9ęඈඋ1࣏ۘऺ: Chinese Journal of Tissue Research www.CRTER.org

 ऺƣጛۘ Arigin 3D Proḳâ^MimicsḳâYමₑņµƧՈஂòۘऺ  ŵʾ¿1 ŬŠ;2  ☢1 Ả ᅭ3 ǜºṍ2 (1ʮaȁî͸ŲƜΡ~½KŲàŲƜď 215021Z2ŲƜāƟΧĴu˳ɼśK ŲàŲƜď 215021Z3ʮaȁî͸·̨ƅïˊȌɵiˋνƗļôκđK£ʮàʮaď 710049)+ DOI:10.3969/j.issn.2095-4344.0729 ORCID: 0000-0002-8359-6094(ŵʾ¿)

তȷợⓉᪿ ˁͬK˃K1993 ˝ÛK Arigin 3D Pro ḳâʐ ḳâńĿƚĚʻYමₑņ̠ˊՈஂܲò žʮàAƍďNKÝŸœ þΡ~ÛKƶϙÎā͸ ȕ̆¡ŨǒɻĝΡ~" ඗᩾

(1)Arigin 3D Pro ḳ â ^ ȁ·ȔŀYƅιKʮa Mimics ḳâ 3D ₑȀµƧՈ ȁî͸·̨ƅïˊȌɵi òּƟ ˋνƗļôκđK£ʮàஂ (2)ȭzཡ࿓µƧ໐ᣄ Arigin ʮaď 710049 3D Pro ḳâՈₑņrⒸŠº

Ąz Mimics ḳâ4 Ě ିǻ:R318 B:ۅDzʃ᪊ ɘ4ěY2018-01-09 L₎5 ĿƚĚʻYමₑņՈĄÃּṇzxම)ɶĚʻ ĿƚĚʻYමₑņdzńYමाⒸͱº߾҉̢ĽǍǎɬĐඈ

උाⒸĹา͟ி ẟ໐ṉ­ĿϣஂܲȷợŌẟᜐƫQ᪎) ὃ̹᪳᪎4 Arigin 3D Pro«Z#‘ɑĿћäƫƅ└͘ǼႮ'ۘǕՈȖz 3D ·ŴՈĿƚₑȀḳâிඣ dzǒɴĿƚĚʻ

ɜ3ཐཌྷ3ղཨ3ȏ࿓3ཡ࿓3ₕʒΉ͑ĭ਍ՈYමₑņ Âdz^͊ĚՈ 3D ·Ŵƶ\෡Ảȉ ֲQ>t v5☦ Arigin 3D Pro ḳâͣƅưĽĄÃ4 Đ਍:ǻՈ Öǎ࢕ۘۘऺ4ńཡ࿓ àϬzɜ࢕3£

ʼᡅ

☦ë╓؄Ŀƚtʻäƫ])ȴʌ ¦ĿᢧZ඗ȀՈdzᢊĚۘऺǣ4ẟPǹǕʉ YමₑņäƫńĿћ5ྐ '«ẕƛęͱႮ ՈňϬKỔ¼Ϥº4Mimics «ֲQàϬż&ËͯՈĿƚĚʻYමₑņḳâ Arigin 3D Pro

ǕՈPǒȖz 3D ·ŴՈĿƚₑȀḳâிඣ4ۘ ՈȆᩬ Arigin 3D Pro ḳâʐ Mimics ḳâńĿƚĚʻYමₑņ̠ˊՈஂܲò4ֲ

5ͩọǚཡ࿓3࿎ɭ3ၡ͟ᅆ3ȏ࿓ᾬĹՈĚʻϔǒ Ñ Mimics ḳâₑȀȒՈ 3D µƧ&Ɖǒ ẟᜐǒ Ȍọǚ 10 ŷ͐9ᾬĹǎ 1 ŷཥɜ୍ݒɳɜüՈĚʻϔǒ ẟᜐYමₑņ ȭɣₑ ḳâₑȀµƧՈȻ:

ņµƧţẟᜐ 10 ඈĽǍɮȬՈϟₓ ᪈ĜǒḳâₑȀµƧĽǍɮȬՈ:Ŏ4 ඗Ș^඗᩾Arigin 3D Pro ʐ Mimics ḳâȭཡ࿓3࿎ɭ3ၡ͟ᅆ3ȏ࿓ՈYමₑņµƧ Ȼ:ՈţȨ±ʃβ

: /&(0.93±1.05) (0.36±0.74) (0.45±0.74)ǎ(0.18±0.41) mm4Arigin 3D Pro ʐ Mimics ḳâₑņཡ࿓ /& 3 min335 min ǒḳâₑņ͢µƧՈrⒸţɃz 1 min4ȭz͐93ཥɜ୍ݒɳɜü µƧՈrⒸ Ո 3D ₑȀµƧ ǒḳâ Arigin 3D Pro ḳâ^ Mimics :Ŏ\ඣᩥƚ͛5(P ţ> 0.05)4᪸Š Arigin 3D Pro

ḳâ^ Mimics ḳâ 3D ₑȀµƧՈஂòּƟ ȭzཡ࿓µƧ໐ᣄ Arigin 3D Pro ḳâՈₑņrⒸŠºĄz

Mimics ḳâ4 ͟⏲᪑ Arigin 3D ProMimicsYමₑņĿƚĚʻஂòȻ: Ȍɜ࢕Ή͑ĭ 'L᪑ tʻ Yමᩥਜ਼ƶµŃඈඋ1࣏

Ȗₕᰈ­ (ᆓׅႮϢȖₕ☦Z-ֲ(BK20151251˳

Accuracy of three-dimensional reconstruction models using Arigin 3D Pro and Mimics software programs Cao Gui-ping, Master Candidate, Suzhou Academy, Xi'an Jiaotong 1 2 1 3 2 1 Cao Gui-ping , Zhang Ming-jiao , Liu Fei , Lian Qin , Xu Xian-hui ( Suzhou Academy, Xi'an Jiaotong University, University, Suzhou 215021, 2 Suzhou 215021, Jiangsu Province, China; Suzhou Arigin Medical Co., Ltd., Suzhou 215021, Jiangsu Province, Jiangsu Province, China 3 China; Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China) Corresponding author: Lian Qin, Laboratory for Abstract Manufacturing System Engineering, Xi'an Jiaotong BACKGROUND: With the improvement of technology, the of human has University, Xi'an 710049, been further developed; the role of three-dimensional (3D) reconstruction in medical treatment is also becoming Shaanxi Province, China increasingly prominent. Mimics is the most widely used medical image reconstruction software. Arigin 3D Pro is a

