Mathematics and Computation

Total Page:16

File Type:pdf, Size:1020Kb

Mathematics and Computation Mathematics and Computation Avi Wigderson March 27, 2018 1 Avi Wigderson Mathematics and Computation Draft: March 27, 2018 Dedicated to the memory of my father, Pinchas Wigderson (1921{1988), who loved people, loved puzzles, and inspired me. Ashkhabad, Turkmenistan, 1943 2 Avi Wigderson Mathematics and Computation Draft: March 27, 2018 Acknowledgments In this book I tried to present some of the knowledge and understanding I acquired in my four decades in the field. The main source of this knowledge was the Theory of Computation commu- nity, which has been my academic and social home throughout this period. The members of this wonderful community, especially my teachers, students, postdocs and collaborators, but also the speakers in numerous talks I attended, have been the source of this knowledge and understanding often far more than the books and journals I read. Ours is a generous and interactive community, whose members are happy to share their own knowledge and understanding with others, and are trained by the culture of the field to do so well. These interactions made (and still makes) learning a greatly joyful experience for me! More directly, the content and presentation in this book benefited directly by many. These are friends who carefully read earlier drafts, responded with valuable constructive comments at all levels, which made the book much better. For this I am grateful to Scott Aaronson, Dorit Aharonov, Noga Alon, Sanjeev Arora, Boaz Barak, Zeb Brady, Mark Braverman, Bernard Chazelle, Tom Church, Geoffroy Couteau, Andy Drucker, Ron Fagin, Yuval Filmus, Michael Forbes, Ankit Garg, Sumegha Garg, Oded Goldreich, Renan Gross, Nadia Heninger, Gil Kalai, Vickie Kearn, Pravesh Kothari, James Lee, Alex Lubotzky, Assaf Naor, Ryan O'Donnell, Toni Pitassi, Tim Roughgarden, Sasha Razborov, Mike Saks, Peter Sarnak, Susannah Shoemaker, Amir Shpilka, Alistair Sinclair, Bill Steiger, Arpita Tripathi, Salil Vadhan, Les Valiant, Thomas Vidick, BenLee Volk, Edna Wigderson, Yuval Wigderson, Ronald de Wolf, Amir Yehudayoff, Rich Zemel and David Zuckerman. Special additional thanks are due to Edna and Yuval, who not only read every word (several times), but also helped me overcome many technical problems with the manuscript. Some chapters in this book are revisions and extensions of material taken from my ICM 2006 survey [Wig06], which in turn used parts of a joint survey with Goldreich in this volume [GBGL10]. Last but not least, I am grateful to Tom and Roselyne Nelsen for letting me use their beautiful home in Sun Valley, Idaho - much of this book was written in that serene environment over the past few summers. 3 Avi Wigderson Mathematics and Computation Draft: March 27, 2018 Contents 1 Introduction 9 1.1 On the interactions of math and computation...................... 10 1.2 Computational Complexity Theory............................ 13 1.3 The nature, purpose, style and audience of the book.................. 14 1.4 Organization of the book................................. 15 1.5 Asymptotic Notation.................................... 19 2 Prelude: computation, undecidability and the limits of mathematical knowledge 20 3 Computational complexity 101: the basics 24 3.1 Motivating examples.................................... 24 3.2 Efficient computation and the class P .......................... 26 3.3 Efficient verification and the class NP .......................... 30 3.4 The P versus NP question, its meaning and importance................ 34 3.5 The class coNP, the NP versus coNP question, and efficient characterization... 37 3.6 Reductions: a partial order of computational difficulty................. 40 3.7 Completeness: problems capturing complexity classes.................. 41 3.8 NP-completeness...................................... 42 3.9 Some NP-complete problems............................... 43 3.10 The nature and impact of NP-completeness....................... 45 4 Problems and classes inside (and \around") NP 48 4.1 Other types of computational problems and associated complexity classes...... 48 4.2 Between P and NP .................................... 50 4.3 Constraint Satisfaction Problems (CSPs)......................... 53 4.4 Average-case complexity.................................. 55 4.5 One-way functions, trap-door functions and cryptography............... 56 5 Lower bounds, Boolean Circuits, and attacks on P vs. NP 61 5.1 Diagonalization and relativization............................. 61 5.2 Boolean circuits....................................... 62 5.2.1 Basic results and questions............................ 64 5.2.2 Boolean formulae.................................. 65 5.2.3 Monotone circuits and formulae.......................... 