9.4 Testing Plate Tectonics Section 9.4

Total Page:16

File Type:pdf, Size:1020Kb

9.4 Testing Plate Tectonics Section 9.4 HSES_1eTE_C09.qxd 5/16/04 10:16 AM Page 265 9.4 Testing Plate Tectonics Section 9.4 1 FOCUS Section Objectives Key Concepts Vocabulary Reading Strategy 9.11 Explain how paleomagnetism What evidence supports ◆ paleomagnetism Predicting Copy the table. Write a and magnetic reversals provide the theory of plate ◆ normal polarity prediction of where earthquakes will occur. evidence that supports the tectonics? ◆ reverse polarity After you read, if your prediction was incorrect or incomplete, write where earthquakes theory of plate tectonics. How does paleomagnetism ◆ hot spot support the theory of plate actually occur. 9.12 Evaluate how earthquakes, tectonics? Probable Locations Actual Locations ocean drilling, and hot spots a. ? b. ? provide evidence that supports the theory of plate tectonics. Reading Focus Evidence for Plate Tectonics L2 With the birth of the plate tectonics model, researchers from all of the Build Vocabulary Earth sciences began testing it. You have already seen some of the evi- Word Parts Have students break the dence supporting continental drift and seafloor spreading. Additional vocabulary term paleomagnetism into evidence for plate tectonics came as new technologies developed. roots, prefixes, or suffixes. Students may need to use a dictionary to find the Paleomagnetism If you have ever used a compass to find direc- meanings of some parts. (Paleo- is a tion, you know that the magnetic field has a north pole and a south combination form of the Greek word pole. These magnetic poles align closely, but not exactly, with the geo- Figure 16 Paleomagnetism palaios meaning “ancient.” The word graphic poles. Preserved in Lava Flows As the magnetism comes from the Greek root lava cools, it becomes magnetized In many ways, Earth’s magnetic field is much like that produced parallel to the magnetic field words Magnes (lithos), literally meaning by a simple bar magnet. Invisible lines of force pass through Earth and present at that time. When the a stone of Magnesia, an ancient city in extend from one pole to the other. A compass needle is a small magnet polarity randomly reverses, a Asia Minor.) record of the paleomagnetism is that is free to move about. The needle aligns with these invisible lines preserved in the sequence of L2 of force and points toward the magnetic poles. lava flows. Reading Strategy Certain rocks contain iron-rich minerals, such as magnetite. When a. at convergent plate boundaries heated above a certain temperature, these magnetic minerals lose their Normal b. at all plate boundaries magnetism. However, when these iron-rich mineral grains cool down, magnetic 0.4 m.y. field they become magnetized in the direction parallel to the existing ago 2 INSTRUCT magnetic field. Once the minerals solidify, the magnetism they 0.8 m.y. (normal) ago possess stays frozen in this position. So magnetized rocks (reversed) behave much like a compass needle because they point 1.2 m.y. Evidence for Plate ago toward the existing magnetic poles. If the rock is moved (normal) Tectonics or if the magnetic pole changes position, the rock’s mag- Integrate Biology L2 netism retains its original alignment. Rocks formed Birds and Magnetism Tell students millions of years ago thus show the location of the mag- that birds use Earth’s magnetic field to netic poles at the time of their formation, as shown in locate places to stop and eat along their Figure 16. These rocks possess paleomagnetism. migration route. In addition, the birds use Earth’s magnetic field to navigate. Plate Tectonics 265 They read the angle at which magnetic fields enter the ground and thus determine their latitude relative to the magnetic poles. Ask: Why is it so important for birds to locate food sources? (The location of these places is critical because birds must have large quantities of food to provide energy during their long migrations.) Verbal, Logical Plate Tectonics 265 HSES_1eTE_C09.qxd 5/16/04 10:16 AM Page 266 Section 9.4 (continued) Geophysicists learned that Polarity of Ocean Crust Earth’s magnetic field periodically reverses polarity. The north mag- A netic pole becomes the south magnetic pole, and vice versa. A rock Testing Minerals solidifying during one of the periods for Magnetism L1 Magma of reverse polarity will be magnet- Purpose Students test various minerals Period of normal magnetism ized with the polarity opposite that with a magnet to determine whether of rocks being formed today. they have magnetic properties. B When rocks show the same Materials magnet, minerals (include magnetism as the present magnetic at least one sample of a mineral that field, they are described as having normal polarity. Rocks that show contains iron or cobalt), compass Magma the opposite magnetism are said to Procedure Have students test the Period of reverse magnetism have reverse polarity. A relation- mineral samples with