Design Loads for Residential Buildings

Total Page:16

File Type:pdf, Size:1020Kb

Design Loads for Residential Buildings CHAPTER 3 Design Loads for Residential Buildings 3.1 General Loads are a primary consideration in any building design because they define the nature and magnitude of hazards or external forces that a building must resist to provide reasonable performance (i.e., safety and serviceability) throughout the structure’s useful life. The anticipated loads are influenced by a building’s intended use (occupancy and function), configuration (size and shape), and location (climate and site conditions). Ultimately, the type and magnitude of design loads affect critical decisions such as material selection, construction details, and architectural configuration. Thus, to optimize the value (i.e., performance versus economy) of the finished product, it is essential to apply design loads realistically. While the buildings considered in this guide are primarily single-family detached and attached dwellings, the principles and concepts related to building loads also apply to other similar types of construction, such as low-rise apartment buildings. In general, the design loads recommended in this guide are based on applicable provisions of the ASCE 7 standard–Minimum Design Loads for Buildings and Other Structures (ASCE, 1999). The ASCE 7 standard represents an acceptable practice for building loads in the United States and is recognized in virtually all U.S. building codes. For this reason, the reader is encouraged to become familiar with the provisions, commentary, and technical references contained in the ASCE 7 standard. In general, the structural design of housing has not been treated as a unique engineering discipline or subjected to a special effort to develop better, more efficient design practices. Therefore, this part of the guide focuses on those aspects of ASCE 7 and other technical resources that are particularly relevant to the determination of design loads for residential structures. The guide provides supplemental design assistance to address aspects of residential construction where current practice is either silent or in need of improvement. The guide’s Residential Structural Design Guide 3-1 Chapter 3 – Design Loads for Residential Buildings methods for determining design loads are complete yet tailored to typical residential conditions. As with any design function, the designer must ultimately understand and approve the loads for a given project as well as the overall design methodology, including all its inherent strengths and weaknesses. Since building codes tend to vary in their treatment of design loads the designer should, as a matter of due diligence, identify variances from both local accepted practice and the applicable building code relative to design loads as presented in this guide, even though the variances may be considered technically sound. Complete design of a home typically requires the evaluation of several different types of materials as in Chapters 4 through 7. Some material specifications use the allowable stress design (ASD) approach while others use load and resistance factor design (LRFD). Chapter 4 uses the LRFD method for concrete design and the ASD method for masonry design. For wood design, Chapters 5, 6, and 7 use ASD. Therefore, for a single project, it may be necessary to determine loads in accordance with both design formats. This chapter provides load combinations intended for each method. The determination of individual nominal loads is essentially unaffected. Special loads such as flood loads, ice loads, and rain loads are not addressed herein. The reader is referred to the ASCE 7 standard and applicable building code provisions regarding special loads. 3.2 Load Combinations The load combinations in Table 3.1 are recommended for use with design specifications based on allowable stress design (ASD) and load and resistance factor design (LRFD). Load combinations provide the basic set of building load conditions that should be considered by the designer. They establish the proportioning of multiple transient loads that may assume point-in-time values when the load of interest attains its extreme design value. Load combinations are intended as a guide to the designer, who should exercise judgment in any particular application. The load combinations in Table 3.1 are appropriate for use with the design loads determined in accordance with this chapter. The principle used to proportion loads is a recognition that when one load attains its maximum life-time value, the other loads assume arbitrary point-in- time values associated with the structure’s normal or sustained loading conditions. The advent of LRFD has drawn greater attention to this principle (Ellingwood et al., 1982; Galambos et al., 1982). The proportioning of loads in this chapter for allowable stress design (ASD) is consistent with and normalized to the proportioning of loads used in newer LRFD load combinations. However, this manner of proportioning ASD loads has seen only limited use in current code- recognized documents (AF&PA, 1996) and has yet to be explicitly recognized in design load specifications such as ASCE 7. ASD load combinations found in building codes have typically included some degree of proportioning (i.e., D + W + 1/2S) and have usually made allowance for a special reduction for multiple transient loads. Some earlier codes have also permitted allowable material stress increases for load combinations involving wind and earthquake loads. None of these adjustments for ASD load combinations is recommended for use with Table 3.1 since the load proportioning is considered sufficient. 