Examination of Styrene-Divinylbenzene Ion Exchange Resins, Used in Contact with Food, for Potential Migrants John Andrew Sidwell, Bryan Willoughby

Total Page:16

File Type:pdf, Size:1020Kb

Examination of Styrene-Divinylbenzene Ion Exchange Resins, Used in Contact with Food, for Potential Migrants John Andrew Sidwell, Bryan Willoughby Examination of styrene-divinylbenzene ion exchange resins, used in contact with food, for potential migrants John Andrew Sidwell, Bryan Willoughby To cite this version: John Andrew Sidwell, Bryan Willoughby. Examination of styrene-divinylbenzene ion exchange resins, used in contact with food, for potential migrants. Food Additives and Contaminants, 2006, 23 (07), pp.726-737. 10.1080/02652030600576189. hal-00577289 HAL Id: hal-00577289 https://hal.archives-ouvertes.fr/hal-00577289 Submitted on 17 Mar 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Food Additives and Contaminants For Peer Review Only Examination of styrene-divinylbenzene ion exchange resins, used in contact with food, for potential migrants Journal: Food Additives and Contaminants Manuscript ID: TFAC-2005-268.R1 Manuscript Type: Original Research Paper Date Submitted by the 09-Jan-2006 Author: Complete List of Authors: Sidwell, John; Rapra Technology Ltd., Analytical Willoughby, Bryan; Rapra Technology Ltd Methods/Techniques: GC/MS, LC/MS Additives/Contaminants: Migration, Food contact materials Food Types: http://mc.manuscriptcentral.com/tfac Email: [email protected] Page 1 of 35 Food Additives and Contaminants 1 2 3 4 Examination of styrene-divinylbenzene ion exchange resins, 5 6 used in contact with food, for potential migrants 7 8 9 10 11 JOHN A. SIDWELL and BRYAN G. WILLOUGHBY 12 13 14 For Peer Review Only 15 Rapra Technology Ltd, Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK 16 17 18 19 20 Abstract 21 22 The nature of extractable substances from five types of styrene-divinylbenzene ion 23 24 exchange resins used in the preparation of foodstuffs was investigated. Strong acid 25 26 cation resins, strong and weak base anion resins and an active carbon replacement 27 28 resin were examined. These resins are used for a variety of purposes including water 29 30 31 softening, decalcification of sugar syrups, demineralisation, removal of nitrate ions from 32 33 water and decolourisation. Analysis was carried out using electrospray LC-MS and GC- 34 35 MS based methodologies. Extractable substances from new resins were identified as 36 37 mainly being by-products of the resin manufacturing process. Levels of extractable 38 39 substances decreased with washing. 40 41 42 43 44 Keywords: Ion exchange resin, food contact, styrene-divinyl benzene resin, extractable 45 46 substances, LC-MS, thermal desorption GC-MS, two-dimensional gas chromatography 47 48 time of flight mass spectrometry (GCxGC-TOF-MS) 49 50 51 52 53 54 55 56 57 58 59 60 1 http://mc.manuscriptcentral.com/tfac Email: [email protected] Food Additives and Contaminants Page 2 of 35 1 2 3 Introduction 4 5 6 7 8 Ion exchange resins are very high surface area materials that have the potential to 9 10 contaminate food. Annex 1 to EC Regulation No 1935/2004 (EC. 2004), the revised and 11 12 up-dated food-contact framework regulation, now includes ion exchange resins in the list 13 14 of groups Forof materials Peer and articles Review that may be covered Only by specific harmonised 15 16 measures. 17 18 19 20 21 A Council of Europe (1997) resolution on ion exchange resins (AP 97/1) includes an 22 23 inventory list of substances used in the manufacture of ion exchange resins and a 24 25 migration limit of 1mg/L total organic carbon in the 5 th bed volume (water) rinse solution. 