TR-534: Divinylbenzene-HP (CASRN 1321-74-0) in F344/N Rats And

Total Page:16

File Type:pdf, Size:1020Kb

TR-534: Divinylbenzene-HP (CASRN 1321-74-0) in F344/N Rats And NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF DIVINYLBENZENE-HP (CAS NO. 1321-74-0) IN F344/N RATS AND B6C3F1 MICE (INHALATION STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 November 2006 NTP TR 534 NIH Publication No. 07-4470 National Institutes of Health Public Health Service U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES FOREWORD The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Technical Report series began in 1976 with carcinogenesis studies conducted by the National Cancer Institute. In 1981, this bioassay program was transferred to the NTP. The studies described in the Technical Report series are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected substances in laboratory animals (usually two species, rats and mice). Substances selected for NTP toxicity and carcinogenicity studies are chosen primarily on the basis of human exposure, level of production, and chemical structure. The interpretive conclusions presented in NTP Technical Reports are based only on the results of these NTP studies. Extrapolation of these results to other species, including characterization of hazards and risks to humans, requires analyses beyond the intent of these reports. Selection per se is not an indicator of a substance’s carcinogenic potential. The NTP conducts its studies in compliance with its laboratory health and safety guidelines and FDA Good Laboratory Practice Regulations and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use are in accordance with the Public Health Service Policy on Humane Care and Use of Animals. Studies are subjected to retrospective quality assurance audits before being presented for public review. NTP Technical Reports are indexed in the NIH/NLM PubMed database and are available free of charge electronically on the NTP website (http://ntp.niehs.nih.gov) or in hardcopy upon request from the NTP Central Data Management group at [email protected] or (919) 541-3419. NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF DIVINYLBENZENE-HP (CAS NO. 1321-74-0) IN F344/N RATS AND B6C3F1 MICE (INHALATION STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 November 2006 NTP TR 534 NIH Publication No. 07-4470 National Institutes of Health Public Health Service U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES 2 CONTRIBUTORS National Toxicology Program NTP Pathology Working Group Evaluated and interpreted results and reported findings Evaluated slides and prepared pathology report on rats (July 17, 2003) D.L. Morgan, Ph.D., Study Scientist W.G. Lieuallen, D.V.M., Ph.D., Chairperson G. Pearse, B.V.M.&S., Study Pathologist Pathology Associates, A Charles River Company D.W. Bristol, Ph.D. M.T. Butt, D.V.M. J.R. Bucher, Ph.D. Pathology Associates, A Charles River Company L.T. Burka, Ph.D. J.T. Boyce, D.V.M., Ph.D., Observer R.S. Chhabra, Ph.D. Pathology Associates, A Charles River Company J.R. Hailey, D.V.M. S. Harbo, D.V.M., Observer R.A. Herbert, D.V.M., Ph.D. Battelle Northwest Operations G.E. Kissling, Ph.D. R.A. Herbert, D.V.M., Ph.D. D.E. Malarkey, D.V.M., Ph.D. National Toxicology Program R.R. Maronpot, D.V.M. P.C. Howroyd, M.A., VetMB Experimental Pathology Laboratories, Inc. S.D. Peddada, Ph.D. D.E. Malarkey, D.V.M., Ph.D. J.H. Roycroft, Ph.D. National Toxicology Program C.S. Smith, Ph.D. G. Pearse, B.V.M.&S. G.S. Travlos, D.V.M. National Toxicology Program K.L. Witt, M.S. J.C. Peckham, D.V.M., M.S., Ph.D. Experimental Pathology Laboratories, Inc. Battelle Northwest Operations R.C. Sills, D.V.M., Ph.D. Conducted studies and evaluated pathology findings National Toxicology Program J.A. Dill, Ph.D., Principal Investigator (2-year studies) Evaluated slides and prepared pathology report on mice (March 6, 2003) S.L. Grumbein, D.V.M., Ph.D. R.A. Renne, D.V.M. W.G. Lieuallen, D.V.M., Ph.D., Chairperson B.K. Hayden Pathology Associates, A Charles River Company M.T. Butt, D.V.M. Experimental Pathology Laboratories, Inc. Pathology Associates, A Charles River Company Provided pathology review D. Dixon, D.V.M., Ph.D. National Toxicology Program M.H. Hamlin, II, D.V.M., Principal Investigator R.A. Herbert, D.V.M., Ph.D. P.C. Howroyd, M.A., VetMB National Toxicology Program J.C. Peckham, D.V.M., M.S., Ph.D. G. Pearse, B.V.M.