67 5.2.4 Natural Proofs, or, Why is it hard to prove circuit lower bounds?....... 69 6 Proof complexity 71 6.1 The pigeonhole principle|a motivating example.................... 73 6.2 Propositional proof systems and NP vs. coNP ..................... 74 6.3 Concrete proof systems.................................. 76 6.3.1 Algebraic proof systems.............................. 76 6.3.2 Geometric proof systems.............................. 78 6.3.3 Logical proof systems............................... 81 6.4 Proof complexity vs. circuit complexity......................... 83 4 Avi Wigderson Mathematics and Computation Draft: March 27, 2018 7 Randomness in computation 86 7.1 The power of randomness in algorithms......................... 86 7.2 The weakness of randomness in algorithms........................ 89 7.3 Computational pseudo-randomness and pseudo-random generators.......... 92 8 Abstract pseudo-randomness 100 8.1 Motivating examples.................................... 100 8.2 General pseudo-random properties, and finding hay in haystacks........... 101 8.3 The Riemann Hypothesis................................. 103 8.4 P vs. NP .......................................... 104 8.5 Computational pseudo-randomness and de-randomization............... 106 8.6 Quasi-random graphs.................................... 108 8.7 Expanders.......................................... 109 8.8 Structure vs. Pseudo-randomness............................. 113 9 Weak random sources and randomness extractors 117 9.1 Min-entropy and randomness extractors......................... 118 9.2 Explicit constructions of extractors............................ 120 10 Randomness in proofs 123 10.1 Interactive proof systems................................. 124 10.2 Zero-knowledge proof systems............................... 127 10.3 Probabilistically checkable proofs (and hardness of approximation).......... 129 11 Quantum Computing 132 11.1 Building a quantum computer............................... 135 11.2 Quantum proofs and quantum Hamiltonian complexity and dynamics........ 136 11.3 Quantum interactive proofs and testing Quantum Mechanics............. 140 11.4 Quantum randomness: certification and expansion................... 141 12 Arithmetic complexity 144 12.1 Motivation: univariate polynomials............................ 144 12.2 Basic definitions, questions and results.......................... 145 12.3 The complexity of basic polynomials........................... 146 12.4 Reductions and completeness, permanents and determinants.............. 151 12.5 Restricted models...................................... 153 13 Interlude: Concrete interactions between Math and Computational Complexity156 13.1 Number Theory....................................... 156 13.2 Combinatorial geometry.................................. 158 13.3 Operator theory...................................... 159 13.4 Metric Geometry...................................... 161 13.5 Group Theory........................................ 162 13.6 Statistical Physics..................................... 164 13.7 Analysis and Probability.................................. 166 13.8 Lattice Theory....................................... 169 13.9 Invariant Theory...................................... 171 5 Avi Wigderson Mathematics and Computation Draft: March 27, 2018 13.9.1 Geometric Complexity Theory (GCT)...................... 173 13.9.2 Simultaneous Conjugation............................. 174 13.9.3 Left-Right action.................................. 175 14 Space complexity: modeling limited memory 177 14.1 Basic space complexity................................... 177 14.2 Streaming and Sketching.................................. 180 14.3 Finite automata and counting............................... 181 15 Communication complexity: modeling information bottlenecks 185 15.1 Basic definitions and results................................ 185 15.2 Applications......................................... 188 15.2.1 VLSI time-area trade-offs............................. 188 15.2.2 Time-space trade-offs............................... 189 15.2.3 Formula lower bounds............................... 190 15.2.4 Proof complexity.................................. 193 15.2.5 Extension complexity............................... 194 15.2.6 Pseudo-randomness................................ 197 15.3 Interactive information theory and coding theory.................... 198 15.3.1 Information complexity, protocol compression and direct-sum......... 199 15.3.2 Error-correction of interactive communication.................. 202 16 On-line algorithms: coping with an unknown future 206 16.1 Paging, Caching and the k-server problem........................ 208 16.2 Expert advice, portfolio management, repeated games and the multiplicative weights algorithm.........................................