26 27 In the USA, a list of ion exchange resins authorised for food-contact use, together with 28 29 some restrictions, are given in the FDA regulations Title 21, Section 173.25. A number of 30 31 32 successful food contact notifications have been granted for applications of ion exchange 33 34 resins with specific functionality. Miers (1995) has reviewed US regulations on ion 35 36 exchange resins. Utsunomiya (1995) has reviewed requirements in Japan. 37 38 39 40 In this paper we report the chemical nature, extractability and source of potential 41 42 extractable substances from a range of styrene divinylbenzene ion exchange resins 43 44 45 used in contact with food, as received from the manufacturer. No pre-washing of resins 46 47 as would be recommended before first-use, was undertaken. 48 49 50 51 Conceptually, ion exchange materials are insoluble acids or bases which, when 52 53 converted to salts, remain insoluble. Cation exchange materials contain fixed 54 55 electronegative charges (associated with counter ions), e.g. RSO −Na +, and anion 56 3 57 + − 58 exchange materials analogously have fixed electropositive charges, e.g. RN Me 3Cl . 59 60 2 http://mc.manuscriptcentral.com/tfac Email: [email protected] Page 3 of 35 Food Additives and Contaminants 1 2 3 Strong-acid cation exchange materials are usually based on sulphonic acids. Strong- 4 5 6 base anion exchange materials may be quaternary ammonium hydrochlorides and 7 8 weaker base types may be the tertiary amines themselves. Most ion exchange resins 9 10 can be regenerated with appropriate counter ions. It is not uncommon for resin beds to 11 12 be continually used and regenerated over periods of months/years before total resin 13 14 replacement.For Some resins Peer are operated Review at elevated temperatures Only e.g. 70 oC. 15 16 17 18 19 The main applications of ion exchange resins in food processing include the treatment of 20 21 water added to or used with food products, sugar decolourisation/demineralisation, 22 23 isolation of proteins and enzymes from milk products and wine/spirit treatments. Of these 24 25 applications, treatment of water for use with food products is the largest application. 26 27 28 29 Potential migrants from ion exchange resins include both organic and inorganic species. 30 31 32 The latter includes the inorganic ions involved in the process of ion exchange or of resin 33 34 regeneration. The type and amount of these will be dependent on the resin types used 35 36 and the manner and sequence of operation. Given the nature of these operations, and 37 38 the copious use of water, it is likely that any problems from ionic impurities will be 39 40 transient ones. 41 42 43 44 45 Organic contaminants are potentially more persistent. Organic contaminants in output 46 47 streams will include those input contaminants incompletely removed by the resin and 48 49 those contributed by the resin itself. The latter potentially includes: input contaminants 50 51 accumulating on the resin and being re-released under breakthrough conditions, 52 53 products of thermal or oxidative oxidation of the resin and residues of the chemistry of 54 55 manufacture of the resin. 56 57 58 59 60 3 http://mc.manuscriptcentral.com/tfac Email: [email protected] Food Additives and Contaminants Page 4 of 35 1 2 3 Whilst the first two above are artefacts of the process and the conditions of operation, 4 5 6 and are amenable to control in a properly run process, the third is outside the control of 7 8 the process operators. Studies of water deionisation for the electronics industry (Gottlieb 9 10 and Meyers, 2000) have found that this third source (residues of manufacture) is the 11 12 largest source of organic impurities. Such leachable organic impurities are at their 13 14 highest levelFor in brand-new