Characiformes: Characidae) from the Rio Lençóis, Bahia, Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Characiformes: Characidae) from the Rio Lençóis, Bahia, Brazil Neotropical Ichthyology, 2(2):45-54, 2004 Copyright © 2004 Sociedade Brasileira de Ictiologia Myxiops aphos, new characid genus and species (Characiformes: Characidae) from the rio Lençóis, Bahia, Brazil Angela M. Zanata and Alberto Akama Myxiops aphos, new genus and species, is described from a river in the eastern portion of Bahia State, Brazil. Myxiops is distinguished from all other characid genera by the combination of the following features: infraorbitals fused in a unique fashion, resulting always in less than six autogenous bones; a single tooth row in the premaxilla; presence of somewhat pedunculate teeth, expanded and compressed distally, with cusps similar in shape and perfectly aligned along distal margin; ventral margin of toothed portion of maxillary curved towards ventral margin of premaxilla and maxillary teeth forming a continuous series with premaxillary teeth; margins of pre- and postzygapophyses with projections anteriorly and posteriorly directed; accumulation of epithelial cells forming globular structures distributed over head and scales; and base of anal fin without scales covering basal portion of unbranched and anterior branched rays. The presence of these features in other characids is discussed. Myxiops aphos, novo gênero e espécie, é descrita de um rio do leste do Estado da Bahia, Brasil. Myxiops distingue-se de todos os outros gêneros de caracídeos pela seguinte combinação de caracteres: exclusivo modo de fusão dos infraorbitais, resultan- do em menos de seis ossos autógenos; uma única série de dentes no pré-maxilar; presença de dentes comprimidos com cúspides similares em tamanho e alinhadas ao longo da margem distal dos dentes; margem ventral da porção com dentes do maxilar arqueando-se em direção à margem ventral do pré-maxilar e dentes do maxilar formando um eixo contínuo com os dentes do pré-maxilar; margens das pré- e pós-zigapófises com projeções anterior e posteriormente direcionadas; acúmulo de células epiteliais formando estruturas globulares distribuídas sobre a cabeça e escamas; e base da nadadeira anal sem escamas. A presença destas características em outros caracídeos é discutida. Key words: freshwater fish, species description, Chapada Diamantina, northeastern Brazil. Introduction (Weitzman & Fink, 1983; Weitzman & Malabarba, 1998) this subfamily has been restricted only to the genus Tetrago- Problems concerning the traditional definitions of genera nopterus (Reis, 2003; Lima et al., 2003). As a consequence of and suprageneric taxa among characids,PROOFS especially in the such actions, numerous taxa were listed as incertae sedis in subfamilies Cheirodontinae and Tetragonopterinae, have been the Characidae by Lima et al. (2003: 106). the subject of a series of discussions (e.g., Eigenmann, The new characid from the rio Paraguaçu of eastern Brazil 1917:43, 46; Weitzman & Cruz, 1981:999; Weitzman & Fink, described herein represents another case of a supra-specific 1983:344-347; Malabarba, 1998:194; and Lima et al., 2003). taxon distinguished by a combination of characters from all Based on multiple character distribution, Malabarba (1998) other characid genus, but of uncertain relationships. This restricted the Cheirodontinae to 14 genera and shifted 43 new taxon shares some characters with members of the Chei- genera previously allocated to that subfamily into incertae rodontinae (e.g., one row of pedunculated and multicuspidate sedis within the Characidae. The Tetragonopterinae was premaxillary teeth), but lacks most of the synapomorphies similarly traditionally treated as a very large subfamily (e.g., proposed by Malabarba (1998) to define the subfamily. Géry, 1977). More recently, in the absence of evidence that Alternatively, the overall body shape and color pattern of the Tetragonopterinae represents a monophyletic assemblage new form is very similar to those of taxa traditionally allocated Museu de Zoologia da Universidade de São Paulo, Caixa Postal 42594, 04299-970 São Paulo, SP, Brazil. e-mail: (AMZ) [email protected]; (AA) [email protected]. 