the magnet to see ship was discovered between the if they are attracted by it. Have students C place the compass near each mineral magnetic reversals and the seafloor- sample to see if the needle moves. spreading hypothesis. Ships towed If it does, the material is magnetic. instruments called magnetometers Magma across segments of the ocean floor. Expected Outcomes Minerals that Period of normal magnetism This research revealed alternating contain iron or cobalt, such as strips of high- and low-intensity lodestone, have magnetic properties. Figure 17 A As new material is magnetism that ran parallel to the ridges. The strips of high-inten- Meteorites also have magnetic added to the ocean floor at the sity magnetism are regions where the paleomagnetism of the ocean properties. oceanic ridges, it is magnetized crust is of the normal type. These positively magnetized rocks Kinesthetic, Visual according to Earth’s existing magnetic field. B This process enhance the existing magnetic field. The low-intensity strips repre- records each reversal of Earth’s magnetic field. C Because new sent regions where the ocean crust is polarized in the reverse direction Use Visuals L1 rock is added in approximately and, therefore, weaken the existing magnetic field. As new basalt is equal amounts to the trailing added to the ocean floor at the oceanic ridges, it becomes magnetized Figure 17 Have students study the edges of both plates, strips of equal size and polarity parallel according to the existing magnetic field, as shown in Figure 17. figure. Ask: Could the rocks in a strip both sides of the ocean ridges. The discovery of strips of alternating polarity, which lie as possessing reverse polarity ever possess Applying Concepts Why are mirror images across the ocean ridges, is among the strongest evi- normal polarity? (No, once the rocks the magnetized strips about equal width on either side of dence of seafloor spreading. solidify, their polarity is permanently set.) the ridge? How do you think the width of a strip Earthquake Patterns Scientists found a close link relates to the seafloor spreading rate? between deep-focus earthquakes and ocean trenches. Also, the (The faster the spreading rate is, the wider absence of deep-focus earthquakes along the oceanic ridge system the strip will be.) was shown to be consistent with the new theory. Visual, Logical Compare the distribution of earthquakes shown in Chapter 8 on page 226 with the map of plate boundaries on pages 256–257. The close link between plate boundaries and earthquakes is obvious. When the depths of earthquake foci and their locations within the trench sys- tems are plotted, a pattern emerges. 266 Chapter 9 Customize for English Language Learners Explain to students that there are many uses of polar molecules have partial charges. Polar also the term polar, both in science and in everyday means diametrically opposite. Have students usage. For example, in magnetism, polarity look up the various meanings of the term polar refers to the magnetic poles. In chemistry, and use each meaning in a sentence. 266 Chapter 9 HSES_1eTE_C09.qxd 5/16/04 10:17 AM Page 267 Build Science Skills L2 Volcanic island arc Trench Interpreting Diagrams Have students Marginal sea study Figure 18. Ask: • From the map, identify the direction Oceanic crust in which the sinking slab of oceanic China lithosphere is moving. (from right to left) e lithosph re • Locate Korea on the map. Why do ic 100 km ean oc you think Korea has relatively few Partial melting ing ct Japan enioff zonedu ub earthquakes compared to Japan? S 200 km adati-B W (Korea is located far from ocean Japan Asthenosphere trenches; Japan is close to a trench.) 300 km • What pattern does the map show? trench Key (Deeper earthquakes occur farther from Shallow the trench.) Be sure students can Figure 18 Distribution of Earthquake Foci Note Intermediate distinguish the blue dots from the Deep that intermediate- and deep-focus earthquakes occur only within the sinking slab of oceanic lithosphere. green dots. • What can geologists learn from this pattern? (They can use the plotted foci Look at Figure 18. It shows the distribution of earthquakes near to track the plate’s descent into the the Japan trench. Here, most shallow-focus earthquakes occur within mantle.) or adjacent to the trench. Intermediate- and deep-focus earthquakes Visual, Logical occur toward the mainland. In the plate tectonics model, deep-ocean trenches are produced where cool, dense slabs of oceanic lithosphere plunge into the mantle. Shallow-focus earthquakes are produced as the descending plate inter- acts with the lithosphere above it. As the slab descends farther into the mantle, deeper-focus earthquakes are produced. No earthquakes have been recorded below 700 kilometers. At this depth, the slab has been heated enough to soften. Ocean Drilling Some of the most convincing evidence confirm- ing the plate tectonics theory has come from drilling directly into ocean-floor sediment.