Peer resins, and Review gradually rinse out with Only time. 15 16 17 18 19 Materials and Methods 20 21 The ion exchange resins examined were suitably functionalised styrene-divinylbenzene 22 23 resins. Cation exchange styrene-divinylbenzene resins are acid or acid-salt 24 25 functionalised. For these resins, the initial step is sulphonation of the aromatic ring, e.g.: 26 27 ∼C6H5 + SO 3 → ∼C6H4SO 3H 28 29 30 Styrene-divinylbenzene anion exchange resins are obtained via chloromethylation. The 31 32 reaction is complex and may be represented in a number of ways. Conceptually it is a 33 34 reaction of chloromethyl ether. Chloromethyl ether is created in situ by formaldehyde/HCl 35 36 reaction. 37 38 ∼C6H5 + CH 3OCH 2Cl → ∼C6H4CH 2Cl + CH 3OH 39 40 41 This is then followed by amination: 42 43 ∼C6H4CH 2Cl + NHR 2 → ∼C6H4CH 2NHR 2 Cl 44 45 ∼C6H4CH 2Cl + NR 3 → ∼C6H4CH 2NR 3 Cl 46 47 Resins were analysed as supplied by the manufacturer. 48 49 50 51 52 53 54 55 56 57 58 59 60 4 http://mc.manuscriptcentral.com/tfac Email: [email protected] Page 5 of 35 Food Additives and Contaminants 1 2 3 Strong acid cation exchange resins 4 5 6 Two styrene divinyl benzene cation resins with sulphonate functionality (Resins A and B) 7 8 were analysed. Resin A complied with European standards for use in potable water 9 10 applications and was in compliance with the U.S. Food and Drug Administration Code of 11 12 Federal Regulations section 21, paragraph 173.25, for use in the treatment of foods for 13 14 human consumption.For PeerThis gel type Reviewresin is used for water Only softening and has ~10% 15 16 cross-linking. Resin B was a macroporous cation exchange resin. It is used in the 17 18 19 decalcification of sugar syrups during isolation of sugar from sugar beet.
Recommended publications
  • Polymeric Adsorbents for Industrial Applications
    Polymeric Adsorbent Resins for Industrial Applications Purolite polymeric adsorbent resins are synthetic spherical beads with defined pore structure, high surface area and selectivity for the purification and extraction of target molecules in aqueous solutions. PREMIER PRODUCTS The quality and consistency of our products is fundamental to our performance. Throughout all Purolite plants, production is carefully controlled to ensure that our products meet the most About Purolite stringent criteria, regardless of where they are produced. Purolite is a leading manufacturer of ion exchange, catalyst, adsorbent and specialty resins. With global headquarters in the United States, Purolite is the only company that focuses 100% of its resources on the development and production of resin technology. RELIABLE SERVICE Responding to our customers’ needs, Purolite has We are technical experts the widest variety of products and the industry’s and problem solvers. Reliable largest technical sales force. Globally, we have five and well trained, we understand strategically located research and development the urgency required to keep centers and eight application laboratories. Our businesses operating smoothly. ISO 9001 certified manufacturing facilities in Purolite employs the largest the United States of America, United Kingdom, technical sales team in the industry. Romania and China combined with more than 40 sales offices in 30 countries ensure complete worldwide coverage. INNOVATIVE SOLUTIONS Our continued investment in research and development means we are always perfecting and discovering innovative uses for ion exchange resins and adsorbents. We strive to make the impossible possible. Polymeric Adsorbent Resins for Industrial Applications Although adsorption technologies have been around for decades, adsorption processes are not completely understood by many who can benefit from them.