&S. National Toxicology Program Dynamac Corporation J.C. Peckham, D.V.M., M.S., Ph.D. Experimental Pathology Laboratories, Inc. Prepared quality assurance audits Biotechnical Services, Inc. S. Brecher, Ph.D., Principal Investigator Prepared Technical Report Constella Group, Inc. S.R. Gunnels, M.A., Principal Investigator Provided statistical analyses N.N. Buchanan, B.S. L.M. Harper, B.S. P.W. Crockett, Principal Investigator J.I. Powers, M.A.P. L.J. Betz, M.S. D.C. Serbus, Ph.D. M.R. Easterling, Ph.D. K.P. McGowan, M.B.A. J. Matthews, M.S. 3 CONTENTS ABSTRACT . 5 EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY . 9 TECHNICAL REPORTS REVIEW SUBCOMMITTEE . 10 SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS . 11 INTRODUCTION . 13 MATERIALS AND METHODS . 19 RESULTS . 31 DISCUSSION AND CONCLUSIONS . 65 REFERENCES . 69 APPENDIX A Summary of Lesions in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP . 75 APPENDIX B Summary of Lesions in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP . 117 APPENDIX C Summary of Lesions in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP . 155 APPENDIX D Summary of Lesions in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP . 189 APPENDIX E Genetic Toxicology . 225 APPENDIX F Clinical Pathology Results . 233 APPENDIX G Organ Weights and Organ-Weight-to-Body-Weight Ratios . 241 APPENDIX H Reproductive Tissue Evaluations and Estrous Cycle Characterization . 247 APPENDIX I Chemical Characterization and Generation of Chamber Concentrations . 251 APPENDIX J Ingredients, Nutrient Composition, and Contaminant Levels in NTP-2000 Rat and Mouse Ration . 263 APPENDIX K Sentinel Animal Program . 267 APPENDIX L Physiologically Based Pharmacokinetic Model . 271 4 Divinylbenzene-HP, NTP TR 534 SUMMARY Background Divinylbenzene is used to make vinyl polymers. We studied divinylbenzene to determine if it caused cancer in rats or mice. Methods We exposed groups of 50 male and 50 female rats and mice to air containing divinylbenzene 6 hours per day for 2 years. Rats were exposed to concentrations of 100, 200, or 400 parts per million (ppm) of divinylbenzene in air, and mice were exposed to concentrations of 10, 30, or 100 ppm. Similar groups of 50 animals were exposed to clean air in the same inhalation chambers 6 hours per day as the untreated control groups. Tissues from more than 40 sites were examined for every animal. Results Each of the groups exposed to the highest concentration of divinylbenzene weighed less than their control group. A few rare tumors of the kidney and brain were seen in exposed male rats, and the rate of lung tumors was slightly increased in exposed female mice. Male and female rats exposed to divinylbenzene had degeneration and hyperplasia of the epithelium of the nose. Exposed male and female mice had hyperplasia of the lung and inflammation, degeneration, and hyperplasia of the epithelium of the nose. Conclusions We conclude that the occurrence of carcinomas of the kidney and glial cell tumors of the brain in male rats and adenomas or carcinomas of the lung in female mice may have been related to exposure to divinylbenzene. 5 ABSTRACT H2C HC CH CH2 DIVINYLBENZENE-HP CAS No. 1321-74-0 Chemical Formula: C10H10 Molecular Weight: 130.189 Synonyms: Benzene, diethenyl-(9CI); diethenylbenzene; divinyl benzene; divinylbenzene-HP (high purity); divinylbenzene (m- and p-mixture); divinylbenzene (m-, p-mixture); divinyl benzene, mixed isomers; DVB; DVB-HP; m- (or p-) divinylbenzene; vinylstyrene Divinylbenzene-HP is used for producing vinyl 2-WEEK STUDY IN MICE polymers. Divinylbenzene-HP was nominated for study Groups of five male and five female mice were exposed by the National Cancer Institute because of the potential by whole body inhalation to divinylbenzene-HP at target for worker exposure and the structural similarity of concentrations of 0, 25, 50, 100, 200, or 400 ppm for divinylbenzene to styrene, a potential human carcinogen. 6 hours plus T (12 minutes) per day, 5 days per week Male and female F344/N rats and B6C3F mice were 90 1 for 17 days. All 400 ppm males and females died on or exposed to divinylbenzene-HP (80%) by inhalation for before the second day of the study, and two male and two 2 weeks, 3 months, or 2 years. Genetic toxicology stud­ female 200 ppm mice died early. Mean body weights of ies were conducted in Salmonella typhimurium, Escher­ 100 and 200 ppm males were significantly less than ichia coli, and mouse peripheral blood erythrocytes.