Recommended publications
  • Year 7 Mastery Booklet
    YEAR 7 MASTERY BOOKLET Unit 2 – Terrifying Tectonics 2019-2020 ARK CURRICLUM PROJECT Unit 2: Terrifying Tectonics What will I be learning this unit? By the end of this unit you will know all about earthquakes and volcanoes – what causes them and their impacts. You will investigate two case studies and will make an important decision about reducing future risks. Lesson 1: What is happening beneath our feet? In this lesson we learn to describe the structure of the earth and to compare its layers. Lesson 2: Why are the plates moving? In this lesson we learn how convection currents are formed and how this causes tectonic plate movement. We will use global maps to identify the main tectonic plates. Lesson 3: What are tectonic hazards and where do they occur? In this lesson we will learn to describe the global distribution of earthquakes and volcanoes, using continents and compass directions. We will also begin to understand the connection between plate boundaries and tectonic hazard distribution. Lesson 4: What causes an earthquake? In this lesson we will solve the mystery of why an earthquake happened in Sichuan in 2008 using a series of clues related to physical features and tectonic processes. Lesson 5: What were the impacts of the 2008 earthquake at Sichuan? In this lesson we are learning to describe and categorise the impacts of the 2008 Sichuan earthquake. We will start to explain why the effects were very severe. Lesson 6: What causes a volcano? In this lesson we are learning why volcanoes form at destructive plate boundaries using the case study of Volcán de Fuego in Guatemala.
    [Show full text]
  • Warping and Cracking of the Pacific Plate by Thermal Contraction
    1 Warping and Cracking of the Pacific Plate by Thermal Contraction David Sandwell & Yuri Fialko Scripps Institution of Oceanography, La Jolla, California, 92093-0225, USA Submitted to Journal of Geophysical Research, March 16, 2004. Lineaments in the gravity field and associated chains of volcanic ridges are widespread on the Pacific plate but are not yet explained by plate tectonics. We propose that they are warps and cracks in the plate caused by uneven thermal contraction of the cooling lithosphere. Top-down cooling of the plate produces large thermoelastic stress that is optimally released by lithospheric flexure between regularly spaced parallel cracks. Both the crack spacing and gravity amplitude are predicted by elastic plate theory and variational principle. Cracks along the troughs of the gravity lineaments provide conduits for the generation of volcanic ridges in agreement with new observations from satellite-derived gravity. Our model suggests that gravity lineaments are a natural consequence of lithospheric cooling so that convective rolls or mantle plumes are not required. Introduction Plate tectonics explains most of the topography of the deep ocean basins, but there is still debate regarding the origin of off-ridge features that are younger than the ambient lithosphere, and especially those that are not aligned with the autochtonic seafloor spreading fabric. The Pacific basin contains three main types of the young off-ridge lineaments (Figure 1). (i) Chains of shield volcanoes such as the Hawaiian-Emperor seamounts are well explained by the mantle plume model [Morgan, 1971; Sleep, 1992]. (ii) Gravity lineaments are prominent at 140-200 km wavelength and are aligned in the direction of absolute plate motion [Haxby and Wessel, 1986] (Figure 1b).