    [Show full text]
  • Gaseous Mercury Behaviour in the Presence of Functionalized Styrene–Divinylbenzene Copolymers
    Pure Appl. Chem. 2014; 86(11): 1861–1869 Conference paper Mercedes Díaz-Somoano*, Adriana Popa, Marta Rumayor, M. Antonia López-Antón, M. Rosa Martínez-Tarazona and Gheorghe Ilia Gaseous mercury behaviour in the presence of functionalized styrene–divinylbenzene copolymers Abstract: Two styrene-6.7 % divinylbenzene copolymers functionalized with aminophosphonate groups and phosphonic acid groups by means of “one-pot” reactions were evaluated for gaseous mercury removal. The results were compared with those obtained using a commercial activated carbon. These materials exhibit a significant capacity for mercury oxidation (13–25 %) with low mercury capture (9–30 μg g–1). The mercury retention capacity was observed to decrease when acid gases are present in the gas atmosphere. The highest retention capacity corresponded to the highest oxidation ratio and was obtained using the AMINOPHOS sample. These results suggest a mercury oxidation and a subsequent chemical adsorption mechanism in which the amino groups play a role in mercury capture. Keywords: functionalized S-6.7%DVB copolymers; mercury adsorption; mercury oxidation; POC-2014. DOI 10.1515/pac-2014-0614 Introduction Mercury is a highly toxic pollutant of global concern [1]. Exposure to mercury can affect the human nervous system and harm the brain, heart, kidneys, lungs, and immune system. Gaseous elemental mercury (GEM) is emitted into the atmosphere from both natural and anthropogenic sources, and has an atmospheric resi- dence time of 0.5–2 years, allowing it to be transported over great distances [2, 3]. In January 2013 govern- ments took a major step forward to counteracting the health and environmental impact of mercury by signing a global Convention agreement covering emissions and releases [4].
    [Show full text]
  • TR-534: Divinylbenzene-HP (CASRN 1321-74-0) in F344/N Rats And
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF DIVINYLBENZENE-HP (CAS NO. 1321-74-0) IN F344/N RATS AND B6C3F1 MICE (INHALATION STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 November 2006 NTP TR 534 NIH Publication No. 07-4470 National Institutes of Health Public Health Service U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES FOREWORD The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Technical Report series began in 1976 with carcinogenesis studies conducted by the National Cancer Institute. In 1981, this bioassay program was transferred to the NTP. The studies described in the Technical Report series are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected substances in laboratory animals (usually two species, rats and mice). Substances selected for NTP toxicity and carcinogenicity studies are chosen primarily on the basis of human exposure, level of production, and chemical structure.
    [Show full text]
  • Liquid Chromatographic Retention Studies Using Polystyrene
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1996 Liquid chromatographic retention studies using polystyrene-divinylbenzene stationary phases in reversed-phase and normal-phase eluents Thomas Kent Chambers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons Recommended Citation Chambers, Thomas Kent, "Liquid chromatographic retention studies using polystyrene-divinylbenzene stationary phases in reversed- phase and normal-phase eluents " (1996). Retrospective Theses and Dissertations. 11365. https://lib.dr.iastate.edu/rtd/11365 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been rqsroduced from the microfilm master. UMI films the text directly fiom the ori^nal or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be fi'om any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikdy event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • 89 Matrix: Air Target Concentration: 50 Ppm (215 Mg/M3)
    DIVINYLBENZENE ETHYLVINYLBENZENE STYRENE Method no.: 89 Matrix: Air Target concentration: 50 ppm (215 mg/m3) for styrene 7.6 ppm (40 mg/m3) for ethylvinylbenzene 10 ppm (50 mg/m3) for divinylbenzene Procedure: Samples are collected by drawing air through glass sampling tubes containing coconut shell charcoal coated with 4-tert-butylcatechol. Samples are desorbed with toluene and analyzed by GC using a flame ionization detector. Recommended air volume and sampling rate: 12 L at 0.05 L/min Reliable quantitation limit: 100 ppb (426 µg/m3) for styrene 71 ppb (384 µg/m3) for ethylvinylbenzene 94 ppb (500 µg/m3) for divinylbenzene Standard error of estimate at the target concentration: 7.4% for styrene (Section 4.7.) 5.2% for ethylvinylbenzene 5.2% for divinylbenzene Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the Organic Methods Evaluation Branch. Date: July 1991 Chemist: Donald Burright Organic Methods Evaluation Branch OSHA Salt Lake Technical Center Salt Lake City, UT 84165-0200 1 of 20 T-89-FV-01-9107-M 1. General Discussion 1.1 Background 1.1.1 History The evaluation presented here was initiated as an effort to overcome the low and non-linear desorption efficiency of styrene, from coconut shell charcoal, found in OSHA Method 9, when styrene air concentrations are low (Ref. 5.1). The development of sampling materials, such as Carbosieve S-III and 4-tert-butylcatechol (TBC) coated coconut shell charcoal, increased the prospects of successfully overcoming these recovery problems. The use of TBC-coated coconut shell charcoal coated with TBC and toluene for desorption, ultimately provided the best results.
