 Convention Concerning the Protection of the World Cultural and Natural Heritage IUCN Evaluation of Nominations of Natural and Mixed Properties to the World Heritage List Report to the Extraordinary Bureau of the World Heritage Committee Twenty-fifth session 7 – 8 December 2001 – Helsinki, Finland Prepared by IUCN – The World Conservation Union 20 October 2001 Table of Contents 1. INTRODUCTION ............................................................................................................................................ii TECHNICAL EVALUATION REPORTS .............................................................. 1 B. Nominations of mixed properties to the World Heritage List ............................................................. 1 B.1. Palaearctic Realm................................................................................................................................. 1 Cultural Landscape of Fertö-Neusiedler Lake (Austria and Hungary) ................................................ 3 Central Sikhote – Alin (Russian Federation) ..................................................................................... 19 C. Nominations of natural properties to the World Heritage List......................................................... 37 C.2. Afrotropical Realm ............................................................................................................................ 96 Rift Valley Lake Reserves (Kenya) ..................................................................................................
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Description of the Ecoregions of the United States
    (iii) ~ Agrl~:::~~;~":,c ullur. Description of the ~:::;. Ecoregions of the ==-'Number 1391 United States •• .~ • /..';;\:?;;.. \ United State. (;lAn) Department of Description of the .~ Agriculture Forest Ecoregions of the Service October United States 1980 Compiled by Robert G. Bailey Formerly Regional geographer, Intermountain Region; currently geographer, Rocky Mountain Forest and Range Experiment Station Prepared in cooperation with U.S. Fish and Wildlife Service and originally published as an unnumbered publication by the Intermountain Region, USDA Forest Service, Ogden, Utah In April 1979, the Agency leaders of the Bureau of Land Manage­ ment, Forest Service, Fish and Wildlife Service, Geological Survey, and Soil Conservation Service endorsed the concept of a national classification system developed by the Resources Evaluation Tech­ niques Program at the Rocky Mountain Forest and Range Experiment Station, to be used for renewable resources evaluation. The classifica­ tion system consists of four components (vegetation, soil, landform, and water), a proposed procedure for integrating the components into ecological response units, and a programmed procedure for integrating the ecological response units into ecosystem associations. The classification system described here is the result of literature synthesis and limited field testing and evaluation. It presents one procedure for defining, describing, and displaying ecosystems with respect to geographical distribution. The system and others are undergoing rigorous evaluation to determine the most appropriate procedure for defining and describing ecosystem associations. Bailey, Robert G. 1980. Description of the ecoregions of the United States. U. S. Department of Agriculture, Miscellaneous Publication No. 1391, 77 pp. This publication briefly describes and illustrates the Nation's ecosystem regions as shown in the 1976 map, "Ecoregions of the United States." A copy of this map, described in the Introduction, can be found between the last page and the back cover of this publication.
    [Show full text]
  • Significant Tornado Drought”
    FLORIDA’S UNPRECEDENTED DRY SEASON “SIGNIFICANT TORNADO DROUGHT” Bart Hagemeyer, CCM National Weather Service Forecast Office Melbourne, Florida 1. INTRODUCTION The author has been researching Florida tornadoes since 1989 and documented every known tornado death in Florida history; totaling 207 since the first recorded death in 1882. Significant tornadoes, those of Enhanced Fujita Scale (EF) 2 and greater (WSEC, 2006), are most likely to cause fatalities and serious injuries. They typically occur in Florida under two distinct synoptic scenarios (Hagemeyer, 1997): 1) in the warm sector of extratropical cyclones (ET) associated with a strong jet stream during the dry season (November through April) when strong shear and instability combine to produce supercell thunderstorms; and 2) in outer rainbands in the right front quadrant of tropical or hybrid cyclones in the Gulf of Mexico or northwest Caribbean Sea, during the hurricane season, where very strong low-level shear and convergence can produce rotating storms and at times supercell thunderstorms. Tornadoes up to EF4 and EF3 strength have occurred in the extratropical and tropical scenarios respectively. 160 tornado deaths have been associated with extratropical cyclones and 38 deaths with tropical/hybrid cyclones. Outside of these two organized tropical and extratropical cyclone scenarios, significant tornadoes and tornado deaths in Florida are extremely rare. During the wet season from May to October only 9 other tornado deaths have occurred in the history of Florida that were not associated with a tropical/hybrid system. The fatalities with these rare, weaker tornado deaths were typically a result of people caught in highly vulnerable locations such as small boats and campers.