    [Show full text]
  • UNIT 10 Plate Tectonics Study Guide
    UNIT 10 Plate Tectonics Study Guide Chapters 1, 2, 9, and most of book (Revised 7/18) UNIT 10 HOMEWORK worth 10 points VIDEO WEB HIT HOMEWORK: Write two paragraphs with minimum of three sentences each (PHYSICAL GEOLOGY 1303) (Revised 7//18) UNIT 10 Video Hits For Unit 10 Video Hit, go to the “DMC HOME” website; in Search box –type “Kramer”, select “Faculty Listing”; click on Walter Vernon Kramer, click on Website“, scroll down and click GEOL 1303; then select “Video Hit Link Number 10”, and click on icon, watch video of life forms that don’t need sunlight!. [IF NONE OF THE WEB SITES COME UP, YOUR COMPUTER PROBABLY NEEDS TO BE REBOOTED (RESTARTED) General -Tectonics: the branch of geology that studies regional and global structural features on Earth -Plate tectonics: the unifying theory of global dynamics. The lithosphere is believed to be broken into individual plates that move in response to convection within the Earth’s upper mantle. -Plate tectonics theory explains the interrelationships of volcanoes, earthquakes, climate, mountains, and even evolution. Historical Studies of the Ocean Floor -Evidence for tall mountains under the Mid-Atlantic Ocean was presented in the 1850s. -The laying of the transatlantic telegraph cable 1860s proved that there was a mountain range in the middle of the Atlantic Ocean. 1850 map 1908 map FYI In 1878, Wyville Thompson compiled ocean depth data from the scientific sailing ship (the HMS Challenger) and collected samples of rock (basalt) from these deep-underwater mountains. Thirty years later in 1908, this data was compiled and the results further implied an extensive mid-Atlantic mountain range (which was largely ignored).
    [Show full text]
  • The Plate Theory for Volcanism
    This article was originally published in Encyclopedia of Geology, second edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author’s institution, for non-commercial research and educational use, including without limitation, use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation, commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: https://www.elsevier.com/about/policies/copyright/permissions Foulger Gillian R. (2021) The Plate Theory for Volcanism. In: Alderton, David; Elias, Scott A. (eds.) Encyclopedia of Geology, 2nd edition. vol. 3, pp. 879-890. United Kingdom: Academic Press. dx.doi.org/10.1016/B978-0-08-102908-4.00105-3 © 2021 Elsevier Ltd. All rights reserved. Author's personal copy The Plate Theory for Volcanism Gillian R Foulger, Department of Earth Sciences, Science Laboratories, Durham University, Durham, United Kingdom © 2021 Elsevier Ltd. All rights reserved. Statement of Plate Theory 879 Background, History, Development and Discussion 879 Lithospheric Extension 880 Melt in the Mantle 881 Studying Intraplate Volcanism 882 Examples 883 Iceland 883 Yellowstone 885 The Hawaii and Emperor Volcano Chains 886 Discussion 888 Summary 888 References 888 Further Reading 889 Statement of Plate Theory The Plate Theory for volcanism proposes that all terrestrially driven volcanism on Earth’s surface, including at unusual areas such as Iceland, Yellowstone and Hawaii, is a consequence of plate tectonics.