    [Show full text]
  • Studies of Thermal Properties of Di(Methacryloyloxymethyl) Naphthalene–Divinylbenzene (DMN–DVB) Copolymer and Its Alkyl- Bonded Derivatives
    Journal of Thermal Analysis and Calorimetry https://doi.org/10.1007/s10973-019-08150-7 (0123456789().,-volV)(0123456789().,- volV) Studies of thermal properties of di(methacryloyloxymethyl) naphthalene–divinylbenzene (DMN–DVB) copolymer and its alkyl- bonded derivatives 1 1 1 1 Barbara Gawdzik • Magdalena Rogulska • Marta Grochowicz • Joanna Osypiuk-Tomasik Received: 15 October 2018 / Accepted: 19 February 2019 Ó The Author(s) 2019 Abstract This paper presents the thermal properties of highly crosslinked di(methacryloyloxymethyl)naphthalene–divinylbenzene (DMN–DVB) copolymeric microspheres containing polar groups in the structure and their alkyl-bonded derivatives. C8 and C18 alkyl chains were introduced into the aromatic rings of the DMN–DVB porous copolymer by means of the Friedel– Crafts reaction. As a source of C8 and C18 alkyl chains, octyl and octadecyl chlorides were used. It was necessary to check whether the introduction of alkyl chains into the structure of polymeric packing had an impact on its thermal properties. The studies were carried out by thermogravimetry coupled online with FTIR spectroscopy and differential scanning calorimetry in inert atmosphere (helium). It was stated that the modified materials showed 20 and 50% mass losses at higher temperatures than the non-modified one while 1% mass loss was observed at lower temperatures. Moreover, an analysis of volatile decomposition products was performed. Keywords Polymeric microspheres Á Friedel–Crafts reaction Á DSC Á Thermogravimetry Á TG/FTIR Introduction other hand, these materials were stable with the eluents from pH 1–14 and resulted in excellent separations. Alkyl-bonded silicas are the most popular stationary phases To eliminate the above-mentioned disadvantages of used in chromatography.
    [Show full text]
  • Gaseous Mercury Behaviour in the Presence of Functionalized Styrene–Divinylbenzene Copolymers
    Pure Appl. Chem. 2014; 86(11): 1861–1869 Conference paper Mercedes Díaz-Somoano*, Adriana Popa, Marta Rumayor, M. Antonia López-Antón, M. Rosa Martínez-Tarazona and Gheorghe Ilia Gaseous mercury behaviour in the presence of functionalized styrene–divinylbenzene copolymers Abstract: Two styrene-6.7 % divinylbenzene copolymers functionalized with aminophosphonate groups and phosphonic acid groups by means of “one-pot” reactions were evaluated for gaseous mercury removal. The results were compared with those obtained using a commercial activated carbon. These materials exhibit a significant capacity for mercury oxidation (13–25 %) with low mercury capture (9–30 μg g–1). The mercury retention capacity was observed to decrease when acid gases are present in the gas atmosphere. The highest retention capacity corresponded to the highest oxidation ratio and was obtained using the AMINOPHOS sample. These results suggest a mercury oxidation and a subsequent chemical adsorption mechanism in which the amino groups play a role in mercury capture. Keywords: functionalized S-6.7%DVB copolymers; mercury adsorption; mercury oxidation; POC-2014. DOI 10.1515/pac-2014-0614 Introduction Mercury is a highly toxic pollutant of global concern [1]. Exposure to mercury can affect the human nervous system and harm the brain, heart, kidneys, lungs, and immune system. Gaseous elemental mercury (GEM) is emitted into the atmosphere from both natural and anthropogenic sources, and has an atmospheric resi- dence time of 0.5–2 years, allowing it to be transported over great distances [2, 3]. In January 2013 govern- ments took a major step forward to counteracting the health and environmental impact of mercury by signing a global Convention agreement covering emissions and releases [4].
