Human Ipsc-Derived Microglia Assume a Primary Microglia-Like State After Transplantation Into the Neonatal Mouse Brain
Human iPSC-derived microglia assume a primary microglia-like state after transplantation into the neonatal mouse brain Devon S. Svobodaa, M. Inmaculada Barrasaa,b, Jian Shua,c, Rosalie Rietjensa, Shupei Zhanga, Maya Mitalipovaa, Peter Berubec, Dongdong Fua, Leonard D. Shultzd, George W. Bella,b, and Rudolf Jaenischa,e,1 aWhitehead Institute for Biomedical Research, Cambridge, MA 02142; bBioinformatics and Research Computing, Whitehead Institute for Biomedical Research, Cambridge, MA 02142; cBroad Institute of MIT and Harvard, Cambridge, MA 02142; dThe Jackson Laboratory Cancer Center, The Jackson Laboratory, Bar Harbor, ME 04609; and eDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142 Contributed by Rudolf Jaenisch, October 16, 2019 (sent for review August 8, 2019; reviewed by Valentina Fossati and Helmut Kettenmann) Microglia are essential for maintenance of normal brain function, Despite these innovations, there are important limitations to with dysregulation contributing to numerous neurological dis- modeling human disease with hiPSC-derived iMGs. As immune eases. Protocols have been developed to derive microglia-like cells cells, microglia are prone to activation and highly sensitive to from human induced pluripotent stem cells (hiPSCs). However, in vitro culture, which introduces impediments in extending re- primary microglia display major differences in morphology and sults obtained with cultured cells to disease states. This is high- gene expression when grown in culture, including down- lighted by recent studies showing that primary microglia directly regulation of signature microglial genes. Thus, in vitro differenti- isolated from the brain exhibit significant changes in gene ex- ated microglia may not accurately represent resting primary pression when grown in culture for as little as 6 h (26, 27).
[Show full text]