    [Show full text]
  • Magnetic and Gravity Interpretation of Yaloc-69 Data from the Cocos Plate Area
    AN ABSTRACT OF THE THESIS OF Richard Shih-Ming Lu for the Master of Science (Name) (Degree) in Geophysics presented on ig-il (Major) (Date) Title:MAGNETIC AND GRAVITY INTERPRETATIONOF YALOC-69 DATA FROM THE COCOS PLATE AREA Abstract approved: Redacted for Privacy Donald F. Heinrichs Magnetic, gravity and bathymetry data werecollected on an ex- tended cruise of the R/V Yaquina in 1969.The last set of data was ob- tamed from those track lines leaving thePanama Basin.The area covered is mainly the Cocos plate (Molnarand Sykes, 1969).The data is analyzed and compared with resultsof previous workers and the geophysical implications considered. Generally speaking, from the magnetic partof the data, both direct and indirect methods show supportof Vine and Matthew's (1963) hypothesis of sea-floor spreadingand the subsequent principles of new global tectonics.The most northern magnetic anomaly profile across the East Pacific rise(at 18. 3°N) shows a spreading rate about 3 cm/yr. and the most southern one(at 12. 8°N) shows a rate about 5. 2 cm/yr.The Cocos plate has been assumed to movein a northeast- southwest direction(N30°E to N45°E), and rotate with respect to the Pacific plate about a pole at40°N, 11 0°W with an angular velocity of -7 19. 6x10 deg. /yr. (Larson and Chase, 1970).New material comes up from the west boundary -the East Pacific rise, and the south boundary - the Galapogos rift, causing theCocos plate to underthrust the Americans plate at the middle American arc.Some of the points of.
    [Show full text]
  • Volcanoes, Mountains 2
    Earth & Space Science Packet April 6th-17th, 2020 Griffin & King This packet contains: 1. Worksheets for Earthquakes, Plate Tectonics, Volcanoes, Mountains 2. Plate Tectonics Lab 3. Volcano Lab 4. National Geographic Article on Volcanoes What needs to be turned in for a grade? ● Worksheets with questions answered (Earthquakes and Plate Tectonics is April 6-9; Volcanoes and Mountains is April 14-17) Optional/Enrichment included: ● Labs ● Science Articles If these are completed, we would LOVE for you to share: Send us pictures on remind/email, or tag @TheBurgScience and #Team DCS on Twitter Earth and Space Science students, The only assignments required from us are the worksheets included. At times we may also include a Scientific article for you to read. You can either submit them electronically or you can take a picture of your answers and send us the picture either through Remind or via email. Paper packets should be completed and “turned in” the same way – snap a picture and send it to us either via Remind or email. These are not meant to be difficult or overwhelming. We simply hope they keep your mind engaged while we try to accomplish distance learning. The labs are completely optional and only meant to help bring some of this material to life. Also, we hoped it would be something fun for you to do. We miss you all very much! We hope you are doing well and that you are staying healthy. If there is ever a time that you need help with anything during this time, please do not hesitate to let one of us know.
    [Show full text]
  • Capstone Science Unit 2: Physics of the Earth System (Draft 4.7.16)
    Capstone Science Unit 2: Physics of the Earth System (draft 4.7.16) Instructional Days: 25 Unit Summary How much force and energy is needed to move a continent? Students investigate the energy within the Earth as it drives Earth's surface processes. Students evaluate evidence of the past and current movements of continental and oceanic crust for theory of plate tectonics to explain the ages of crustal rocks. Finally, students develop a model based on evidence of the Earth's interior to describe the cycle of matter by thermal convection. The crosscutting concepts of patterns and stability, cause and effect, stability and change, energy and matter, and systems and systems models are called out as organizing concepts for these disciplinary core ideas. Within this unit, connections to Physical Science Performance Expectations are made. Students plan and conduct investigations, and analyze data and using math to support claims in order to develop an understanding of ideas related to why some objects keep moving and some objects fall to the ground. Students will also build an understanding of forces and Newton’s second law. They will develop an understanding that the total momentum of a system of objects is conserved when there is no net force on the system. Students use mathematical representations to support a claim regarding the relationship among frequency, wavelength, and speed of waves traveling in various media, such as the Earth's layers. Students then apply their understanding of how magnets are created to model the generation of the Earth's magnetic field. The crosscutting concept of cause and effect is called out as an organizing theme.