2384 তේǻ:2095-4344(2018)15-02384-06 Cao GP, Zhang MJ, Liu F, Lian Q, Xu XH. Accuracy of three-dimensional reconstruction models using Arigin 3D Pro and Mimics software programs. Zhongguo Zuzhi Gongcheng Yanjiu. 2018;22(15):2384-2389. DOI:10.3969/j.issn.2095-4344.0729 recently developed 3D reconstructed medical software system based on . OBJECTIVE: To study the accuracy of 3D reconstruction models obtained by using Arigin 3D Pro and Mimics with medical images. METHODS: The image data of liver, spine, knee joint and heart were selected, and the deviations of two software reconstruction models were analyzed based on the 3D model reconstructed by Mimics. Totally 10 cases of skull and 1 case of femoral comminuted fracture image data were selected and reconstructed. Each reconstruction model was measured with 10 groups of feature sizes to evaluate the differences between the two software programs. RESULTS AND CONCLUSION: Arigin 3D Pro and Mimics were used to reconstruct the liver, spine, knee and heart data. The mean ± standard deviation of model deviations were (0.93 ± 1.05), (0.36 ± 0.74), (0.45 ± 0.74), (0.18 ± 0.41) mm. It took 3 minutes and 35 minutes for Arigin 3D Pro and Mimics to reconstruct the liver model respectively, and both software reconstructed other models for less than 1 minute. There was no statistically significant difference between the feature sizes of the two software for the 3D reconstruction models of skull and femoral comminuted fracture data (P > 0.05). The 3D reconstruction model of Arigin 3D Pro is comparable to that of Mimics. For the liver model, the reconstructed time of Arigin 3D Pro is significantly shorter than that of Mimics. Subject headings: Imaging, Three-Dimensional; ; Tissue Engineering Funding: the Natural Science Foundation of Jiangsu Province, No. BK20151251

0 šᣄ Introduction 1.00 mm)ᾬĹՈĿƚĚʻϔǒȈ1ŷọǚ10ŷ3545ʵ\ ؄ᩥਜ਼ƶĚƮƚʐĚʻ̠ˊäƫՈǕʉ ĿƚĚʻ 9࿕҂҉ՈɑătÀϻɳ ₋Ϭ64ǶᙾGCTƶ(ᡃ⒬Ƅ╓ YමₑņäƫdzȺÏȳǣ4Ո)ɶxමĚʻÛₑņtY ȃę)ÏȳՈ¿ᵾĹϔǒ(ɶƞ1.00 mm)ọǚ1ŷ28ʵཥɜ මĚʻ ÂǒɴএĿᢊĚՈdzᢊĚ4ּṇzxම)ɶĚʻ ୍ݒɳɜüՈϻɳ˯້ ₋ϬȐ࢑᪂̣ÏȳՈ¿ᵾĹϔǒ ĿƚĚʻYමₑņdzńYමाⒸͱº߾҉̢ĽǍǎɬĐඈ (Û͝471Ŭ ɶƞ1.25 mm)4 උाⒸĹา͟ி ẟ໐ṉ­ĿϣஂܲȷợŌẟᜐƫQ᪎) 1.4 pΛŀˇ̵Ƃ ƨ₋ϬՈĿƚĚʻYමₑņḳ ὃ̹᪳᪎[1]4Ǹ̲ Ŀϣdz-ϬₑȀḳâȭYමµƧẟᜐ âƅǒ /&Arigin 3D Pro V4.0ḳâ(Z#‘ɑĿћ GḰ3¿ࢿ3෭΢3ϟₓ਍̱ň Ởẋ̶ᢖòᢆȓǎϟₓ ę)3Mimics V13.0ḳâ(Materialise͘Ǽ ɨ-r)4 Ȍ dzۤ࢕ƚ3βܲՈẟᜐ҉̑᪎)ǎ¯ƫ5˄:ǎ[2-3]4 ¤5ǎՈĿƚĚʻₑȀ3ϔǒϟₓǎ Ȍ਍ ţńȐPǴ ẕÀǡ ƻ๒ǕẂęǪń3D·Ŵ:ǻȖƨȋ:rĿƚ Ϲ࿕Zẟᜐ̱ň ᪩Ϲ࿕‑าΞ[̱ňḳâ& ƽʻ̠ˊYමņµḳâՈۘǕ Ξɨ-rMaterialise͘Ǽ 64Ĺ CPU&Intel i5-4590 ƽញͱƌ(RAM)&8 GB º Ō Ǖ Ո Mimics(Materialise's interactive medical image ť&NVIDIA GeForce GTX 1060 ܰ֜ाⒸ&1 TB4 control system) ḳ â [4-5] 3 ᆵ ę Simpleware ͘ Ǽ Ո 1.5 ǒƽ ඈ5ͩ ȺZẴቻǣՈཡ࿓3ȏ࿓3ၡ͟ᅆ3࿎ Simplewareḳâ[6-7]3๒ęFEI͘ǼՈAmiraḳâ਍[8-9]4ּ 1.5.1 ɨṇ ęͱ>ƅę࢕ƚ┦Ⴎ¬Ěۘऺ¤ϴǛνǬþⓣŌ ɭᾬĹՈĿƚϔǒň&ǒɀP Ⱥ10ŷ͐9ϔǒ31ŷཥ Ȍிඣ3DMed(3D Medical ɜ୍ݒɳɜüϔǒň&ǒɀx4 ǕՈYමĿƚƽʻ̠ˊ^ Image Processing and Analyzing System)਍[10-12]4ZẴό 1.5.2 YමĚʻₑņ5ͩ ǒḳâţdzȺxමĿƚĚʻỞẋYම☦ග:ϣtdzϬz ǒɀP /Ⱥ࿎ɭ3ၡ͟ᅆ3ȏ࿓ᾬĹՈDICOMϔ v5 3D·ŴՈSTLʸśµƧ ֲQ>àϬzɜ࢕3@☦̲࢕3 ǒȰ͑Mimicsḳâ ϣtƣϧ፝ǻĚʻ ₋ϬⓌȨ ȏᜄ੥਍ۘऺ:ǻ ͢ MimicsḳâՈàϬż&Ëͯ4 ͩẟᜐµƧ3DₑȀ ࿎ɭĚʻⓌȨọō1501 368 ၡ͟ ẕƛ ‘ɑĿћȌϦrႮ'ۘǕՈȖz3D·ŴՈĿƚₑȀ ᅆĚʻⓌȨọō2261 765 ȏ࿓ĚʻⓌȨọō1809034 ḳâிඣArigin 3D Pro KǷỔǹŤ:ęͱĿћNŖ  Ⱥཡ࿓ᾬĹՈDICOMϔǒȰ͑Mimicsḳâ ₋ϬⓌȨ ቻǣrϬ›Ոʌòᩨdz[13]4তÑཡ࿓3ȏ࿓3ၡ͟ᅆ3 v3ľǻʺ⑃3¬ɍľǻʺ⑃3ේṕ፝ǻ3̶ɶේṕ਍̶ ᩨₑņڌv4żȒ ọϬ ࿎ɭ3͐93ཥɜᾬĹՈĚʻϔǒ&Ɖǒ ẟᜐµƧ3Dₑ ࢑£࿁ ẟᜐཡ࿓ϔǒՈĚʻ Ȁ dńȆᩬArigin 3D ProḳâʐMimicsḳâńĿƚĚʻ µś8Custom9 ȭZẴµƧẟᜐYමₑņ ቻǣȈ3Dₑ Yමₑņ̠ˊՈஂܲò4 ȀµƧ ÂÑstlʸśljƌ4 Ȑˊ /Ⱥ࿎ɭ3ၡ͟ᅆ3ȏ࿓ᾬĹՈDICOMϔǒ 1ȭᬥʐ5ͩSubjects and methods Ȱ͑Arigin 3D Proḳâ ϣtƣϧ፝ǻĚʻ ọǚZẴȭ v5ͩȭ࿎ɭ3ၡ͟ᅆ3 Éα ʳƨᢆȓ᪙ɀ4 àּȐՈⓌȨľⒸ ₋ϬⓌȨ 1.1 ᩨ ₑ ņ µ ś ڌ / ẟ ᜐ µ Ƨ 3D ₑ Ȁ ọ Ϭ ðϏΛıļ z2016À8ƄႷ2017À9ƄńᡃƽỞ ȏ ࿓ 1.2 ƚᆓ*ۘऺ┦ǀt4 8Recommend9 ẟᜐYමₑņ ÂÑstlʸśljƌ4Ⱥཡ̓ 1.3 Ƌ̈ 2016À8ƄႷ2017À9Ƅ ńᡃƽỞ̓ƚᆓ ࿓ᾬĹՈDICOMϔǒȰ͑Arigin 3D Proḳâ ūϬཡ࿓ņ v3 ऺ┦ȌňĿ┦Ոƽʻ࢕ϔǒிඣ ọǚ₋Ϭ64Ƕᙾ µ£࿁ ỔƵẟᜐQëʃᩴ3ྐëʃᩴ ǀtĚʻ8ۘ* GCTƶ(ᡃ⒬Ƅ ȃę)ÏȳቻǣՈཡ࿓(Û͝301Ŭ ɶ ཡ࿓ v4ọϬ8Recommend9ₑņµś ẟᜐYමₑ ƞ1.25 mm)3ȏ࿓(Û͝259Ŭ ɶƞ1.00 mm)3ၡ͟ᅆ ņ ቻǣ3DₑȀµƧ ÂÑstlʸśljƌ4 (Û͝501Ŭ ɶƞ1.00 mm)3࿎ɭ(Û͝311Ŭ ɶƞ ₋Ϭ3-maticḳâV12.0(Materialise͘Ǽ ɨ-r)ḳ