45 46 Myxiops aphos, new characid genus and species from the rio Lençóis, Bahia, Brazil Fig. 1. Myxiops aphos, holotype, MZUSP 81026, 56.0 mm SL; Brazil, Bahia, rio Lençóis. in the Tetragonopterinae, most notably to Astyanax deposited in the Museu de Zoologia da Universidade de scabripinnis. São Paulo, São Paulo (MZUSP) and Museu de Ciências e The lack of a hypothesis concerning the phylogenetic Tecnologia, Pontifícia Universidade Católica do Rio Grande relationships of the new species within the Characidae, along do Sul, Porto Alegre (MCP). Osteological terminology is with a series of distinctive characters which exclude it from that used by Weitzman (1962), except for the use of anterior other recognized characid genera lead us to propose a new ceratohyal that follows Nelson (1969). genus, Myxiops, for the new species. Myxiops, new genus Materials and Methods Type species. Myxiops aphos, by monotypy and present Counts and measurements presented in table and/or in designation. the text were taken according to Fink & Weitzman (1974), except for the number of longitudinal scale rows below the Diagnosis. Myxiops is a characid genus of relatively small lateral line, which were counted from the scale row body size (maximum known SL 56.1 mm). The following immediately ventral to the lateral line to the scale row nearest combination of derived features distinguishes Myxiops from to insertion of the pelvic fin. In Table 1 standard length (SL) all other characid fishes: (1) infraorbitals fused in a unique is expressed in mm and all other measurements are expressed fashion, resulting in less than six autogenous bones; (2) as a percent of SL, except subunits of the head that are presence of a single tooth row in the premaxilla; (3) presence recorded as percents of the head PROOFSlength. Counts are of “cheirodontin-like teeth”, somewhat pedunculated, expan- presented in the species description, followed by frequency ded and compressed distally, with cusps similar in shape and in parentheses. Asterisks indicate values for the holotype. perfectly aligned along dorsal margin; (4) ventral margin of Counts of vertebrae, supraneurals and gill-rakers were taken toothed portion of maxillary curved towards the ventral margin from cleared and stained paratypes (c&s), following the of the premaxilla and maxillary teeth forming a continuous method discussed by Taylor & Van Dyke (1985). Vertebral series with premaxillary teeth; (5) margins of pre- and counts include the four centra associated with the Weberian postzygapophyses with projections anteriorly and posteriorly apparatus and have the terminal half centrum and associated directed; (6) accumulation of epithelial cells forming globular vertebral elements (PU1 + U1) counted as one element. Skin structures distributed over head and scales; and (7) base of fragments of the dorsal portion of the fish head were used anal-fin without scales covering basal portion of unbranched for histological analysis. This material was processed in and anterior branched rays. historesin (JB-4 glycolmethacrylate; Polysciences), sectioned at 3 µm, mounted in glass slides, and stained with Etymology. Myxiops from the Greek, myxa for slime, and iops hematoxylin/eosin (HE), periodic acid-Schiff’s (PAS)/ for small fish, in reference to the copious amount of mucous toluidine blue 0. 2% in pH 7.0 (buffer Mc Ivaine), and in covering the body, which makes the fish very slippery when metanil yellow-periodic acid –Schiff’s (PAS) hematoxylin alive and even for some period after fixation in formalin and (Quintero-Hunter et al., 1991). The examined specimens are storage in alcohol. A. M. Zanata & A. Akama 47 Myxiops aphos, new species ventrally positioned. Posterior tip of maxilla extending to Figs. 1-2 vertical slightly anterior to or reaching the center of pupil. Gill-rakers 7+1+10 (2) or 6+1+11 (1). Branchiostegal rays 4 (4). Holotype. MZUSP 81026, 56.0 mm SL; Brazil, Bahia, Lençóis, Premaxilla with 5 (26) teeth arranged in single regular tooth rio Lençóis, tributary of rio Paraguaçu, 