Recommended publications
  • Polymeric Adsorbents for Industrial Applications
    Polymeric Adsorbent Resins for Industrial Applications Purolite polymeric adsorbent resins are synthetic spherical beads with defined pore structure, high surface area and selectivity for the purification and extraction of target molecules in aqueous solutions. PREMIER PRODUCTS The quality and consistency of our products is fundamental to our performance. Throughout all Purolite plants, production is carefully controlled to ensure that our products meet the most About Purolite stringent criteria, regardless of where they are produced. Purolite is a leading manufacturer of ion exchange, catalyst, adsorbent and specialty resins. With global headquarters in the United States, Purolite is the only company that focuses 100% of its resources on the development and production of resin technology. RELIABLE SERVICE Responding to our customers’ needs, Purolite has We are technical experts the widest variety of products and the industry’s and problem solvers. Reliable largest technical sales force. Globally, we have five and well trained, we understand strategically located research and development the urgency required to keep centers and eight application laboratories. Our businesses operating smoothly. ISO 9001 certified manufacturing facilities in Purolite employs the largest the United States of America, United Kingdom, technical sales team in the industry. Romania and China combined with more than 40 sales offices in 30 countries ensure complete worldwide coverage. INNOVATIVE SOLUTIONS Our continued investment in research and development means we are always perfecting and discovering innovative uses for ion exchange resins and adsorbents. We strive to make the impossible possible. Polymeric Adsorbent Resins for Industrial Applications Although adsorption technologies have been around for decades, adsorption processes are not completely understood by many who can benefit from them.
    [Show full text]
  • Gaseous Mercury Behaviour in the Presence of Functionalized Styrene–Divinylbenzene Copolymers
    Pure Appl. Chem. 2014; 86(11): 1861–1869 Conference paper Mercedes Díaz-Somoano*, Adriana Popa, Marta Rumayor, M. Antonia López-Antón, M. Rosa Martínez-Tarazona and Gheorghe Ilia Gaseous mercury behaviour in the presence of functionalized styrene–divinylbenzene copolymers Abstract: Two styrene-6.7 % divinylbenzene copolymers functionalized with aminophosphonate groups and phosphonic acid groups by means of “one-pot” reactions were evaluated for gaseous mercury removal. The results were compared with those obtained using a commercial activated carbon. These materials exhibit a significant capacity for mercury oxidation (13–25 %) with low mercury capture (9–30 μg g–1). The mercury retention capacity was observed to decrease when acid gases are present in the gas atmosphere. The highest retention capacity corresponded to the highest oxidation ratio and was obtained using the AMINOPHOS sample. These results suggest a mercury oxidation and a subsequent chemical adsorption mechanism in which the amino groups play a role in mercury capture. Keywords: functionalized S-6.7%DVB copolymers; mercury adsorption; mercury oxidation; POC-2014. DOI 10.1515/pac-2014-0614 Introduction Mercury is a highly toxic pollutant of global concern [1]. Exposure to mercury can affect the human nervous system and harm the brain, heart, kidneys, lungs, and immune system. Gaseous elemental mercury (GEM) is emitted into the atmosphere from both natural and anthropogenic sources, and has an atmospheric resi- dence time of 0.5–2 years, allowing it to be transported over great distances [2, 3]. In January 2013 govern- ments took a major step forward to counteracting the health and environmental impact of mercury by signing a global Convention agreement covering emissions and releases [4].