    [Show full text]
  • Second Phase of Polymer Rapid Screening Results of the Screening
    Second Phase of Polymer Rapid Screening Results of the Screening Assessment Environment and Climate Change Canada Health Canada Avril 2018 Synopsis As part of the Chemicals Management Plan (CMP), the Government of Canada is assessing and managing, where appropriate, the potential health and ecological risks associated with certain polymers under the Canadian Environmental Protection Act, 1999 (CEPA). Three hundred and thirty-six polymers were identified as candidates for a second phase of polymer rapid screening. These 336 polymers met the categorization criteria under subsection 73(1) of CEPA, or were considered a priority based on other human health or ecological concerns. The approach for a second phase of polymer rapid screening was applied to these 336 polymers. It involved using conservative assumptions to identify polymers that warrant further evaluation of their potential to cause harm to either human health or the environment, and those that are expected to be of low concern for human health or the environment. The approach applied extends beyond that used in the previous rapid screening of polymers based on the experience gained from that earlier activity. Additionally, information specific to the characterization of polymers that was collected through both a voluntary survey and a mandatory survey conducted under CEPA allowed refinements of the approach. The ecological component of the second phase of polymer rapid screening consisted of four main steps to identify polymers that warrant further evaluation of their potential to cause harm. The first step involved identifying polymers which are not likely to be of ecological concern based on low reported import and manufacture quantities according to the voluntary survey and surveys conducted under section 71 of CEPA.
    [Show full text]
  • SDS Contains All of the Information Required by the HPR
    SAFETY DATA SHEET Preparation Date: 10/11/2018 Revision Date: Not Applicable Revision Number: Not Applicable 1. IDENTIFICATION Product identifier Product code: P2910 Product Name: Poly(styrene-co-divinylbenzene), 2 Percent Cross-linked, 100-200 Mesh Other means of identification Synonyms: Styrene/DVB copolymer; Divinylbenzene styrene polymer; Divinylbenzene-styrene copolymer; Styrene divinyl benzene; Poly(styrene-co-divinylbenzene); Polystyrene crosslinked with divinylbenzene CAS #: 9003-70-7 RTECS # Not available CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: No information available. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is not considered hazardous according to the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Not a dangerous substance or mixture according to the Globally Harmonized System (GHS) Label elements Not classified Hazards not otherwise classified (HNOC) Not Applicable Other hazards Not available Product code: P2910 Product name: 1 / 10 Poly(styrene-co-divinylbenzene), 2 Percent Cross-linked, 100-200 Mesh 3. COMPOSITION/INFORMATION ON INGREDIENTS Components CAS-No. Weight % Poly(styrene-co-divinylbenzene) 9003-70-7 100 4. FIRST AID MEASURES First aid measures General Advice: National Capital Poison Center in the United States can provide assistance if you have a poison emergency and need to talk to a poison specialist. Call 1-800-222-1222. Skin Contact: Wash off immediately with soap and plenty of water removing all contaminated clothing and shoes.