3 km upstream of row. Teeth pedunculated, expanded, compressed distally, and Lençóis city, above Cachoeira do Serrano, 12o 34’S 41o 22’W. bearing 5-7 cusps. Cusps compressed, aligned along the distal A. Akama, 22 Feb 1995. tooth margin. Central cusp largest. Maxilla with 2 (16) or 3*(10) compressed teeth, each bearing 5 cusps. Three central cusps Paratypes. MZUSP 81025, 22 specimens, 27.6-56.1 mm SL, 4 largest and of approximately same size. Dentary teeth 10 (6), c&s, 26.4- 46.8 mm SL; MCP 35007, 3 specimens, 41.2-48.3 mm 11 (13), or 12*(7) arranged in single row with anterior 8-9 teeth SL; same data as holotype. largest and pentacuspid, followed posteriorly by 2 tricuspid teeth. Smallest cleared and stained specimen with four Diagnosis. As for the genus. posteriormost teeth conical. Dentary teeth similar in shape to premaxillary ones, although slightly curved towards oral Description. Morphometric data presented in Table 1. Body cavity. Central cusp largest. relatively small, maximum observed standard length 56.1 mm, Scales cycloid, circuli absent on exposed area of scales, relatively elongate and transversely rounded, somewhat radii well developed and extending to posterior margin of flattened posterior to terminus of dorsal fin base. Greatest scales parallel or slightly divergent. Lateral line slightly body depth at dorsal-fin origin. Dorsal profile of head distinctly decurved ventrally, completely pored from supracleithrum to convex from margin of upper lip to region approximately at base of caudal fin, with 36* (16), 37 (8) or 38 (2) perforated vertical through anterior nostril, nearly straight from that point scales. Scale rows between dorsal-fin origin and lateral line 5 to posterior tip of supraoccipital spine. Dorsal profile of body (26). Scale rows between lateral line and pelvic-fin origin 3* slightly convex from tip of supraoccipital spine to dorsal-fin (22) or 4 (4). Scales along middorsal line between tip of origin, posteroventrally-inclined along dorsal-fin base, nearly supraoccipital process and origin of dorsal fin 12 (3), 13 (20) straight from posterior terminus of dorsal-fin base to adipose or 14* (3).
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Phylogenetic Relationships Within the Speciose Family Characidae
    Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses.
    [Show full text]
  • A Guide to the Parasites of African Freshwater Fishes
    A Guide to the Parasites of African Freshwater Fishes Edited by T. Scholz, M.P.M. Vanhove, N. Smit, Z. Jayasundera & M. Gelnar Volume 18 (2018) Chapter 2.1. FISH DIVERSITY AND ECOLOGY Martin REICHARD Diversity of fshes in Africa Fishes are the most taxonomically diverse group of vertebrates and Africa shares a large portion of this diversity. This is due to its rich geological history – being a part of Gondwana, it shares taxa with the Neotropical region, whereas recent close geographical affnity to Eurasia permitted faunal exchange with European and Asian taxa. At the same time, relative isolation and the complex climatic and geological history of Africa enabled major diversifcation within the continent. The taxonomic diversity of African freshwater fshes is associated with functional and ecological diversity. While freshwater habitats form a tiny fraction of the total surface of aquatic habitats compared with the marine environment, most teleost fsh diversity occurs in fresh waters. There are over 3,200 freshwater fsh species in Africa and it is likely several hundreds of species remain undescribed (Snoeks et al. 2011). This high diversity and endemism is likely mirrored in diversity and endemism of their parasites. African fsh diversity includes an ancient group of air-breathing lungfshes (Protopterus spp.). Other taxa are capable of breathing air and tolerate poor water quality, including several clariid catfshes (e.g., Clarias spp.; Fig. 2.1.1D) and anabantids (Ctenopoma spp.). Africa is also home to several bichir species (Polypterus spp.; Fig. 2.1.1A), an ancient fsh group endemic to Africa, and bonytongue Heterotis niloticus (Cuvier, 1829) (Osteoglossidae), a basal actinopterygian fsh.
    [Show full text]
  • DNA Barcoding Reveals Novel Insights Into Pterygophagy and Prey Selection in Distichodontid fishes (Characiformes: Distichodontidae) Jairo Arroyave & Melanie L
    DNA barcoding reveals novel insights into pterygophagy and prey selection in distichodontid fishes (Characiformes: Distichodontidae) Jairo Arroyave & Melanie L. J. Stiassny Division of Vertebrate Zoology, Department of Ichthyology, American Museum of Natural History, Central Park West at 79th St., New York, New York 10024 Keywords Abstract Ectoparasitic fin-eating behaviors, mtDNA, stomach contents, trophic ecology. DNA barcoding was used to investigate dietary habits and prey selection in members of the African-endemic family Distichodontidae noteworthy for dis- Correspondence playing highly specialized ectoparasitic fin-eating behaviors (pterygophagy). Fin Jairo Arroyave, Division of Vertebrate fragments recovered from the stomachs of representatives of three putatively Zoology, Department of Ichthyology, pterygophagous distichodontid genera (Phago, Eugnathichthys, and Ichthyborus) American Museum of Natural History, were sequenced for the mitochondrial gene co1. DNA barcodes (co1 sequences) Central Park West at 79th St., New York, were then used to identify prey items in order to determine whether pterygo- NY 10024 Tel: +1 212 769 5841, Fax: 212 769 5642; phagous distichodontids are opportunistic generalists or strict specialists with E-mail: [email protected] regard to prey selection and, whether as previously proposed, aggressive mim- icry is used as a strategy for successful pterygophagy. Our findings do not sup- Funding Information port the hypothesis of aggressive mimicry suggesting instead that, despite the The Department of Ichthyology of the possession of highly specialized trophic anatomies, fin-eating distichodontids American Museum of Natural History are opportunistic generalists, preying on fishes from a wide phylogenetic spec- (AMNH) through the Axelrod Research trum and to the extent of engaging in cannibalism. This study demonstrates Curatorship provided the bulk of funding for this study.
    [Show full text]
  • 16. Distichodontidae = 16. Distichodontidae
    16. DISTICHODONTIDAE Richard P. VARI Les poissons de la famille des Distichodontidae constituent un assemblage modérément diversifié au sein des Characiformes dont les membres sont endémiques aux systèmes d’eau douce à travers l’Afrique sub-saharienne et le long du bassin du Nil. Les membres de la famille montrent une gamme remarquable de morphologies, en particulier de leurs mâchoires, qui reflètent la diversité de leurs habitudes alimentaires. Les membres de la famille peuvent aisément se distinguer des autres characiformes africains par la combinaison de la présence de vraies écailles cténoïdes avec les ctenii formés d’une série d’ossifications indépendantes le long du bord postérieur de l’écaille et en ayant au moins quelques dents bicuspides à chaque mâchoire. Quinze genres de Distichodontidae sont connus dont dix, comme définis par VARI (1979), apparaissent en basse Guinée et sont répartis en 26 espèces. Comme mentionné dans le chapitre « Espèces étrangères ou introduites en basse Guinée », il a été observé que Distichodus niloticus fut introduit en basse Guinée. Toutefois, la présence de Distichodus niloticus dans la région n’est pas confirmée par les données des musées. CLÉ 1 Prémaxillaire très mobile et pivotant verticalement sur le crâne. DES GENRES Maxillaire très réduit, étroitement et strictement attaché à la partie postérieure du prémaxillaire (fig 16.1B) ........................ 2 Mâchoire supérieure immobile ou seulement très peu mobile par rapport au crâne. Maxillaire très développé et mobile par rapport au prémaxillaire (fig. 16.1A) .................................................... 5 2 Mâchoire supérieure modérément développée, avec la série unique de dents sur le prémaxillaire interrompue dans la région près de la symphyse ....................................