    [Show full text]
  • Check List Lists of Species Check List 12(6): 1988, 12 November 2016 Doi: ISSN 1809-127X © 2016 Check List and Authors
    12 6 1988 the journal of biodiversity data 12 November 2016 Check List LISTS OF SPECIES Check List 12(6): 1988, 12 November 2016 doi: http://dx.doi.org/10.15560/12.6.1988 ISSN 1809-127X © 2016 Check List and Authors Arctiini Leach, [1815] (Lepidoptera, Erebidae, Arctiinae) of the Brazilian Amazon. II — Subtribe Pericopina Walker, [1865] José A. Teston1* and Viviane G. Ferro2 1 Universidade Federal do Oeste do Pará, Programa de Pós-Graduação em Recursos Naturais da Amazônia and Instituto de Ciências da Educação, Laboratório de Estudos de Lepidópteros Neotropicais. Rua Vera Paz s/n, CEP 68040-255, Santarém, PA, Brazil 2 Universidade Federal de Goiás, Instituto de Ciências Biológicas, Departamento de Ecologia. Caixa Postal 131, CEP 74001-970, Goiânia, GO, Brazil * Corresponding author. E-mail: [email protected] Abstract: This study aims to identify and record collections and also use data from literature. This specimens of the lepidopteran tribe Arctiini from the work, a continuation of Teston and Ferro (2016), aims Brazilian Amazon, as well as update the previous lists to increase knowledge of the diversity of Arctiinae of this tribe, based on specimens from collections and subfamily in the Amazon region. a literature review. Sixty-two species of Pericopina were recorded, of which six are newly recorded from the MATERIALS AND METHODS Brazilian Amazon. We made intensive literature searches and exami- ned the entomological collections of the Instituto Key words: Amazon; day-flying moths; inventory; Nacional de Pesquisas na Amazônia (INPA; Manaus), Noctuoidea; tiger moths Museu Paraense Emilio Goeldi (MPEG; Belém), Coleção Becker (VOB; Camacan), Coleção Entomológica Padre Jesus Santiago Moure of the Universidade Federal do INTRODUCTION Paraná (DZUP; Curitiba), Fundação Instituto Oswaldo There are approximately 6,000 species of Arctiinae Cruz (FIOC; Rio de Janeiro), Museu de Zoologia of the moths in the Neotropical Region (Heppner 1991).
    [Show full text]
  • 19 Annual Meeting of the Society for Conservation Biology BOOK of ABSTRACTS
    19th Annual Meeting of the Society for Conservation Biology BOOK OF ABSTRACTS Universidade de Brasília Universidade de Brasília Brasília, DF, Brazil 15th -19th July 2005 Universidade de Brasília, Brazil, July 2005 Local Organizing Committees EXECUTIVE COMMITTEE SPECIAL EVENTS COMMITTEE Miguel Ângelo Marini, Chair (OPENING, ALUMNI/250TH/BANQUET) Zoology Department, Universidade de Brasília, Brazil Danielle Cavagnolle Mota (Brazil), Chair Jader Soares Marinho Filho Regina Macedo Zoology Department, Universidade de Brasília, Brazil Fiona Nagle (Topic Area Networking Lunch) Regina Helena Ferraz Macedo Camilla Bastianon (Brazil) Zoology Department, Universidade de Brasília, Brazil John Du Vall Hay Ecology Department, Universidade de Brasília, Brazil WEB SITE COMMITTEE Isabella Gontijo de Sá (Brazil) Delchi Bruce Glória PLENARY, SYMPOSIUM, WORKSHOP AND Rafael Cerqueira ORGANIZED DISCUSSION COMMITTEE Miguel Marini, Chair Jader Marinho PROGRAM LOGISTICS COMMITTEE Regina Macedo Paulo César Motta (Brazil), Chair John Hay Danielle Cavagnolle Mota Jon Paul Rodriguez Isabella de Sá Instituto Venezolano de Investigaciones Científicas (IVIC), Venezuela Javier Simonetti PROGRAM AND ABSTRACTS COMMITTEE Departamento de Ciencias Ecológicas, Facultad de Cien- cias, Universidad de Chile, Chile Reginaldo Constantino (Brazil), Chair Gustavo Fonseca Débora Goedert Conservation International, USA and Universidade Federal de Minas Gerais, Brazil Eleanor Sterling SHORT-COURSES COMMITTEE American Museum of Natural History, USA Guarino Rinaldi Colli (Brazil), Chair
    [Show full text]
  • Standardized Drought Indices for Pre-Summer Drought Assessment in Tropical Areas
    atmosphere Article Standardized Drought Indices for Pre-Summer Drought Assessment in Tropical Areas David Romero 1,* , Eric Alfaro 2, Roger Orellana 3 and Maria-Engracia Hernandez Cerda 4 1 Escuela Nacional de Estudios Superiores, Unidad Mérida, Universidad Nacional Autónoma de México, Ucu 97357, Mexico 2 Escuela de Física, Centro de Investigaciones Geofísicas y Centro de Investigación en Ciencias del Mar y Limnología, Ciudad Universitaria Rodrigo Facio, Universidad de Costa Rica, San Jose 11501-2060, Costa Rica; [email protected] 3 Centro de Investigación Científica de Yucatán, Merida 97205, Mexico; [email protected] 4 Instituto de Geografía, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-9992-07-4946 Received: 17 September 2020; Accepted: 4 November 2020; Published: 9 November 2020 Abstract: The main climatic indices used for the determination of pre-summer drought severity were developed for temperate zones with very different climatic conditions from those found in the tropical climate zones, particularly with respect to seasonal rainfall variations. The temporal evolution of pre-summer drought leads the authors to compute the indices for each year over a defined period according to the climatic normals of each meteorological station and to consider the months inside the dry episode differently, according to the law of emptying the water reserves. As a function of this, standardized drought indices are proposed for the evaluation of the pre-summer drought in tropical zone. Two new indices were tested: one developed from precipitation and the other also considering temperature. These indices were validated by correlation with Advanced very-high-resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) time series and used to identify the most severe drought conditions in the Yucatan Peninsula.
    [Show full text]