P.O. Box 10002, Shenyang 110180 www.CRTER.org 2385 .[☢ Ảᅭ ǜºṍ. Arigin 3D Pro ḳâ^ Mimics ḳâYමₑņµƧՈஂòۘऺ[J ŵʾ¿ ŬŠ; ęඈඋ1࣏ۘऺ 2018 22(15):2384-2389. DOI:10.3969/j.issn.2095-4344.0729

â ÑMimicsḳâₑȀȒՈ3DµƧ&Ɖǒ ẟᜐǒḳâ 2඗ȘResults ₑȀµƧՈȻ: Ȍ ɉЩµƧȻ:ľⒸ☤ẕ঳Ոṽ 2.1 ôκBˌ ₋ϬArigin 3D ProʐMimicsḳâ / Аᾬ ǚµƧȻ:ľⒸ90%ՈⒸľǻ ඗ȘΞĚ1¤߾4 ȭཡ࿓3࿎ɭ3ၡ͟ᅆ3ȏ࿓ᾬĹϔǒẟᜐYමₑņ ͢ Ě1¤߾ՈµƧ &ǒḳâₑȀ4࢑]ȐඈඋȒՈₑǤ  Arigin 3D ProʐMimicsḳâₑņཡ࿓µƧՈrⒸ / Ěʻ4 &3 min335 min ǒḳâₑņ͢µƧՈrⒸţɃz /Ȱ͑ 1 min4ZẴₑņrⒸ&ႮµƧt£Ȱ͑ḳâȒŌϧᩥਜ਼ ǒɀxȺཥɜ୍ݒɳɜüՈDICOMϔǒ ᩨՈⓌȨǎ Ⴗ3DµƧႮ¬ǀtņµ&Ƕ ŷZẴrⒸĉŐḳâ̱ňrڌ4Arigin 3D ProʐMimicsḳâ ₋Ϭḳâ ₑņµś ẟᜐµƧYමₑņ ቻǣ3DµƧ(Ě2)4ǎ5 ⒸǎYමႮ¬ņµrⒸ ]ĉŐµƧȰ͑rⒸ4ϵĚ13ᜬ Arigin 3D ProʐMimicsḳâȭ کȌ඗Șdz µƧ͟⏲ĽǍͥ ΞĚ3A¤߾ẢȉּàĽǍͥ ቻǣ 3¤߾ՈȻ: 3DµƧ10ඈ͟⏲ĽǍɮȬ(ĽǍɮȬՈǎ5Ξᜬ1¤߾) ཡ࿓3࿎ɭ3ၡ͟ᅆ3ȏ࿓ϔǒẟᜐYමₑņ µƧȻ: żȒ-ϬǒḳâȈႮՈYමϟₓ£࿁ ẟᜐ10ඈĽǍɮ ՈţȨ±ʃβ: /&(0.93±1.05) (0.36±0.74) (0.45± ȬՈϟₓ4ɣඈĽǍɮȬ /ϵȐP̱ň້dž+Ě3A¤ 0.74) (0.18±0.41) mm µƧₑȌɋ /&99.26% ߾ՈĽǍͥĹา ẟᜐ5Ƶϟₓ ̱ň້ɣƵẟᜐ10ඈĽ 99.89% 99.91% 99.85%4 ǍɮȬՈ͔ᾬϟₓȒ ͹ẟᜐ[PƵ10ඈĽǍɮȬՈϟ 2.2 ôκƵBˌ ₋ϬArigin 3D ProʐMimicsḳâₑņ ₓ4ৰ2Ƶϟₓr ū͢ৰ1ƵϟₓՈϔǒ඗Ș]dzᢅৰ ཥɜµƧ3͐ɜµƧ  /ẟᜐ10ඈĽǍɮȬՈϟₓ Arigin 3D ProḳâₑȀµƧՈ ک3Ƶϟₓr ū͢ৰ1 2ƵϟₓՈϔǒ඗Ș]dzᢅৰ4 ϵᜬ4 5Ոඣᩥ඗Șdz Ƶϟₓr ū͢ৰ13ƵϟₓՈϔǒ඗Ș]dzᢅৰ5Ƶ 10ඈĽǍɮȬ^MimicsՈ:Ŏ\ඣᩥƚ͛5(Pţ> 0.05)4 ϟₓr ū͢ৰ14ƵϟₓՈϔǒ඗Ș]dzᢅ Ñlj᪅ϟ ₓϔǒՈβܲɳ ɱₓλɃϟₓ້'ᢆü௤Ոƽˑ4żȒ 3ᩬ᩾Discussion ΧĴĝƷĚ˫Ǒ ֲQ CT3MRI ɣඈĽǍɮȬȨՈ5ƵϟₓȨ ƿǭPż̓Ȩ3ƿǭP 3.1 ͸ȕ̆€ɣƗ żɃȨ ǚm[3ƵϟₓȨՈ¿ţȨ ň&10ඈĽǍɮ ਍)ɶÏȳĚʻ>t&Ŀƚ᪎)ՈₑᡅƉǒ IJĿϣ±º ȬȨ(ΞĚ3B¤߾)4 PிՈxමĚʻǔ▂̿ᬥ҉ǜඈඋՈYම඗Ȁ ẝȭĿ /Ⱥ10ŷ͐9ᾬĹՈDICOMϔǒȰ͑4Arigin 3D ϣՈाⒸ̿ᬥ࿁Ÿʐ Öඓɀƅṇʌᡅ˖[1 14]Ǹ̲ ϵ ᩨՈⓌȨǎₑņµś zĿƚĚʻՈµஎɳ Ěʻ҉̢Ոṽො3ĴᢖǎľǻⒸڌProʐMimicsḳâ ₋Ϭḳâ ẟᜐµƧYමₑņ ቻǣ3DµƧ4ǎ5µƧ͟⏲ĽǍͥ Ո͟ி῁▂ÑஂܲȳẴ ºጛʺ¤r᪎)ʐ͏ћՈ▂ò[15]4 ΞĚ4A¤߾ẢȉּàĽǍͥ ቻǣ3DµƧ10ඈ͟⏲Ľ Ǹr ĿƚĚʻYමₑņäƫàẔ໐ϣ ÂűᜩrĚʻx ǍɮȬ(ĽǍɮȬՈǎ5Ξᜬ2¤߾) żȒ-ϬǒḳâȈ මाⒸº߾Ո]ᱷ &Ŀϣ᪎)ȴƇ࢕ƚβܲՈƉǒ4 ႮՈYමϟₓ£࿁ ẟᜐ10ඈĽǍɮȬՈϟₓ4ϔǒϟₓ 2001À ᡃƽỞ̓ƚNJPɌνǬ਍ŌʉrȭĿƚĚʻY ZẴཥɜ୍ݒɳɜü˄ŷՈϟₓ5ͩPႸ ɣඈĽ මₑņäƫՈȆ௦ ÂȴϦₑņȒՈYමǒĿµƧńɜ࢕3^5ͩ ǍɮȬ /ϵȐP̱ň້dž+Ě4A¤߾ՈĽǍͥĹา ẟ ǧဘ@☦̲࢕਍ϣĭ:Ụ:ǻƅṇΙՈàϬQë[16-17]4 ᜐ5Ƶϟₓ ̱ň້ɣƵẟᜐ10ඈĽǍɮȬՈ͔ᾬϟₓȒ 2007À ីęDzνǬ[18]ɋ̴ȴϦr8ϔƋɜ࢕ƚ9ՈɁ ͹ẟᜐ[PƵ10ඈĽǍɮȬՈϟₓ4ɣƵϟₓr͢7QՈ ÂūϦĿƚYමₑņ«ǒɴxම4Yම3¿☦4এĿ3☝ 4ּණŌ ęͱ̲cǪƚ້ȭYමₑ܄ϟₓϔǒ඗Ș]dzᢅ Ñlj᪅ϟₓϔǒՈβܲɳ ɱₓλ ɍ4¬ɍՈäƫȖ Ƀϟₓ້'ᢆü௤Ոƽˑ4żȒ ɣඈĽǍɮȬȨՈ5Ƶϟ ņäƫẟᜐr͑Ȇ௦ ÂȺ͢t£àϬzɜ࢕3@☦̲ ₓȨ ƿǭPż̓Ȩ3ƿǭPżɃȨ ǚm[3Ƶϟₓ ࢕3ϘƮ̲࢕3ࠢඓ̲࢕3ǧဘ࢕3Ẕ¬Ŀƚ࢕਍[19-23]4 ȨՈ¿ţȨ ň&10ඈĽǍɮȬȨ(ΞĚ4B¤߾)4 ╓؄3D·ŴäƫՈǕʉ ńɳĚĿћ ĿϣdzỞ 1.6 ƶϙʬ+ŷ/ ǒɀPᢆȓ-ϬǒḳâYමₑ ẋ3D·Ŵ^ĿƚYමₑņäƫՈ඗ȌẟᜐƫQ᪎)ʐµ ņȒՈּȭàՈYමµƧ ńȻ:ľⒸ&90%ՈⒸľǻ Ń Âȭ˯້ՈǃĐᾬĹẟᜐₓᵯǎ:4-Ϭ3D·Ŵäƫ ͱ ż̓Ȼ:ȨʐżɃȻ:ȨՈ̓Ƀ ǒɀxᢆȓ-Ϭ ȀņՈ˯້ᢧZµƧ3¯ƫ„̬µƧʐΉ͑ĭµƧ(Ξₕʒ ‡ǒḳâYමₑņȒՈཥɜ୍ݒɳɜüµƧ10ඈĽǍɮȬ LJų3¦1ΊĿ3ɜ֊ₑņȳĿ਍) ̲࢕ĿϣdzÑȭP ՈȨ Ñǎ͐ɜµƧ10ඈĽǍɮȬՈȨ4 ̩ƾՈ¯ƫẟᜐƫQᢈʐ̱ňඇL[24]4̩ƾ¯ƫՈƫQ 1.7 Ȍα͸ǫʭ ₋ϬSPSS 17.0ඣᩥḳâ(SPSS͘Ǽ ᪈Ĝǎ Ƨ«ọō¯ƫ5˄ՈȖ܄ ČඣՈƽʻƚᰈ▂ Ȍ4₋ϬArigin 3D Proḳâʐ Ñָᢆrᢧɜü̑Ρ43D·ŴäƫʵǒYමₑņȒՈµƧ ๒ę)ẟᜐඣᩥƚϔǒ MimicsḳâϟₓՈཥɜ୍ݒɳɜü˄ŷ10ඈĽǍɮȬ3͐ ϔǒ ָȉ3ஂܲŌ·ŴϦ¯ƫľǻᢧZ඗ȀՈYමǒĿ _ ɜ˄ŷ10ඈĽǍɮȬ ͢ϔȨϬx±sᜬ߾ ǒḳâϟₓ µƧ dzœ­ĿTɆϦŰβܲՈƫQ᪈Ĝ3 Ƨʐ᪎) ϔȨՈɨṇ₋Ϭtඈ᪂ᩥᰈt ̼ɀ ̼ɀˈβαȨǚǐƓ :ǎŰ᪪ඊՈ¯ƫ5˄ ÂńµƧZẟᜐ̱ňǀඇ º໐ ƫrⒸ ȴʌ¯ƫՈt£ɋ[25]4Ǹ̲ ϣĭ3D·Ŵ¯ڱ෭ 0.054

2386 ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH Cao GP, Zhang MJ, Liu F, Lian Q, Xu XH. Accuracy of three-dimensional reconstruction models using Arigin 3D Pro and Mimics software programs. Zhongguo Zuzhi Gongcheng Yanjiu. 2018;22(15):2384-2389. DOI:10.3969/j.issn.2095-4344.0729