    [Show full text]
  • Reproductive Characteristics of Characid Fish Species (Teleostei
    Reproductive characteristics of characid fish species (Teleostei... 469 Reproductive characteristics of characid fish species (Teleostei, Characiformes) and their relationship with body size and phylogeny Marco A. Azevedo Setor de Ictiologia, Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Rua Dr. Salvador França, 1427, 90690-000 Porto Alegre, RS, Brazil. ([email protected]) ABSTRACT. In this study, I investigated the reproductive biology of fish species from the family Characidae of the order Characiformes. I also investigated the relationship between reproductive biology and body weight and interpreted this relationship in a phylogenetic context. The results of the present study contribute to the understanding of the evolution of the reproductive strategies present in the species of this family. Most larger characid species and other characiforms exhibit a reproductive pattern that is generally characterized by a short seasonal reproductive period that lasts one to three months, between September and April. This is accompanied by total spawning, an extremely high fecundity, and, in many species, a reproductive migration. Many species with lower fecundity exhibit some form of parental care. Although reduction in body size may represent an adaptive advantage, it may also require evolutionary responses to new biological problems that arise. In terms of reproduction, smaller species have a tendency to reduce the number of oocytes that they produce. Many small characids have a reproductive pattern similar to that of larger characiforms. On the other hand they may also exhibit a range of modifications that possibly relate to the decrease in body size and the consequent reduction in fecundity.
    [Show full text]
  • Redalyc.Survey of Fish Species from Plateau Streams of the Miranda
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Silva Ferreira, Fabiane; Serra do Vale Duarte, Gabriela; Severo-Neto, Francisco; Froehlich, Otávio; Rondon Súarez, Yzel Survey of fish species from plateau streams of the Miranda River Basin in the Upper Paraguay River Region, Brazil Biota Neotropica, vol. 17, núm. 3, 2017, pp. 1-9 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199152588008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotropica 17(3): e20170344, 2017 ISSN 1676-0611 (online edition) Inventory Survey of fish species from plateau streams of the Miranda River Basin in the Upper Paraguay River Region, Brazil Fabiane Silva Ferreira1, Gabriela Serra do Vale Duarte1, Francisco Severo-Neto2, Otávio Froehlich3 & Yzel Rondon Súarez4* 1Universidade Estadual de Mato Grosso do Sul, Centro de Estudos em Recursos Naturais, Dourados, MS, Brazil 2Universidade Federal de Mato Grosso do Sul, Laboratório de Zoologia, Campo Grande, CG, Brazil 3Universidade Federal de Mato Grosso do Sul, Departamento de Zoologia, Campo Grande, CG, Brazil 4Universidade Estadual de Mato Grosso do Sul, Centro de Estudos em Recursos Naturais, Lab. Ecologia, Dourados, MS, Brazil *Corresponding author: Yzel Rondon Súarez, e-mail: [email protected] FERREIRA, F. S., DUARTE, G. S. V., SEVERO-NETO, F., FROEHLICH O., SÚAREZ, Y. R. Survey of fish species from plateau streams of the Miranda River Basin in the Upper Paraguay River Region, Brazil.
    [Show full text]
  • (Characiformes: Citharinoidei) from the Congo Basin of Central Africa, with a Molecular Phylogeny for the Genus
    Zootaxa 3693 (4): 479–490 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3693.4.4 http://zoobank.org/urn:lsid:zoobank.org:pub:13EA08B0-9D7C-4845-854C-FECC3C9580F1 A new ectoparasitic distichodontid of the genus Eugnathichthys (Characiformes: Citharinoidei) from the Congo basin of central Africa, with a molecular phylogeny for the genus MELANIE L.J. STIASSNY1 JOHN S.S. DENTON1,2 & RAOUL J.C. MONSEMBULA IYABA3 1American Museum of Natural History, Department of Ichthyology, Central Park West at 79th Street, New York, New York 10024. E-mail: [email protected] 2Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024. E-mail:[email protected] 3Faculté des Sciences, Département de Biologie, Université de Kinshasa B.P 190 Kin XI, Democratic Republic of Congo. E-mail: [email protected] Abstract A new species of ectoparasitic distichodontid, Eugnathichthys virgatus, is described from localities in the central and western Congo basin. The new species is a fin-eater even at small sizes and, in common with congeners, is capable of biting off sections of heavily ossified fin-rays of large prey species. Prior to the present study, two species were included in this distinctive distichodontid genus: the type species, Eugnathichthys eetveldii, and a second species, E. macroterole- pis, both of which are widely distributed throughout much of the Congo basin. Morphologically, E. virgatus is readily dis- tinguished from its two congeners based on a combination of meristic and morphometric attributes.