Recommended publications
  • Vision, Color Innateness and Method in Newton's Opticks
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Archive Ouverte en Sciences de l'Information et de la Communication Vision, Color Innateness and Method in Newton’s Opticks Philippe Hamou To cite this version: Philippe Hamou. Vision, Color Innateness and Method in Newton’s Opticks. Biener, Zvi and Schliesser, Eric. Newton and Empiricism, Oxford University Press, 2014, 978-0-19-933709-5. hal- 01551257 HAL Id: hal-01551257 https://hal-univ-paris10.archives-ouvertes.fr/hal-01551257 Submitted on 21 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OUP UNCORRECTED PROOF – FIRSTPROOFS, Mon Feb 10 2014, NEWGEN 3 Vision, Color Innateness, and Method in Newton’s Opticks Philippe Hamou1 Inthis essay I argue for the centrality of Newton’s theory of vision to his account of light and color.Relying on psycho-physical experiments, anatomical observations, and physical hypotheses, Newton, quite early in his career, elaborated an original, although largely hypothetical,theory of vision, to which he remained faithful through- out his life. The main assumptions of this theory, I urge,play an important (although almost entirely tacit) role in the demonstration of one of the most famous theses of the Opticks: the thesis thatspectral colors are “innately” present in white solar light.
    [Show full text]
  • ABSTRACT CAUSAL PROGRAMMING Joshua Brulé
    ABSTRACT Title of dissertation: CAUSAL PROGRAMMING Joshua Brul´e Doctor of Philosophy, 2019 Dissertation directed by: Professor James A. Reggia Department of Computer Science Causality is central to scientific inquiry. There is broad agreement on the meaning of causal statements, such as \Smoking causes cancer", or, \Applying pesticides affects crop yields". However, formalizing the intuition underlying such statements and conducting rigorous inference is difficult in practice. Accordingly, the overall goal of this dissertation is to reduce the difficulty of, and ambiguity in, causal modeling and inference. In other words, the goal is to make it easy for researchers to state precise causal assumptions, understand what they represent, understand why they are necessary, and to yield precise causal conclusions with minimal difficulty. Using the framework of structural causal models, I introduce a causation coeffi- cient as an analogue of the correlation coefficient, analyze its properties, and create a taxonomy of correlation/causation relationships. Analyzing these relationships provides insight into why correlation and causation are often conflated in practice, as well as a principled argument as to why formal causal analysis is necessary. Next, I introduce a theory of causal programming that unifies a large number of previ- ously separate problems in causal modeling and inference. I describe the use and implementation of a causal programming language as an embedded, domain-specific language called `Whittemore'. Whittemore permits rigorously identifying and esti- mating interventional queries without requiring the user to understand the details of the underlying inference algorithms. Finally, I analyze the computational com- plexity in determining the equilibrium distribution of cyclic causal models.