A B C D

Ě 1 Arigin 3D Pro ḳâ^ Mimics ḳâYමₑņµƧՈȻ: Ȍ Figure 1 Deviations analysis of three-dimensional reconstruction models using Arigin 3D Pro and Mimics software programs Ěͼ Ě A &ཡ࿓µƧB &࿎ɭµƧC &ၡ͟ᅆµƧD &ȏ࿓µƧ4

A B

Ě 2 Arigin 3D Pro ḳâₑņཥɜ୍ݒɳɜü 3D µƧ Ě 3 ཥɜ୍ݒɳɜü 3D µƧ͟⏲ĽǍͥՈǎ5(A)3ĽǍɮȬՈϟ Figure 2 Three-dimensional reconstruction models of femoral ₓ(B) comm inuted fracture obtained by using Arigin 3D Pro software Figure 3 Definition of feature (A) and size measurement (B) of three-dimensional reconstruction models of femoral comminuted

fracture

ᜬ 1 ཥɜ୍ݒɳɜü˄ŷĽǍɮȬǎ5 ᜬ 2 ͐ɜ˄ŷĽǍɮȬǎ5 Table 1 Definition of feature sizes of femoral comminuted fracture Table 2 Definition of feature sizes of skull cases cases ĽǍɮ Ȭ ĽǍͥ ĽǍɮȬ ĽǍͥ

ॅ╊ɮȬ 1 1ཥɜ͐11ʀ☦ ɮȬ 1’ 1’׍Ⓒ5’C Ψۯ’ɜ10ۯ’ɮȬ 2 2ཥɜ͐ϥ15ݒឆཥɜĿƧ঳ 1 ɮȬ 2’ 2 ɮȬ 3 4ɃḰƄ18̓ḰƄ ɮȬ 3’ 3’2Ɠ[ɜ3’ǷƓ[ɜ ɮȬ 4 3ཥɜ<15ݒឆཥɜĿƧ঳ 1 ɮȬ 4’ 4’2ƓCƈ4’ǷƓCƈ ɮȬ 5 8̲Zɵ13ͱZɵ ɮȬ 5’ 7’2ƓɊĝॡ7’ǷƓɊĝॡ ɮȬ 6 9̲Ɠɵ12ͱƓɵ ɮȬ 6’ 8’2Ɠ׺[ƈ8’ǷƓ׺[ƈ ɮȬ 7 10ɵⒸॡ18̓ḰƄ ɮȬ 7’ 9’2Ɠ[@͐9’ǷƓ[@͐ ɮȬ 8 6ݒឆཥɜĿƧ঳ 317ݒឆཥɜĿƧ঳ 2 ɮȬ 8’ 6’2Ɠ[@ᢖ6’ǷƓ[@ᢖ ɮȬ 9 5ݒឆཥɜĿƧ঳ 47ݒឆཥɜĿƧ঳ 5 ɮȬ 9’ 11’2Ɠ;ɜ11’ǷƓ;ɜ ॅ╊ɜ5’Cۯ’ɮȬ 10 14ݒឆཥɜĿƧ঳ 716ݒឆཥɜĿƧ঳ 6 ɮȬ 10’ 2

ᜬ 4 -Ϭ Arigin 3D Pro ʐ Mimics ḳâₑņཥɜµƧՈĽǍɮȬȭ _ ᜬ 5 -Ϭ Arigin 3D Pro ʐ Mimics ḳâₑņ͐ɜµƧՈĽǍɮȬȭ _ ɨ (x±s) ɨ (x±s) Table 4 Comparison results of the feature sizes of femoral Table 5 Comparison results of the feature sizes of skull cases comminuted fracture case using Arigin 3D Pro and Mimics software using Arigin 3D Pro and Mimics software programs progr ams ɮȬ Mimics ḳâ Arigin 3D Pro ḳâ t Ȩ P Ȩ ɮȬ Mimics ḳâ Arigin 3D Pro ḳâ t Ȩ P Ȩ ɮȬ 1 119.49±0.38 119.24±0.30 1.271 0.233 ɮȬ 1 44.20±0.49 44.61±0.48 1.492 0.167 ɮȬ 2 28.71±0.24 28.35±0.33 2.139 0.058 ɮȬ 2 261.74±0.27 261.92±0.58 0.700 0.500 ɮȬ 3 87.08±0.30 87.35±0.43 1.231 0.247 ɮȬ 3 52.67±0.16 52.77±0.65 0.345 0.737 ɮȬ 4 245.26±0.78 49.87±0.25 2.211 0.061 ɮȬ 4 245.26±0.78 244.54±0.83 1.553 0.151 ɮȬ 5 39.57±0.28 39.46±0.30 0.694 0.503 ɮȬ 5 84.98±0.48 84.13±0.38 3.400 0.007 ɮȬ 6 48.47±0.32 48.32±0.32 0.813 0.435 ɮȬ 6 49.93±0.33 49.66±0.28 1.559 0.150 ɮȬ 7 125.92±0.34 125.54±0.35 1.898 0.087 ɮȬ 7 394.09±0.64 393.83±0.51 0.785 0.451 ɮȬ 8 100.87±0.38 100.83±0.29 0.213 0.836 ɮȬ 8 155.43±0.52 155.86±0.35 1.673 0.125 ɮȬ 9 19.98±0.27 19.81±0.21 1.211 0.254 ɮȬ 9 122.74±0.16 122.63±0.14 1.300 0.223 ɮȬ 10 88.24±0.47 87.70±0.36 2.183 0.054 ɮȬ 1 0 134.97±0.22 135.04±0.37 0.144 0.692

P.O. Box 10002, Shenyang 110180 www.CRTER.org 2387 .[☢ Ảᅭ ǜºṍ. Arigin 3D Pro ḳâ^ Mimics ḳâYමₑņµƧՈஂòۘऺ[J ŵʾ¿ ŬŠ; ęඈඋ1࣏ۘऺ 2018 22(15):2384-2389. DOI:10.3969/j.issn.2095-4344.0729

ᜬ 3 -Ϭ Arigin 3D Pro ʐ Mimics ḳâYමₑņµƧՈȻ: Ȍ඗ Ș (mm)

Table 3 Deviations analysis results of reconstruction models using Arigin 3D Pro and Mimics software programs

_ ᾬĹ żɃ ż̓ x±s µƧż Ȼ:Ղ ɨ(ţȨ/ µƧ Ȼ: Ȼ: ̓ɮȬ µƧż̓ɮȬ) ₑȌɋ

ཡ࿓ 0.80 2.72 0.93±1.05 125.67 0.74% 99.26% ࿎ɭ 0.82 1.64 0.36±0.74 321.34 0.11% 99.89% A B ၡ͟ᅆ 0.70 1.68 0.45±0.74 499.18 0.09% 99.91% Ě 4 ͐ɜ 3D µƧ͟⏲ĽǍͥՈǎ5(A)3ĽǍɮȬՈϟₓ(B) ȏ࿓ 0.47 0.83 0.18±0.41 119.86 0.15% 99.85%