    [Show full text]
  • New Species of Creagrutus (Teleostei: Characiformes: Characidae) from the Rı´O Magdalena Basin, Colombia
    Copeia, 2005(4), pp. 812–817 New Species of Creagrutus (Teleostei: Characiformes: Characidae) from the Rı´o Magdalena Basin, Colombia MAURICIO TORRES-MEJIA AND RICHARD P. VARI A new species of Creagrutus from the Rı´o Magdalena basin, Colombia, is described. This species is distinguished from all congeners by a combination of morphometric, meristic, and morphological features. The species is the first member of the genus known to have breeding tubercles with keratinized caps. The phylogenetic position of the new species and various aspects of its ecology and behavior are discussed. Es descrita una nueva especie de Creagrutus de la cuenca del Rı´o Magdalena, Colombia. E´ sta especie se distingue de sus conge´neres por su combinacio´n de caracterı´sticas morfome´tricas, merı´sticas y morfolo´gicas. E´ sta es la primera especie de Creagrutus en la que se hayan observado tube´rculos reproductivos con casquetes queratinizados. Se discute la posicio´n filogene´tica de la nueva especie y se comentan varios aspectos de su ecologı´a y comportamiento. AROLD and Vari (1994) and Vari and Lima, 2003) and C. varii (Ribeiro et al., 2004). H Harold (2001), respectively revised the This analysis was carried out using Nona (vers. trans- and cis-Andean species of Creagrutus. Even 2.0, P. S. Goloboff, Fundacio´n e Instituto Miguel though those authors dramatically increased the Lillo, Tucuma´n, Argentina) with the RAS-TBR number of recognized species within Creagrutus, heuristic method (h/1, h 10000, 500 iterations, it is striking that the species-level diversity within 100 replicates); the resulting trees were observed the genus continues to rise as a consequence of with WinClada (vers.
    [Show full text]
  • Parodon Orinocensis(Bonilla Et Al., 1999) (Characiformes: Parodontidae)
    Neotropical Ichthyology, 10(3):561-566, 2012 Copyright © 2012 Sociedade Brasileira de Ictiologia Parodon orinocensis (Bonilla et al., 1999) (Characiformes: Parodontidae): emendations and generic reallocation Leonardo F. S. Ingenito1,, Carla S. Pavanelli2 and Francisco Provenzano3 During recent studies on Parodontidae, specimens of the Venezuelan species Parodon orinocensis (Bonilla, Machado-Allison, Silvera, Chernoff, López & Lasso, 1999) were examined and a few incongruencies with the original description of the species were noted. Emendations to the descriptions of the jaw teeth and color pattern are presented. Three autapomorphies were also observed and are listed herein. The species is moved from genus Apareiodon to Parodon based on presence of dentary teeth. Durante estudos recentes sobre Parodontidae, espécimes da espécie venezuelana Parodon orinocencis (Bonilla, Machado- Allison, Silvera, Chernoff, López & Lasso, 1999) foram examinados e reconhecidas algumas incongruências na descrição original. Foram realizadas retificações relacionadas aos dentes das maxilas e ao padrão de coloração. Três autapomorfias foram observadas e são aqui listadas. Com base na presença de dentes no dentário a espécie é transferida do gênero Apareiodon para o gênero Parodon. Key words: Freshwater fish, Neotropical, Ostariophysi, Río Orinoco basin, Taxonomy. Introduction from that basin, A. orinocensis. Based on the classic tooth characterization of the parodontid genera, those authors Parodontidae Eigenmann, 1910 is a small characiform allocated their new species to the genus Apareiodon, since family composed by three currently valid genera, Parodon the species was held to have an edentulous lower jaw. After Valenciennes, 1849, Saccodon Kner, 1863 and Apareiodon examining extensive parodontid material from Venezuela, Eigenmann, 1916, and 32 valid species (Pavanelli, 1999; including the holotype (MBUCV-V 29170) and paratypes Pavanelli, 2003; Pavanelli & Britski, 2003; Ingenito & Buckup, (MBUCV-V 26669) of A.