    [Show full text]
  • The Next Digital Decade Essays on the Future of the Internet
    THE NEXT DIGITAL DECADE ESSAYS ON THE FUTURE OF THE INTERNET Edited by Berin Szoka & Adam Marcus THE NEXT DIGITAL DECADE ESSAYS ON THE FUTURE OF THE INTERNET Edited by Berin Szoka & Adam Marcus NextDigitalDecade.com TechFreedom techfreedom.org Washington, D.C. This work was published by TechFreedom (TechFreedom.org), a non-profit public policy think tank based in Washington, D.C. TechFreedom’s mission is to unleash the progress of technology that improves the human condition and expands individual capacity to choose. We gratefully acknowledge the generous and unconditional support for this project provided by VeriSign, Inc. More information about this book is available at NextDigitalDecade.com ISBN 978-1-4357-6786-7 © 2010 by TechFreedom, Washington, D.C. This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Cover Designed by Jeff Fielding. THE NEXT DIGITAL DECADE: ESSAYS ON THE FUTURE OF THE INTERNET 3 TABLE OF CONTENTS Foreword 7 Berin Szoka 25 Years After .COM: Ten Questions 9 Berin Szoka Contributors 29 Part I: The Big Picture & New Frameworks CHAPTER 1: The Internet’s Impact on Culture & Society: Good or Bad? 49 Why We Must Resist the Temptation of Web 2.0 51 Andrew Keen The Case for Internet Optimism, Part 1: Saving the Net from Its Detractors 57 Adam Thierer CHAPTER 2: Is the Generative
    [Show full text]
  • The Multiplicative Weights Update Method: a Meta Algorithm and Applications
    The Multiplicative Weights Update Method: a Meta Algorithm and Applications Sanjeev Arora∗ Elad Hazan Satyen Kale Abstract Algorithms in varied fields use the idea of maintaining a distribution over a certain set and use the multiplicative update rule to iteratively change these weights. Their analysis are usually very similar and rely on an exponential potential function. We present a simple meta algorithm that unifies these disparate algorithms and drives them as simple instantiations of the meta algo- rithm. 1 Introduction Algorithms in varied fields work as follows: a distribution is maintained on a certain set, and at each step the probability assigned to i is multi- plied or divided by (1 + C(i)) where C(i) is some kind of “payoff” for element i. (Rescaling may be needed to ensure that the new values form a distribution.) Some examples include: the Ada Boost algorithm in ma- chine learning [FS97]; algorithms for game playing studied in economics (see below), the Plotkin-Shmoys-Tardos algorithm for packing and covering LPs [PST91], and its improvements in the case of flow problems by Young, Garg-Konneman, and Fleischer [You95, GK98, Fle00]; Impagliazzo’s proof of the Yao XOR lemma [Imp95], etc. The analysis of the running time uses a potential function argument and the final running time is proportional to 1/2. It has been clear to most researchers that these results are very similar, see for instance, Khandekar’s PhD thesis [Kha04]. Here we point out that these are all instances of the same (more general) algorithm. This meta ∗This project supported by David and Lucile Packard Fellowship and NSF grant CCR- 0205594.
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • FOCS 2005 Program SUNDAY October 23, 2005
    FOCS 2005 Program SUNDAY October 23, 2005 Talks in Grand Ballroom, 17th floor Session 1: 8:50am – 10:10am Chair: Eva´ Tardos 8:50 Agnostically Learning Halfspaces Adam Kalai, Adam Klivans, Yishay Mansour and Rocco Servedio 9:10 Noise stability of functions with low influences: invari- ance and optimality The 46th Annual IEEE Symposium on Elchanan Mossel, Ryan O’Donnell and Krzysztof Foundations of Computer Science Oleszkiewicz October 22-25, 2005 Omni William Penn Hotel, 9:30 Every decision tree has an influential variable Pittsburgh, PA Ryan O’Donnell, Michael Saks, Oded Schramm and Rocco Servedio Sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing 9:50 Lower Bounds for the Noisy Broadcast Problem In cooperation with ACM SIGACT Navin Goyal, Guy Kindler and Michael Saks Break 10:10am – 10:30am FOCS ’05 gratefully acknowledges financial support from Microsoft Research, Yahoo! Research, and the CMU Aladdin center Session 2: 10:30am – 12:10pm Chair: Satish Rao SATURDAY October 22, 2005 10:30 The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics Tutorials held at CMU University Center into `1 [Best paper award] Reception at Omni William Penn Hotel, Monongahela Room, Subhash Khot and Nisheeth Vishnoi 17th floor 10:50 The Closest Substring problem with small distances Tutorial 1: 1:30pm – 3:30pm Daniel Marx (McConomy Auditorium) Chair: Irit Dinur 11:10 Fitting tree metrics: Hierarchical clustering and Phy- logeny Subhash Khot Nir Ailon and Moses Charikar On the Unique Games Conjecture 11:30 Metric Embeddings with Relaxed Guarantees Break 3:30pm – 4:00pm Ittai Abraham, Yair Bartal, T-H.