Figure 4 Definition of feature points (A) and measurement of featur e sizes(B) of three-dimensional reconstruction models of skull (0.93±1.05) (0.36±0.74) (0.45±0.74) (0.18±0.41) mm äƫ[26]3Ȗz̫ò඗ȀՈȳĿ᪂ᩥǎ:Ụäƫ[27-28]3Ǻ൷ µƧₑȌɋ /&99.26%399.89%399.91%399.85%4 nj̶ɮò1ᄾ඗Ȁ᪂ᩥǎ ºĿƚ ÖǎµƧՈϘĿɮȬ໐ᣄ ZẴ᪳:dzɉЩ4̶۔ɮò3D·Ŵäƫ[29]3̶ᄶ äƫ[30-31] Ƿ̠z௫Ŭۘऺ⓺ɉ ¹Ϣ☦ ȭz࿎ɭ3ၡ͟ᅆʐȏ࿓ϔǒ໐ᣄ Arigin 3D ProḳٿỤäƫ਍Q: ̶᪼5☦Ոŵ|4 â^MimicsḳâՈYමₑņrⒸ\:Ŏ ₑȀrⒸţɃz Q àϬṇ&ËͯՈĿƚĚʻYමₑņḳâĉŐ 1 min4IJȭzཡ࿓ϔǒ໐ᣄ Arigin 3D ProḳâՈµƧₑֲ Mimics3Simpleware3Amira਍4MimicsḳâȴƇƆ̓Ո ȀrⒸ&3 min ŠºɃzMimicsḳâՈ35 min4Mimics Ěʻ̠ˊ£࿁ dzȺxමĚʻϔǒ̩ƣ&৪Ȍ¦Ŀ„njϣ ḳâᕁ̣ͣƆ̓ՈĚʻ v£࿁ ĉŐⓌȨ v3ľǻʺ ˊĽǍՈYමµƧ ǒɴϣˊĽǍǍʻՈ͹̩:4Ǹ̲ ⑃3¬ɍľǻʺ⑃਍ dzǒɴɜɰ3ȏ࿓3ղཨ਍ඈඋՈ v IJZẴ£࿁ţ&ỞϬƧ Â☢c⒬⍌ȭཡ࿓ඈඋۘ MimicsẜĉŐᢧZƚϟₓ3Ěʻ‑β3¯ƫᢈ3ǎ:Ě Ȱǻ᪂ᩥÑǎƅ└̯ Ȍ਍£࿁µų ͢ńĿƚĚʻ̠ˊ ǕՈ£࿁ ȭཡ࿓ϔǒẟᜐ vr ¹◄ᡅṇ̶Ո¦&̱ :ǻՈàϬż&Ëͯ[5-6 32]4SimplewareḳâʐAmiraḳâ ň ṇ&᯽rArigin 3D Proḳâ⍌ȭཡ࿓ඈඋĚʻĽǍ KţdzǒɴĿƚĚʻՈYමₑȀ IJüḳâ̱ňṇ&̩ƾ3 ඗Ȍ̶࢑ĿƚĚʻ vਜ਼ͩĄͥ &ཡ࿓ඈඋĽ:rµų v£࿁ ࿁̻̓‘λɅ¦&~̱ň ʌά ÜȆ3Ōᯬ਍: ĚՈP⏲ś͍ڷŤϬͱƌṇ̓਍ƣü Šṇ̶àϬz ǻ Ω└:rḳâńĿƚ:ǻՈàϬ[6-8]4 -Ϭᩥਜ਼ƶՈƆ̓ƌʔǎᩥਜ਼ɳ࿁ ǒɴ੄ř3ȷǛ3ஂ ẕÀǡ ᔞŃɴǒ(Virtual Reality, VR)äƫńĿћ: βՈཡ࿓ȴǚ ቻǚཡ࿓µƧrⒸẠẠɃzMimicsḳâ4 ǻՈẔϬKỔ¼ᝯȆ௦ʐǒᲹ[33-34]4ĿƚYමₑņäƫ඗ Arigin 3D ProḳâẟᜐĿƚĚʻYමₑȀ ̱ň੄ƫ ȌᔞŃɴǒäƫ dzǒɴµƧYමाⒸՈdzᢊĚº߾ʐ ₑȀˑàợòȷ Ȑr ḳâʼnƅᆵČ̱ňА☦ ┑ ǒr~ ͢ńĿƚᢧZƚνƚ:ǻՈĄÃɘ&ºጛ[35]4 ĺr]ȑᡅՈ᪱ᣄ╠ݑ ĿϣỆϬɳΙ4Ǹ̲ Arigin 3D Pro ɶ3 ɶµų ࿁̻ȭₑņȒՈµƧָȉ ȭzĿƚᢧZ᫂໐ᣄ ƚϣdzỞẋ᫇ᅆç͛ᢖò3̓Ƀ3 ḳâȴƇ3D·Ŵ ồŠò ͔5Ĺᢆȓ¦ĿµƧ Âdzᢆȓ┨ղཨƶˊ̲ ċ ċ඗Șdz^3D·Ŵƶǒɴ\෡ȭȉArigin 3D Pro ĉŐɜɰ3ᜄ੥3ཐཌྷ඗Ȁ਍Ո¤ƅͱǭ ẝ]±ȺΝǜ ḳâẜȴƇVRº߾µų -Ϭᩥਜ਼ƶϣtµŃ¯ƫŖë dz ­ĿƚǒɀǎνƚՈČඣµś ᢧ΢ƚϣɩ̿ ȐrȭzƦ ȺȈ࢑µƧϔǒ§¤4Ŗë Ϭ›Ởẋŕ˜VR͐֘ ȋ ǡĿƚۘऺǎϣĭᢧZKͣƅẠ͛5[36-37]4 VR¯ɀ dzǒɴȭµƧՈ¿ࢿ3GḰ3෭΢3̩Ĺ਍£࿁4 Mimics˼Arigin 3D Prop3DƗʊʖ̀ĝjſǫʭ Ϣ໐ çŁḳâ῁]«ǀ๒Ո Arigin 3D Proּɨz 3.2 ɨ-rMaterialise͘ǼՈĿƚₑȀḳâMimics dzȺxම ʼnƅ25ÀǕʉƊǶՈMimicsḳâ¹Ϣƌńṇ̶]ᱷ7̠4 ĿƚĚʻỞẋYම☦ග:ϣtdzÑϬz3D·ŴՈSTLʸś Mimicsḳâ┨rΓťDICOMϔǒ3ตʸµƧϔǒ3፝ǻϔ µƧ ֲQ>ඓń͔ˇϬzɜ࢕3@☦̲࢕3ȏᜄ੥ᜐ ǒ਍ʸśՈȰ͑/ȰϦ̲ ẜΓťbmp3jpeg3tiffʸś4Ǹ ¯Ոƚƫǎ͊ۘऺ:ǻ[4 22]4 ̲ ּṇzArigin 3D Proḳâ MimicsḳậͣǀΈՈ ^Ȍµų ŠΓť ף᪊ ƫµŃ£࿁µųÑǎƅ└̯ëکęͱ5☦ Z#‘ɑĿћäƫƅ└͘Ǽʼnƅưএ “ƿՈArigin 3D ProĿƚₑȀḳâ dzǒɴĿƚĚʻɜ3 Ansys3Abaqus3Patran3Fluent਍cƅ└̯ Ȍḳâ ཐཌྷ3ղཨ3ȏ࿓3ཡ࿓3ₕʒΉ͑ĭ਍ՈYමₑņ  Ոȉǧ 5ƫȒනǀΈՈŸƚɳ࿁ Ȍ਍̱ň4 dz^͊ĚՈ3D·Ŵƶ\෡Ảȉ ֲQ>t£àϬzɜ 3.3 ^ȀĚɔ &rlj᪅ǒḳâՈYමₑņµƧஂ ȌՈβܲɳʐ͘Ƿɳ ẟᜐȈµƧₑņrȖzּ v5 òȭɨ Đ਍:ǻՈ Öǎ࢕ۘۘऺ[13 38-39]4ńཡ࿓ ࢕3 ᩨՈₑņµś ÂƦ₋ϬڌArigin 3D ProḳâͣƅưĽĄÃ4 ȐՈĚʻⓌȨ ₋ϬrȈḳâ ☦ v3ₑņ3ĄĚ਍£࿁ üǸ ǒḳ ȀՈArigin 3D Proḳâ^MimicsḳâₑȀՈཡ ḳâ͢ کϵᜬ3dz ࿓3࿎ɭ3ၡ͟ᅆ3ȏ࿓µƧՈţȨ±ʃβ: /& âǒ┉Ոʌ൫ v3ₑņǎĄĚ਍£࿁ՈάȘţƦǣ4ƅ