    [Show full text]
  • Liquid Chromatographic Retention Studies Using Polystyrene
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1996 Liquid chromatographic retention studies using polystyrene-divinylbenzene stationary phases in reversed-phase and normal-phase eluents Thomas Kent Chambers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons Recommended Citation Chambers, Thomas Kent, "Liquid chromatographic retention studies using polystyrene-divinylbenzene stationary phases in reversed- phase and normal-phase eluents " (1996). Retrospective Theses and Dissertations. 11365. https://lib.dr.iastate.edu/rtd/11365 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been rqsroduced from the microfilm master. UMI films the text directly fiom the ori^nal or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be fi'om any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikdy event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • 89 Matrix: Air Target Concentration: 50 Ppm (215 Mg/M3)
    DIVINYLBENZENE ETHYLVINYLBENZENE STYRENE Method no.: 89 Matrix: Air Target concentration: 50 ppm (215 mg/m3) for styrene 7.6 ppm (40 mg/m3) for ethylvinylbenzene 10 ppm (50 mg/m3) for divinylbenzene Procedure: Samples are collected by drawing air through glass sampling tubes containing coconut shell charcoal coated with 4-tert-butylcatechol. Samples are desorbed with toluene and analyzed by GC using a flame ionization detector. Recommended air volume and sampling rate: 12 L at 0.05 L/min Reliable quantitation limit: 100 ppb (426 µg/m3) for styrene 71 ppb (384 µg/m3) for ethylvinylbenzene 94 ppb (500 µg/m3) for divinylbenzene Standard error of estimate at the target concentration: 7.4% for styrene (Section 4.7.) 5.2% for ethylvinylbenzene 5.2% for divinylbenzene Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the Organic Methods Evaluation Branch. Date: July 1991 Chemist: Donald Burright Organic Methods Evaluation Branch OSHA Salt Lake Technical Center Salt Lake City, UT 84165-0200 1 of 20 T-89-FV-01-9107-M 1. General Discussion 1.1 Background 1.1.1 History The evaluation presented here was initiated as an effort to overcome the low and non-linear desorption efficiency of styrene, from coconut shell charcoal, found in OSHA Method 9, when styrene air concentrations are low (Ref. 5.1). The development of sampling materials, such as Carbosieve S-III and 4-tert-butylcatechol (TBC) coated coconut shell charcoal, increased the prospects of successfully overcoming these recovery problems. The use of TBC-coated coconut shell charcoal coated with TBC and toluene for desorption, ultimately provided the best results.
    [Show full text]
  • Studies of Thermal Properties of Di(Methacryloyloxymethyl) Naphthalene–Divinylbenzene (DMN–DVB) Copolymer and Its Alkyl- Bonded Derivatives
    Journal of Thermal Analysis and Calorimetry https://doi.org/10.1007/s10973-019-08150-7 (0123456789().,-volV)(0123456789().,- volV) Studies of thermal properties of di(methacryloyloxymethyl) naphthalene–divinylbenzene (DMN–DVB) copolymer and its alkyl- bonded derivatives 1 1 1 1 Barbara Gawdzik • Magdalena Rogulska • Marta Grochowicz • Joanna Osypiuk-Tomasik Received: 15 October 2018 / Accepted: 19 February 2019 Ó The Author(s) 2019 Abstract This paper presents the thermal properties of highly crosslinked di(methacryloyloxymethyl)naphthalene–divinylbenzene (DMN–DVB) copolymeric microspheres containing polar groups in the structure and their alkyl-bonded derivatives. C8 and C18 alkyl chains were introduced into the aromatic rings of the DMN–DVB porous copolymer by means of the Friedel– Crafts reaction. As a source of C8 and C18 alkyl chains, octyl and octadecyl chlorides were used. It was necessary to check whether the introduction of alkyl chains into the structure of polymeric packing had an impact on its thermal properties. The studies were carried out by thermogravimetry coupled online with FTIR spectroscopy and differential scanning calorimetry in inert atmosphere (helium). It was stated that the modified materials showed 20 and 50% mass losses at higher temperatures than the non-modified one while 1% mass loss was observed at lower temperatures. Moreover, an analysis of volatile decomposition products was performed. Keywords Polymeric microspheres Á Friedel–Crafts reaction Á DSC Á Thermogravimetry Á TG/FTIR Introduction other hand, these materials were stable with the eluents from pH 1–14 and resulted in excellent separations. Alkyl-bonded silicas are the most popular stationary phases To eliminate the above-mentioned disadvantages of used in chromatography.