    [Show full text]
  • The Limits of Post-Selection Generalization
    The Limits of Post-Selection Generalization Kobbi Nissim∗ Adam Smithy Thomas Steinke Georgetown University Boston University IBM Research – Almaden [email protected] [email protected] [email protected] Uri Stemmerz Jonathan Ullmanx Ben-Gurion University Northeastern University [email protected] [email protected] Abstract While statistics and machine learning offers numerous methods for ensuring gener- alization, these methods often fail in the presence of post selection—the common practice in which the choice of analysis depends on previous interactions with the same dataset. A recent line of work has introduced powerful, general purpose algorithms that ensure a property called post hoc generalization (Cummings et al., COLT’16), which says that no person when given the output of the algorithm should be able to find any statistic for which the data differs significantly from the population it came from. In this work we show several limitations on the power of algorithms satisfying post hoc generalization. First, we show a tight lower bound on the error of any algorithm that satisfies post hoc generalization and answers adaptively chosen statistical queries, showing a strong barrier to progress in post selection data analysis. Second, we show that post hoc generalization is not closed under composition, despite many examples of such algorithms exhibiting strong composition properties. 1 Introduction Consider a dataset X consisting of n independent samples from some unknown population P. How can we ensure that the conclusions drawn from X generalize to the population P? Despite decades of research in statistics and machine learning on methods for ensuring generalization, there is an increased recognition that many scientific findings do not generalize, with some even declaring this to be a “statistical crisis in science” [14].
    [Show full text]
  • The Computational Complexity of Nash Equilibria in Concisely Represented Games∗
    The Computational Complexity of Nash Equilibria in Concisely Represented Games¤ Grant R. Schoenebeck y Salil P. Vadhanz August 26, 2009 Abstract Games may be represented in many di®erent ways, and di®erent representations of games a®ect the complexity of problems associated with games, such as ¯nding a Nash equilibrium. The traditional method of representing a game is to explicitly list all the payo®s, but this incurs an exponential blowup as the number of agents grows. We study two models of concisely represented games: circuit games, where the payo®s are computed by a given boolean circuit, and graph games, where each agent's payo® is a function of only the strategies played by its neighbors in a given graph. For these two models, we study the complexity of four questions: determining if a given strategy is a Nash equilibrium, ¯nding a Nash equilibrium, determining if there exists a pure Nash equilibrium, and determining if there exists a Nash equilibrium in which the payo®s to a player meet some given guarantees. In many cases, we obtain tight results, showing that the problems are complete for various complexity classes. 1 Introduction In recent years, there has been a surge of interest at the interface between computer science and game theory. On one hand, game theory and its notions of equilibria provide a rich framework for modeling the behavior of sel¯sh agents in the kinds of distributed or networked environments that often arise in computer science and o®er mechanisms to achieve e±cient and desirable global outcomes in spite of the sel¯sh behavior.
    [Show full text]
  • The Flajolet-Martin Sketch Itself Preserves Differential Privacy: Private Counting with Minimal Space
    The Flajolet-Martin Sketch Itself Preserves Differential Privacy: Private Counting with Minimal Space Adam Smith Shuang Song Abhradeep Thakurta Boston University Google Research, Brain Team Google Research, Brain Team [email protected] [email protected] [email protected] Abstract We revisit the problem of counting the number of distinct elements F0(D) in a data stream D, over a domain [u]. We propose an ("; δ)-differentially private algorithm that approximates F0(D) within a factor of (1 ± γ), and with additive error of p O( ln(1/δ)="), using space O(ln(ln(u)/γ)/γ2). We improve on the prior work at least quadratically and up to exponentially, in terms of both space and additive p error. Our additive error guarantee is optimal up to a factor of O( ln(1/δ)), n ln(u) 1 o and the space bound is optimal up to a factor of O min ln γ ; γ2 . We assume the existence of an ideal uniform random hash function, and ignore the space required to store it. We later relax this requirement by assuming pseudo- random functions and appealing to a computational variant of differential privacy, SIM-CDP. Our algorithm is built on top of the celebrated Flajolet-Martin (FM) sketch. We show that FM-sketch is differentially private as is, as long as there are p ≈ ln(1/δ)=(εγ) distinct elements in the data set. Along the way, we prove a structural result showing that the maximum of k i.i.d. random variables is statisti- cally close (in the sense of "-differential privacy) to the maximum of (k + 1) i.i.d.