2388 ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH Cao GP, Zhang MJ, Liu F, Lian Q, Xu XH. Accuracy of three-dimensional reconstruction models using Arigin 3D Pro and Mimics software programs. Zhongguo Zuzhi Gongcheng Yanjiu. 2018;22(15):2384-2389. DOI:10.3969/j.issn.2095-4344.0729

Đɜ ΓՈዐϣ[J]. Œ άʉ߾4Ǹ̲ ϵz҉ŷϔₓ਍Ո└: ȰႸƨۘऺʳƨ [18] ីęDz,Ŭ̯ö. ϔƋɜ࢕ƚ:P⒬ɜ࢕ƚ, ࢕ƾȣ, 2007,9(7):601-604. .[Ȍẟᜐ۝͑Ոۘऺ4 [19] ŬමǬ,Ảᅭ,NJPɌ,਍.Ȗz3-D·ŴäƫՈḳɜǚ̩ǎḳɜ[ɜₑņ[J ₓṇɃ Ȓන¹◄Ȗz̓ʳƨϔǒ ęǚ̩ₑņ̲࢕ƾȣ, 2014, 28(3): 318-324. ň້ᯥDzijȔŀijƵȔŀȭó͸ȕ̆ļœġƲ­ļœĝĔΚΛǫ [20] Ä·,ɏႿ,ᾱǍ,਍. ϔƋĚ඗Ȍ3D·ŴĿĚȰǻՈ᪂ᩥ¤1ǎ͢ńɜ ʭKij€Ȕŀȁ·ȔŀΛijʜȔŀȭóļœĝ!ƘΛǫʭKijȔŀǹBļ ྃӨ¯ƫՈàϬ[J]. Œ Đɜ࢕ƾȣ, 2015, 17 (1): 50-54. œEfɻKijƵȔŀÔÇE͑ȷ* [21] তች,NJǑ,ɏ,ƻ,਍. ƫQ3D·ŴäƫµŃ̩ƾɜ֊ɜü¯ƫȴʌћ .Đɜ࢕ƾȣ,2015,17(1):29-33 ŲàDZ>ΆQɻ°̃ʲ(BK20151251)ĝǧ άՈdzᜐɳۘऺ[J]. Œ ඓ᯽Γťȶɻģ4ěƤ ƹ*ƖuȔŀÚʌKlǦŦsɐuÚɻģʬļ˼ƋΡ~ļœêʬBˌĝȌα [22] Chen Z, Chen D, Tang L, et al. Relationship between the position of ǫʭΛΓQę* the mental foramen and the anterior loop of the inferior alveolar nerve -֎ΞॅƖuȔŀʃȅRæɻģΛˍ`^ÇΛ˵ʩŶ-‚Ȕ* as determined by cone beam computed tomography combined with Ēˊ⒲LƲ­ēκΡ~ĝôèȐ˾̄Ʋ̴ΆͮΥ˼½ƋNǠΡ~ mimics. J Comput Assist Tomogr. 2015;39(1):86-93. ĝ˵ʩȎŨϙ*ɻģĝLj̧%Θ͑ȷ̢ɻģȎėƤʬ+͇Ʋ­Ρ~Qə [23] Qian L,Li P,Wu W,et al. Restoration of the spinal canal volume in ŷ˂(STROBE ŷ˂)*ôκhĝ CT ļœŘĜǜɺŀũȅ)Kǜɺŀ stenosis dependent on pedicle-lengthening distance in ݁ǫƤCôκˎiĝνǜ˗ζį ũȅ)Ĩ* pedicle-lengthening osteotomy: A three dimensional simulation. Bone তɡₑɻģ“1νlˎ CNKI ljɘϡɻˬϗ!ˊȌY̓ 3 É(Ɨ* Joint J. 2016;98-B(2):238-243. ত̲Ǖɻģlˋˍ̔ȅ̓ȻÔDžνňȹȻÔKȐ˾ÌƷɘǷŻ* [24] Luo H, Meyer-Szary J, Wang Z, et al. Three-dimensional printing in ň້̌ŠijȔŀƋΡ~˼Lj̧ĝȒɻƏ“˫ĝ^Ƃ̓ɡmüóQ*Ȓ cardiology: Current applications and future challenges. Cardiol J. ɻƏÇΛĝ°ûȕ͛ļœ(Gģαƀ·ļœÿ)βdzΛϊcĶuʩʷşL 2017;24(4):436-444. áǫ̂˼̏ͦKæ4ě˺(* [25] Oh TS, Jeong WS, Chang TJ, et al. Customized orbital wall তČƿɻģ“1νÖŽ.ǠȔŀę+NζįƤ1+˵ʩ̠0* reconstruction using three-dimensionally printed rapid prototype model Ō΢ቻǚ̌ŠŃĆ͙Çǚ;$ɻģKɬœũõʃ̂͠æ̠0 įʐ in patients with orbital wall fracture. J Craniofac Surg. 2016;27(8): ǜ­Ϥ͇øh˵ȅǒüʃ̂3.0ǰċKÝ˾ŨDhĝē˗KÍ͠ƘNǜ 2020-2024. ­Ϥ͇ʲĝΆ°ɻˍ`%ΘŐŜ˼ĤĚKȅðÍ͠Q˽h̴ÇŸ˗Û [26] Kang HW, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce Ú]¦ĶíFϗƔIΡƍ4ȶɻˬKEɡŭ ŻƔDKhȔpĝģ human-scale tissue constructs with structural integrity. Nat Biotechnol. nļœͿΓƙQ˽˾ƽhȗ* 2016;34(3):312-319. [27] Arabnejad S, Burnett JR, Pura JA, et al. High-strength porous biomaterials for bone replacement: A strategy to assess the interplay 4 dž໇Dz References between cell morphology, mechanical properties, bone ingrowth and [1] ɬË,ώ¡Œ,Ŭƙᲇ.YමdzᢊĚிඣȭɿ͟ᅆɜɳ඗ȀՈ᪈ã[J].ę manufacturing constraint]. Acta Biomaterialia 2016;30(8):345. ඈඋ1࣏ۘऺ,2014,18(4): 601-606. [28] Wang X, Xu S, Zhou S, et al. Topological design and additive [2] NJ☚,Ǥݍ,ɏņȍ,਍.ȖzDICOMϔǒYමₑņǎ͢ȭɜ࢕Ή͑ĭՈū manufacturing of porous metals for bone scaffolds and orthopaedic .ȰàϬ[J].ęඈඋ1࣏ۘऺ, 2017,21(7): 1046-1051. implants: A review. Biomaterials.2016;83:127-141 ,Ոņএ[J]. [29] ͜൦Ͷ,NJPɌ,Ŧࢍʞ. Ǻ൷ɮò3D·Ŵ[J].