    [Show full text]
  • AMNH-Scientific-Publications-2014
    AMERICAN MUSEUM OF NATURAL HISTORY Fiscal Year 2014 Scientific Publications Division of Anthropology 2 Division of Invertebrate Zoology 11 Division of Paleontology 28 Division of Physical Sciences 39 Department of Earth and Planetary Sciences and Department of Astrophysics Division of Vertebrate Zoology Department of Herpetology 58 Department of Ichthyology 62 Department of Mammalogy 65 Department of Ornithology 78 Center for Biodiversity and Conservation 91 Sackler Institute for Comparative Genomics 99 DIVISION OF ANTHROPOLOGY Berwick, R.C., M.D. Hauser, and I. Tattersall. 2013. Neanderthal language? Just-so stories take center stage. Frontiers in Psychology 4, article 671. Blair, E.H., and Thomas, D.H. 2014. The Guale uprising of 1597: an archaeological perspective from Mission Santa Catalina de Guale (Georgia). In L.M. Panich and T.D. Schneider (editors), Indigenous Landscapes and Spanish Missions: New Perspectives from Archaeology and Ethnohistory: 25–40. Tucson: University of Arizona Press. Charpentier, V., A.J. de Voogt, R. Crassard, J.-F. Berger, F. Borgi, and A. Al- Ma’shani. 2014. Games on the seashore of Salalah: the discovery of mancala games in Dhofar, Sultanate of Oman. Arabian Archaeology and Epigraphy 25: 115– 120. Chowns, T.M., A.H. Ivester, R.L. Kath, B.K. Meyer, D.H. Thomas, and P.R. Hanson. 2014. A New Hypothesis for the Formation of the Georgia Sea Islands through the Breaching of the Silver Bluff Barrier and Dissection of the Ancestral Altamaha-Ogeechee Drainage. Abstract, 63rd Annual Meeting, Geological Society of America, Southeastern Section, April 10–11, 2014. 2 DeSalle, R., and I. Tattersall. 2014. Mr. Murray, you lose the bet.
    [Show full text]
  • The Relationship Between Trophic Level and Body Size in Fishes Depends on Functional Traits
    Ecological Monographs, 90(4), 2020, e01415 © 2020 by the Ecological Society of America The relationship between trophic level and body size in fishes depends on functional traits 1,3 2 1 FRIEDRICH W. K EPPELER , CARMEN G. MONTANA~ , AND KIRK O. WINEMILLER 1Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas USA 2Department of Biology, Stephen F. Austin State University, Nacogdoches, Texas USA Citation: Keppeler, F. W., C. G. Montana,~ and K. O. Winemiller. 2020. The relationship between trophic level and body size in fishes depends on functional traits. Ecological Monographs 90(4):e01415. 10.1002/ ecm.1415 Abstract. Predators typically are larger than their prey, and consequently, trophic level should increase with body size. Whereas this relationship has helped in developing predictions about food web structure and dynamics in mesocosms and simple communities, a trophic- level–body-size relationship may not exist for all kinds of communities or taxa, especially those with many non-carnivorous species. Moreover, functional traits associated with trophic level generally have not been considered. Herein, we examine the correlation between trophic level and body size in fishes and how this relationship may vary in relation to functional traits (body dimensions, mouth size and orientation, tooth shape, gill rakers, and gut length) and trophic guilds (carnivorous vs. non-carnivorous). We analyzed data from morphological measurements and dietary analyses performed on thousands of specimens from freshwater and estuarine habitats across three zoogeographic regions (Neartic, Neotropical, and Afrotropical). A posi- tive relationship between trophic level and body size was only found for carnivorous fishes.
    [Show full text]