    [Show full text]
  • January 2011 Prizes and Awards
    January 2011 Prizes and Awards 4:25 P.M., Friday, January 7, 2011 PROGRAM SUMMARY OF AWARDS OPENING REMARKS FOR AMS George E. Andrews, President BÔCHER MEMORIAL PRIZE: ASAF NAOR, GUNTHER UHLMANN American Mathematical Society FRANK NELSON COLE PRIZE IN NUMBER THEORY: CHANDRASHEKHAR KHARE AND DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY JEAN-PIERRE WINTENBERGER TEACHING OF MATHEMATICS LEVI L. CONANT PRIZE: DAVID VOGAN Mathematical Association of America JOSEPH L. DOOB PRIZE: PETER KRONHEIMER AND TOMASZ MROWKA EULER BOOK PRIZE LEONARD EISENBUD PRIZE FOR MATHEMATICS AND PHYSICS: HERBERT SPOHN Mathematical Association of America RUTH LYTTLE SATTER PRIZE IN MATHEMATICS: AMIE WILKINSON DAVID P. R OBBINS PRIZE LEROY P. S TEELE PRIZE FOR LIFETIME ACHIEVEMENT: JOHN WILLARD MILNOR Mathematical Association of America LEROY P. S TEELE PRIZE FOR MATHEMATICAL EXPOSITION: HENRYK IWANIEC BÔCHER MEMORIAL PRIZE LEROY P. S TEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH: INGRID DAUBECHIES American Mathematical Society FOR AMS-MAA-SIAM LEVI L. CONANT PRIZE American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY AN UNDERGRADUATE STUDENT: MARIA MONKS LEONARD EISENBUD PRIZE FOR MATHEMATICS AND OR PHYSICS F AWM American Mathematical Society LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION: PATRICIA CAMPBELL RUTH LYTTLE SATTER PRIZE IN MATHEMATICS M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE WOMEN IN MATHEMATICS: American Mathematical Society RHONDA HUGHES ALICE T. S CHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN: LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION SHERRY GONG Association for Women in Mathematics ALICE T. S CHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN FOR JPBM Association for Women in Mathematics COMMUNICATIONS AWARD: NICOLAS FALACCI AND CHERYL HEUTON M.
    [Show full text]
  • A Decade of Lattice Cryptography
    Full text available at: http://dx.doi.org/10.1561/0400000074 A Decade of Lattice Cryptography Chris Peikert Computer Science and Engineering University of Michigan, United States Boston — Delft Full text available at: http://dx.doi.org/10.1561/0400000074 Foundations and Trends R in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is C. Peikert. A Decade of Lattice Cryptography. Foundations and Trends R in Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2014. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-68083-113-9 c 2016 C. Peikert All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for in- ternal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.
    [Show full text]
  • The Best Nurturers in Computer Science Research
    The Best Nurturers in Computer Science Research Bharath Kumar M. Y. N. Srikant IISc-CSA-TR-2004-10 http://archive.csa.iisc.ernet.in/TR/2004/10/ Computer Science and Automation Indian Institute of Science, India October 2004 The Best Nurturers in Computer Science Research Bharath Kumar M.∗ Y. N. Srikant† Abstract The paper presents a heuristic for mining nurturers in temporally organized collaboration networks: people who facilitate the growth and success of the young ones. Specifically, this heuristic is applied to the computer science bibliographic data to find the best nurturers in computer science research. The measure of success is parameterized, and the paper demonstrates experiments and results with publication count and citations as success metrics. Rather than just the nurturer’s success, the heuristic captures the influence he has had in the indepen- dent success of the relatively young in the network. These results can hence be a useful resource to graduate students and post-doctoral can- didates. The heuristic is extended to accurately yield ranked nurturers inside a particular time period. Interestingly, there is a recognizable deviation between the rankings of the most successful researchers and the best nurturers, which although is obvious from a social perspective has not been statistically demonstrated. Keywords: Social Network Analysis, Bibliometrics, Temporal Data Mining. 1 Introduction Consider a student Arjun, who has finished his under-graduate degree in Computer Science, and is seeking a PhD degree followed by a successful career in Computer Science research. How does he choose his research advisor? He has the following options with him: 1. Look up the rankings of various universities [1], and apply to any “rea- sonably good” professor in any of the top universities.
    [Show full text]