ę࢕ƚ:äƫ࢕ƚ, 2015ףŅ%,਍. ᔞŃɴǒäƫàϬzɿᾬɜü¯ƫë,חᆩ‚,᫦ٸ [3] ..ęඈඋ1࣏ۘऺ,2013,17 (13): 2383-2389. 45(9):919-940 [4] ɏ;,Ο,ŬÏɶ,਍. MimicsḳâńĿƚĚʻYමₑņՈàϬ[J]. Ŀ [30] Ƕɍŋ,ŬNJ᱉,Ձƻ,਍. 3D·ŴäƫՈǕʉǎ͢ḳâǒɴ[J].ę࢕ƚ: ћůϣញ̣,2015,36(2): 115-118. Ǎʻ࢕ƚ,2015,45(2): 197-203. [5] Ŭ#̤,ǶΌȬ,ƭξö,਍. ȖzĚʻϔǒņএ„njYමµƧ[J]. ęඈ [31] Giannopoulos AA, Steigner ML, George E, et al. Cardiothoracic :(උ1࣏ۘऺ,2015,19(40): 6547-6552. applications of 3-dimensional printing. J Thorac Imaging. 2016;31(5 [6] Ma L,Zhou Y,Zhang Y,et al. Biomechanical effects of masticatory 253-272. muscles on human mandible after reconstructed mandibulectomy [32] Parthasarathy J. 3D modeling, custom implants and its future tumor. J Craniofac Surg. 2015 Jan 30. [Epub ahead of print] perspectives in craniofacial surgery. Ann Maxillofac Surg. 2014;4(1): [7] ɭÒˈ,Wގ. Simplewareḳâ£࿁ǎ͢ńϔƋɜ࢕ՈàϬ ϔƋɜ࢕͑ 9-18. ऺƾȣ,2010,2(1):72-74. [33] Sirimanna P, Gladman MA. Development of a proficiency-based virtualۘ܄⒬(Y)[J]. ęɜ࢕ Ö^Ȗ [8] Flores RL,Liss H,Raffaelli S,et al. The technique for 3D printing reality simulation training curriculum for laparoscopic appendicectomy. patient-specific models for auricular reconstruction. J Craniomaxillofac ANZ J Surg. 2017;87(10):760-766. Surg.2017; 45(6): 937-943. [34] Hashimoto DA, Petrusa E, Phitayakorn R, et al. A proficiency-based [9] ᑟᄷ☖,Ǥ¡͜,ʌǃņ,਍. -ϬAmiraẟᜐaₕͪ҉☺ͥʴþՈ vǎ virtual reality endoscopy curriculum improves performance on the Yමₑņ[J]. Ŀћůϣញ̣,2012,33(8):1-3. fundamentals of endoscopic surgery examination. Surg Endosc. 2017 [10] Dong D, Tian J, Dai Y, et al. Unified reconstruction framework for Aug 15. doi: 10.1007/s00464-017-5821-5. multi-modal medical imaging. J Xray Sci Technol. 2011;19(1):111-126. [35] McGrath JL,Taekman JM,Dev P, et al. Using virtual reality simulation [11] Tian J, Zhao M, Xue J, et al. 3DMed: An integrated 3D medical image environments to assess competence for emergency learners. processing and analyzing system. 2004: 585-594. Acad Emerg Med. 2017 Sep 9. doi: 10.1111/acem.13308. ⍣Ƀᔒ. PCƶCTYමtʻńµŃᢈཡ࿓¯ƫՈàϬ[D]: śˆ̓ƚ, [36] ƈࠩŎ,ɏçָ. ᔞŃɴǒäƫńࠢඓ̲࢕¯ƫᢈǎνƚȕᩱՈàϬ [12] 2012. [J]. ęĿƚĭˊƚƾȣ, 2017,34(6): 641-643. ƛņ◢.ᔞŃɴǒäƫńǧဘ᪎ћ̱ňȕᩱՈàϬ[J]. ę┉ǧဘ,3ڷ [ήΜ,ŬŠ;,̔ƨͪ,਍.ɳĚ¯ƫȰǻń͔ၡ͟ᅆาdžƫՈàϬ[J]. [37 [13] Œɜ࢕ƾȣ,2016,36(3): 143-150. Ŀƚƾȣ, 2015,42(1):69-74. ὗş,ŬΣ,਍. ȖzỊȕ1࣏ʐȷợtƧäƫՈɿɜYමǒĿ [38] Qiu B, Liu F, Tang B, et al. Clinical study of 3D imaging and 3D printing,חỞ̔ [14] .µƧɳĚₑņ[J].ęඈඋ1࣏ۘऺ, 2015,19(26): 4253-4257. technique for patient-specific instrumentation in total knee arthroplasty [15] ┌,ὦᲇ,ปඑŒ.-ϬϔƋόŁäƫₑņɳĚɜɰµƧ[J]. ęඈ J Knee Surg. 2017;30(8):822-828.. උ1࣏ۘऺ,2016,20(39): 5846-5851. [39] ήΜ,̔ƨͪ,ὗȑË,਍.ȖzYමǑ˖äƫʐᩥਜ਼ƶṉ­äƫՈ3D·Ŵ :(Đɜ࢕ƾȣ, 2016,18(1 ƁË,ɏႿ,NJẮɌ,਍. ȷợtƧՈĿ̦1Ŏၡ͟ᅆՈۘ:44ཥɜ Ȱǻń͔ၡ͟ᅆาdžƫՈ!ǹàϬ[J].Œ [16] ɵՈYමņµ[J]. ęǚ̩ₑņ̲࢕ƾȣ, 2004,18(4):257-360. 35-41. [17] ƁË,ɏႿ,☢,਍. ϣĭ1࣏ϏɳɜՈYමņµ[J]. ৰ÷·Ŀ̓ƚƚĉ, 2001,22(22):2026-2029.

P.O. Box 10002, Shenyang 110180 www.CRTER.org 2389