    [Show full text]
  • Gaseous Mercury Behaviour in the Presence of Functionalized Styrene–Divinylbenzene Copolymers
    Pure Appl. Chem. 2014; 86(11): 1861–1869 Conference paper Mercedes Díaz-Somoano*, Adriana Popa, Marta Rumayor, M. Antonia López-Antón, M. Rosa Martínez-Tarazona and Gheorghe Ilia Gaseous mercury behaviour in the presence of functionalized styrene–divinylbenzene copolymers Abstract: Two styrene-6.7 % divinylbenzene copolymers functionalized with aminophosphonate groups and phosphonic acid groups by means of “one-pot” reactions were evaluated for gaseous mercury removal. The results were compared with those obtained using a commercial activated carbon. These materials exhibit a significant capacity for mercury oxidation (13–25 %) with low mercury capture (9–30 μg g–1). The mercury retention capacity was observed to decrease when acid gases are present in the gas atmosphere. The highest retention capacity corresponded to the highest oxidation ratio and was obtained using the AMINOPHOS sample. These results suggest a mercury oxidation and a subsequent chemical adsorption mechanism in which the amino groups play a role in mercury capture. Keywords: functionalized S-6.7%DVB copolymers; mercury adsorption; mercury oxidation; POC-2014. DOI 10.1515/pac-2014-0614 Introduction Mercury is a highly toxic pollutant of global concern [1]. Exposure to mercury can affect the human nervous system and harm the brain, heart, kidneys, lungs, and immune system. Gaseous elemental mercury (GEM) is emitted into the atmosphere from both natural and anthropogenic sources, and has an atmospheric resi- dence time of 0.5–2 years, allowing it to be transported over great distances [2, 3]. In January 2013 govern- ments took a major step forward to counteracting the health and environmental impact of mercury by signing a global Convention agreement covering emissions and releases [4].
    [Show full text]
  • Second Phase of Polymer Rapid Screening Results of the Screening
    Second Phase of Polymer Rapid Screening Results of the Screening Assessment Environment and Climate Change Canada Health Canada Avril 2018 Synopsis As part of the Chemicals Management Plan (CMP), the Government of Canada is assessing and managing, where appropriate, the potential health and ecological risks associated with certain polymers under the Canadian Environmental Protection Act, 1999 (CEPA). Three hundred and thirty-six polymers were identified as candidates for a second phase of polymer rapid screening. These 336 polymers met the categorization criteria under subsection 73(1) of CEPA, or were considered a priority based on other human health or ecological concerns. The approach for a second phase of polymer rapid screening was applied to these 336 polymers. It involved using conservative assumptions to identify polymers that warrant further evaluation of their potential to cause harm to either human health or the environment, and those that are expected to be of low concern for human health or the environment. The approach applied extends beyond that used in the previous rapid screening of polymers based on the experience gained from that earlier activity. Additionally, information specific to the characterization of polymers that was collected through both a voluntary survey and a mandatory survey conducted under CEPA allowed refinements of the approach. The ecological component of the second phase of polymer rapid screening consisted of four main steps to identify polymers that warrant further evaluation of their potential to cause harm. The first step involved identifying polymers which are not likely to be of ecological concern based on low reported import and manufacture quantities according to the voluntary survey and surveys conducted under section 71 of CEPA.