    [Show full text]
  • BIOLOGY and GEOLOGY | Printed Edition Plate Tectonics BIOLOGY and GEOLOGY | PLATE TECTONICS | Printed Edition Tectonic Plate Theory
    BIOLOGY AND GEOLOGY | Printed edition PLATE TECTONICS BIOLOGY AND GEOLOGY | PLATE TECTONICS | Printed edition TECTONIC PLATE THEORY The ground we stand on is moving very slowly. It is moving right now. Maybe you cannot notice because it moves slower than your fingernails grow. But, over millions of years, this movement is enough to change the appearance of the surface of the Earth. However, sometimes the movements are more abrupt and earthquakes occur. Origin of the Earth When the Earth was formed, it was a large, white hot sphere of rock melted at high temperatures. Little by little, over millions of years, it cooled off. Like any other object, the Earth lost heat through its surface, which was the first to cool, and thus formed a covering of solid rock: the lithosphere. Today our planet continues to gradually cool off. Therefore, the interior still maintains a great part of that original heat. Underneath the lithosphere there is a great ocean of liquid rock, and the top part of this is called the asthenosphere. Lithosphere: tectonic plates Nowadays we know that the Earth’s surface is like a puzzle of pieces that float on a sea of magma, like boats that drift on a great, white hot ocean. These pieces that divide up the Earth’s lithosphere are called tectonic plates, and they fit together with large cracks between them. In some places they collide and one sinks below another, in others they slide alongside each other, etc. The lithosphere, which is made up of the uppermost solid layer of the mantle and the crust, is not the same everywhere.
    [Show full text]
  • G. R. Foulger. Plates Vs. Plumes: a Geological Controversy Wiley-Blackwell, 2010, Paperback: 364 Pages, ISBN 978-1-4051-6148-0
    Bull Volcanol DOI 10.1007/s00445-012-0606-0 BOOK REVIEW G. R. Foulger. Plates vs. Plumes: A geological controversy Wiley-Blackwell, 2010, paperback: 364 pages, ISBN 978-1-4051-6148-0 Szabolcs Harangi Accepted: 3 April 2012 # Springer-Verlag 2012 so-called granite controversy during the first half of the twentieth century. How do volcanoes work? What controls their geo- graphic distribution and what is the triggering mechanism of melt generation? The plate tectonic theory provides rational answers to these questions, but still a significant number of volcanoes remain for which the answers are not straightforward. Most of them are located within oceanic and continental plates. They involve some very productive volcanoes, such as in Hawaii and the Réunion islands, but also the small-volume basaltic volcanoes of many monogenetic volcanic fields. The ultimate reason for the long-lasting but intermittent volcanism in the latter, for example in Arizona and Nevada in the USA, in the Michoacán-Guanajuato region in Mexico, around Auckland in New Zealand and in the Eifel and the Pannonian Basin in Europe, is still unresolved, which makes it difficult to predict any future volcanic events. A convenient explanation for the activity of all of these diverse volcanoes is deep mantle upwelling, i.e. a mantle plume. J. Tuzo Wilson introduced the “hot spot” idea in 1963, just in the advent of the plate tectonic model, followed by the proposition of the plume concept by W. Jason Morgan in 1971. This new theory was an elegant explanation for the origin of the volcanoes, which are located away from plate Volcanoes were always in the centre of the thinking of early boundaries.