    [Show full text]
  • Divinylbenzene Product Data Sheet
    Product Data Sheet Divinylbenzene The Versatile Divinylbenzene (DVB) is an extremely versatile cross-linking agent that also improves Cross-Linking Agent polymer properties. As a result, it has been used to manufacture adhesives, plastics, for Improving elastomers, ceramics, biological materials, coatings, catalysts, membranes, Material Properties pharmaceuticals, specialty polymers, and ion exchange resins. It is also important that just a small amount of DVB is needed to improve both chemical and physical properties. This efficiency in use allows you to gain selected property improvements without hindering others. In short, DVB allows you to create materials not otherwise possible and enhance the properties of existing materials in many ways. For example, when used to cross-link polystyrene, DVB increases solvent resistance, heat distortion, impact strength, tensile strength, and hardness. And as little as 0.5% divinylbenzene in a styrene polymerization makes the polymer insoluble. DuPont Offers DuPont recognizes that your requirements for DVB may not always be the same in every Three Grades of application. That’s why we offer three levels of DVB concentration, allowing you to DVB to Best Match balance economy with functionality. For the greatest economy on an active ingredient Your Needs basis, DVB-55 is your best choice. DVB-63 and DVB-HP (80% DVB) work best when you need high levels of dual double bond functionality to cross-link vinyl polymeric systems with the least amount of material. DVB-HP should also be considered when higher concentrations of ethylvinylbenzene (the major complementary component in these DVB products) do not provide any additional benefits—even though the ethylvinylbenzene will react with most unsaturated systems.
    [Show full text]
  • Divinylbenzene (DVB) Technical Manual
    DuPont Water Solutions Divinylbenzene (DVB) Technical Manual Version 3 March 2020 NOTICE: The information provided in this literature is given in good faith for informational purposes only. DuPont assumes no obligation or liability for the information presented herein. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED. Table of contents 1 Introduction 4 2 Handling 5 3 Storage 9 4 Bulk storage of DVB 13 5 Appendix 18 Form No. 45-D02015-en, Rev. 3 Page 2 of 20 March 2020 Table of figures Figure 1. Typical TBC loss in styrenic monomers 10 Figure 2. Monomer storage installation 14 Table of tables Table 1. Fire and explosion hazard data 6 Table 2. Health hazard data 6 Table 3. Reactivity data, all DVB grades 7 Table 4. Handling precautions 7 Table 5. First aid recommendations 8 Table 6. Environmental and disposal information 8 Table 7. Minimum inhibitor levels of DVB 9 Table 8. Suggested bulk storage maintenance schedule 11 Table 9. Minimum oxygen content in stored monomer 11 Table 10. Recommended storage conditions and retest frequency of DVB (all grades) 12 Table 11. Recommended seals and gaskets for DVB 17 Table 12. Typical chemical analysis 18 Table 13. Physical properties of DVB 19 Table 14. Recommended materials of construction 19 Table 15. Regulatory informationDangerous Goods transport classifications for DVB 55, 63, HP 20 Form No. 45-D02015-en, Rev. 3 Page 3 of 20 March 2020 1 Introduction About this manual This manual is designed to provide quick, convenient access to essential health, safety, and environmental information on divinylbenzene (DVB).
    [Show full text]
  • Assessment of Methods to Collect and Analyze Perfluoroalkyl and Polyfluoroalkyl Substances in Air, Dust and Soil
    Assessment of Methods to Collect and Analyze Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Air, Dust and Soil Final Report Agreement Number 19RD019 Principal Investigator: Asa Bradman, PhD, MS Center for Environmental Research and Children’s Health University of California - Berkeley February 2021 Prepared for the California Air Resources Board (CARB) Report Authors Asa Bradman, PhD Rosemary Castorina, PhD Teja Pattabhiraman Anuroop Nirula Monice Wong, B.A. Sion Calabretta Center for Environmental Research and Children’s Health University of California - Berkeley 1995 University Avenue, Suite 265 Berkeley, CA 94704 i Acknowledgements The authors wish to thank the California Air Resources Board (CARB) for sponsoring this study and especially CARB staff members Dr. Yirui Liang and Patrick Wong. We also thank Randy Maddalena with the Energy Analysis & Environmental Impacts Division at LBNL and Gary Hunt, Principal Scientist with TRC Environmental Corporation, for their insightful comments and contributions to the report. The statements and conclusions in this Report are those of the contractor and not necessarily those of the California Air Resources Board. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products. ii Table of Contents Executive Summary ................................................................................................................vii Glossary of PFAS Terms and Abbreviations
    [Show full text]