    [Show full text]
  • SDS Contains All of the Information Required by the HPR
    SAFETY DATA SHEET Preparation Date: 10/11/2018 Revision Date: Not Applicable Revision Number: Not Applicable 1. IDENTIFICATION Product identifier Product code: P2910 Product Name: Poly(styrene-co-divinylbenzene), 2 Percent Cross-linked, 100-200 Mesh Other means of identification Synonyms: Styrene/DVB copolymer; Divinylbenzene styrene polymer; Divinylbenzene-styrene copolymer; Styrene divinyl benzene; Poly(styrene-co-divinylbenzene); Polystyrene crosslinked with divinylbenzene CAS #: 9003-70-7 RTECS # Not available CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: No information available. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is not considered hazardous according to the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Not a dangerous substance or mixture according to the Globally Harmonized System (GHS) Label elements Not classified Hazards not otherwise classified (HNOC) Not Applicable Other hazards Not available Product code: P2910 Product name: 1 / 10 Poly(styrene-co-divinylbenzene), 2 Percent Cross-linked, 100-200 Mesh 3. COMPOSITION/INFORMATION ON INGREDIENTS Components CAS-No. Weight % Poly(styrene-co-divinylbenzene) 9003-70-7 100 4. FIRST AID MEASURES First aid measures General Advice: National Capital Poison Center in the United States can provide assistance if you have a poison emergency and need to talk to a poison specialist. Call 1-800-222-1222. Skin Contact: Wash off immediately with soap and plenty of water removing all contaminated clothing and shoes.
    [Show full text]
  • Divinylbenzene Product Data Sheet
    Product Data Sheet Divinylbenzene The Versatile Divinylbenzene (DVB) is an extremely versatile cross-linking agent that also improves Cross-Linking Agent polymer properties. As a result, it has been used to manufacture adhesives, plastics, for Improving elastomers, ceramics, biological materials, coatings, catalysts, membranes, Material Properties pharmaceuticals, specialty polymers, and ion exchange resins. It is also important that just a small amount of DVB is needed to improve both chemical and physical properties. This efficiency in use allows you to gain selected property improvements without hindering others. In short, DVB allows you to create materials not otherwise possible and enhance the properties of existing materials in many ways. For example, when used to cross-link polystyrene, DVB increases solvent resistance, heat distortion, impact strength, tensile strength, and hardness. And as little as 0.5% divinylbenzene in a styrene polymerization makes the polymer insoluble. DuPont Offers DuPont recognizes that your requirements for DVB may not always be the same in every Three Grades of application. That’s why we offer three levels of DVB concentration, allowing you to DVB to Best Match balance economy with functionality. For the greatest economy on an active ingredient Your Needs basis, DVB-55 is your best choice. DVB-63 and DVB-HP (80% DVB) work best when you need high levels of dual double bond functionality to cross-link vinyl polymeric systems with the least amount of material. DVB-HP should also be considered when higher concentrations of ethylvinylbenzene (the major complementary component in these DVB products) do not provide any additional benefits—even though the ethylvinylbenzene will react with most unsaturated systems.