    [Show full text]
  • Creating a Four-Dimensional Image of the Deformation of Western North America
    THE PLATE BOUNDARY OBSERVATORY Creating a Four-Dimensional Image of the Deformation of Western North America A white paper providing the scientific rationale and deployment strategy for a Plate Boundary Observatory, presented by the PBO Steering Committee to the National Science Foundation. Based on input from the PBO Workshop held October 3-5, 1999. This document is available on the web at http://www.unavco.ucar.edu/community/publications/proposals/PBOwhitepaper.pdf Executive Summary The Earth's tectonic plates are in continual motion, creating a constantly changing mosaic as the plates move away from, past, or beneath each other at plate boundaries. While these plate- boundary zones are razor-thin in classical plate tectonic theory, it is clear that our own continent’s boundary, between the Pacific and North American plates, is not. These two plates, like the two hands of a mighty sculptor, have produced the rugged landscape of western North America: the Rocky Mountains, the Sierra Nevada, the Basin and Range province, the majestic volcanic peaks of the Cascades and Aleutians, and the San Andreas Fault system. These plate-boundary forces are most vividly manifested by the violent shaking of earthquakes, capable of leveling cities in a matter of seconds, and volcanic eruptions that spew forth molten rock from the Earth's hot interior. The questions that we ask of these plate-boundary zones are as old as humanity itself. How are mountains formed, and how do they evolve? How do earthquakes occur? How do volcanic eruptions occur? What forces drive these often-catastrophic changes? The theory of plate tectonics has provided an important framework and partial answers to these questions.
    [Show full text]
  • Continental Drift Theory – Geography Study Material & Notes
    Continental Drift Theory – Geography Study Material & Notes Continents cover 29 percent of the surface of the earth and remainder is under oceanic waters. Alfred Wegner was a German meteorologist who put forth the Continental Drift Theory in 1912. It is considered that there was a single landmass called PANGAEA- which means all earth. The mega-ocean is called PANTHALASSA – which means all water. The basic argument was that – About 200 million years ago, the mega-landmass PANGAEA started splitting into two large landmasses namely, LAURASIA in the north and GONDWANALAND in the south. These two landmasses kept splitting till they they reached present configuration of continents and oceans. The argument for the Continental Drift Theory gets strength from the following evidences: 1. Matching of Continents in a Jig-Saw-Fit: The shorelines of Africa and South America towards each other show a remarkable match. 2. Rocks of same age across the oceans: It is established by radiometric dating methods that the earliest marine deposits along the coastline of south america and Africa are of Jurassic age, this suggest ocean did not occur prior to that. A belt of ancient rocks of 2,000 million years from Brazil coast matches with those from Western Africa. 3. Tillite: It is sedimentary rock formed out of deposits of glaciers. Gondwanaland system of sediments has its counterparts in six different Placer Deposits landmasses of Southern Hemisphere. Thick tilliation at base shows prolonged glaciation. Counterparts of this succession are found in Africa, Falkland island, Madagascar , Antarctica and Australia besides India. It proves paleoclimates and drifting of continents.
    [Show full text]
  • Gravity Anomalies and Flexure of the Lithosphere Along the Hawaiian-Emperor Seamount Chain*
    Geophys. J. R . nstr. SOC.(1974) 38, 119-141. Gravity Anomalies and Flexure of the Lithosphere along the Hawaiian-Emperor Seamount Chain* A. B. Watts and J. R. Cochran (Received 1973 December 7)t Summary Simple models for the flexure of the lithosphere caused by the load of the Hawaiian-Emperor Seamount Chain have been determined for different values of the effective flexural rigidity of the lithosphere. The gravity effect of the models have been computed and compared to observed free-air gravity anomaly profiles in the vicinity of the seamount chain. The values of the effective flexural rigidity which most satisfactorily explain both the amplitude and wavelength of the observed profiles have been determined. Computations show that if the lithosphere is modelled as a continuous elastic sheet, a single effective flexural rigidity of about 5 x loz9dyne-cm can explain profiles along the Hawaiian-Emperor Seamount Chain. If the lithosphere is modelled as a discontinuous elastic sheet an effective flexural rigidity of about 2 x lo3' dyne-cm is required. Since the age of the seamount chain increases from about 3My near Hawaii to about 70 My near the northernmost Emperor seamount these results suggest there is apparently little decrease in the effective flexural rigidity of the lithosphere with increase in the age of loading. This suggests the litho- sphere is rigid enough to support the load of the seamount chain for periods of time of at least several tens of millions of years. Thus the subsidence of atolls and guyots along the chain is most likely to be regional in extent and is unlikely to be caused by an inelastic behaviour of the lithosphere beneath individual seamounts.
    [Show full text]