    [Show full text]
  • Divinylbenzene (DVB) Technical Manual
    DuPont Water Solutions Divinylbenzene (DVB) Technical Manual Version 3 March 2020 NOTICE: The information provided in this literature is given in good faith for informational purposes only. DuPont assumes no obligation or liability for the information presented herein. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED. Table of contents 1 Introduction 4 2 Handling 5 3 Storage 9 4 Bulk storage of DVB 13 5 Appendix 18 Form No. 45-D02015-en, Rev. 3 Page 2 of 20 March 2020 Table of figures Figure 1. Typical TBC loss in styrenic monomers 10 Figure 2. Monomer storage installation 14 Table of tables Table 1. Fire and explosion hazard data 6 Table 2. Health hazard data 6 Table 3. Reactivity data, all DVB grades 7 Table 4. Handling precautions 7 Table 5. First aid recommendations 8 Table 6. Environmental and disposal information 8 Table 7. Minimum inhibitor levels of DVB 9 Table 8. Suggested bulk storage maintenance schedule 11 Table 9. Minimum oxygen content in stored monomer 11 Table 10. Recommended storage conditions and retest frequency of DVB (all grades) 12 Table 11. Recommended seals and gaskets for DVB 17 Table 12. Typical chemical analysis 18 Table 13. Physical properties of DVB 19 Table 14. Recommended materials of construction 19 Table 15. Regulatory informationDangerous Goods transport classifications for DVB 55, 63, HP 20 Form No. 45-D02015-en, Rev. 3 Page 3 of 20 March 2020 1 Introduction About this manual This manual is designed to provide quick, convenient access to essential health, safety, and environmental information on divinylbenzene (DVB).
    [Show full text]
  • Assessment of Methods to Collect and Analyze Perfluoroalkyl and Polyfluoroalkyl Substances in Air, Dust and Soil
    Assessment of Methods to Collect and Analyze Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Air, Dust and Soil Final Report Agreement Number 19RD019 Principal Investigator: Asa Bradman, PhD, MS Center for Environmental Research and Children’s Health University of California - Berkeley February 2021 Prepared for the California Air Resources Board (CARB) Report Authors Asa Bradman, PhD Rosemary Castorina, PhD Teja Pattabhiraman Anuroop Nirula Monice Wong, B.A. Sion Calabretta Center for Environmental Research and Children’s Health University of California - Berkeley 1995 University Avenue, Suite 265 Berkeley, CA 94704 i Acknowledgements The authors wish to thank the California Air Resources Board (CARB) for sponsoring this study and especially CARB staff members Dr. Yirui Liang and Patrick Wong. We also thank Randy Maddalena with the Energy Analysis & Environmental Impacts Division at LBNL and Gary Hunt, Principal Scientist with TRC Environmental Corporation, for their insightful comments and contributions to the report. The statements and conclusions in this Report are those of the contractor and not necessarily those of the California Air Resources Board. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products. ii Table of Contents Executive Summary ................................................................................................................vii Glossary of PFAS Terms and Abbreviations
    [Show full text]
  • Studies on Novel Ion-Exchange Resin Based on Styrene-Divinylbenzene Copolymer and Its Application for Effluent Treatment
    Available online a twww.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2014, 6 (6):88-92 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Studies on novel ion-exchange resin based on styrene-divinylbenzene copolymer and its application for effluent treatment J. M. Shah 1 and J. A. Chaudhari 2 1Department of Chemistry, Bhavan’s Shri I.L. Pandya Arts, Science and Jashodaben Shah Commerce, College, Dakor, Dist : Kheda, Gujarat ( India) 2Department of Chemistry, Shri R. K. Parikh Arts and Science College, Petlad, Gujarat (India) _____________________________________________________________________________________________ ABSTRACT The Chloromethylated styrene–divinyl benzene[CM-SDVB] treated with Amino Napthalene Sulphonic acids in THF in concentrated NaOH (pH 9-10) at room temperature for 8 hrs. The resultant polymer designated as styrene– divinylbenzene naphthalene-1-sulfonic acid (SDVB-NS) was characterized by IR spectral studies and thermogravimetry. The SDVB-NS sample was monitored for its ion-exchanging properties. Batch equilibration method has been adopted for such properties. Based on this the SDVB-NS resin was employed for removing the metal ions from effluent coming out of electroplating industry. Key words : Environmental Analysis, FTIR, Ion Exchange, Batch equilibrium method, Sulfanilic acid, styrene– divinylbenzene. _____________________________________________________________________________________________ INTRODUCTION The effluents from mines and metal industries set up the serious problems in removal of heavy toxic metal ions. The contents of these metals in effluent are almost above the valid limit[1-3]. The contents of this metal can be reduced by treatment of lime, but result is not satisfactory. Thus ion-exchange technique has been proved very useful in this context.
    [Show full text]