3-2 Residential Structural Design Guide Chapter 3 – Design Loads for Residential Buildings It should also be noted that the wind load factor of 1.5 in Table 3.1 used for load and resistant factor design is consistent with traditional wind design practice (ASD and LRFD) and has proven adequate in hurricane-prone environments when buildings are properly designed and constructed. The 1.5 factor is equivalent to the earlier use of a 1.3 wind load factor in that the newer wind load provisions of ASCE 7-98 include separate consideration of wind directionality by adjusting wind loads by an explicit wind directionality factor, KD, of 0.85. Since the wind load factor of 1.3 included this effect, it must be adjusted to 1.5 in compensation for adjusting the design wind load instead (i.e., 1.5/1.3 = 0.85). The 1.5 factor may be considered conservative relative to traditional design practice in nonhurricane-prone wind regions as indicated in the calibration of the LRFD load factors to historic ASD design practice (Ellingwood et al., 1982; Galambos et al., 1982). In addition, newer design wind speeds for hurricane-prone areas account for variation in the extreme (i.e., long return period) wind probability that occurs in hurricane hazard areas. Thus, the return period of the design wind speeds along the hurricane-prone coast varies from roughly a 70- to 100-year return period on the wind map in the 1998 edition of ASCE 7 (i.e., not a traditional 50-year return period wind speed used for the remainder of the United States). The latest wind design provisions of ASCE 7 include many advances in the state of the art, but the ASCE commentary does not clearly describe the condition mentioned above in support of an increased wind load factor of 1.6 (ASCE, 1999). Given that the new standard will likely be referenced in future building codes, the designer may eventually be required to use a higher wind load factor for LRFD than that shown in Table 3.1. The above discussion is intended to help the designer understand the recent departure from past successful design experience and remain cognizant of its potential future impact to building design. The load combinations in Table 3.1 are simplified and tailored to specific application in residential construction and the design of typical components and systems in a home. These or similar load combinations are often used in practice as short-cuts to those load combinations that govern the design result. This guide makes effective use of the short-cuts and demonstrates them in the examples provided later in the chapter. The short-cuts are intended only for the design of residential light-frame construction. Residential Structural Design Guide 3-3 Chapter 3 – Design Loads for Residential Buildings Typical Load Combinations Used for the Design of TABLE 3.1 Components and Systems1 Component or System ASD Load Combinations LRFD Load Combinations D + H 1.2D + 1.6H Foundation wall 2 2 D + H + L + 0.3(Lr + S) 1.2D + 1.6H + 1.6L + 0.5(Lr + S) (gravity and soil lateral loads) 2 2 D + H + (Lr or S) + 0.3L 1.2D + 1.6H + 1.6(Lr or S) + 0.5L Headers, girders, joists, interior load- D + L2 + 0.3 (L or S) 1.2D + 1.6L2 + 0.5 (L or S) bearing walls and columns, footings r r D + (L or S) + 0.3 L2 1.2D + 1.6(L or S) + 0.5 L2 (gravity loads) r r Exterior load-bearing walls and Same as immediately above plus Same as immediately above plus columns (gravity and transverse D + W 1.2D + 1.5W lateral load) 3 D + 0.7E + 0.5L2 + 0.2S4 1.2D + 1.0E + 0.5L2 + 0.2S4 Roof rafters, trusses, and beams; roof D + (Lr or S) 1.2D + 1.6(Lr or S) 5 5 and wall sheathing (gravity and wind 0.6D + Wu 0.9D + 1.5Wu loads) D + W 1.2D + 1.5W Floor diaphragms and shear walls (in-plane lateral and overturning 0.6D + (W or 0.7E) 0.9D + (1.5W or 1.0E) loads) 6 Notes: 1The load combinations and factors are intended to apply to nominal design loads defined as follows: D = estimated mean dead weight of the construction; H = design lateral pressure for soil condition/type; L = design floor live load; Lr = maximum roof live load anticipated from construction/maintenance; W = design wind load; S = design roof snow load; and E = design earthquake load.
Recommended publications
  • The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected]
    The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Fall 2017 The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Aerospace Engineering Commons, Aviation Commons, Civil and Environmental Engineering Commons, Mechanical Engineering Commons, and the Physics Commons Recommended Citation Koken, Michael, "The Experimental Determination of the Moment of Inertia of a Model Airplane" (2017). Honors Research Projects. 585. http://ideaexchange.uakron.edu/honors_research_projects/585 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. 2017 THE EXPERIMENTAL DETERMINATION OF A MODEL AIRPLANE KOKEN, MICHAEL THE UNIVERSITY OF AKRON Honors Project TABLE OF CONTENTS List of Tables ................................................................................................................................................
    [Show full text]
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • Weights and Measures
    Schedule of Values Yadkin County 2009 Architectural Terms Apartment hotel a building designed for non-transient residential use, divided into dwelling units similar to an apartment house, but having such hotel apartment hotel accommodations as room furnishings, lounges, public dining room, maid service, etc. Apartment house a multi-family residence containing three or more non-transient residential living units and generally providing them with a number of common facilities and services. Attic An unfinished or semi-finished portion of a building lying between the highest finished story and the roof and wholly within the roof framing. Basement a building story which is wholly or partly below the grade level. Bay (1) a horizontal area division of a building usually defined as the space between columns or division walls. (2) an internal recess formed by causing a wall to project beyond its general line. Bay window a window, or group of continuous windows, projecting from the main wall of a building. Beam a long structural load-bearing member which is placed horizontally or nearly so and which is supported at both ends or, infrequently, at intervals along its length. Beam, spandrel a wall beam supporting the wall, above, as well as the floor. Building any structure partially or wholly above ground which is designed to afford shelter to persons, animals, or goods. See also construction. Building, fireproof a building in which all parts carrying loads or resisting stresses and all exterior and interior walls, floors, and staircases are made of incombustible materials, and in which all metallic structural members are encased in materials which remain rigid at the highest probable temperature in case its contents are burned, or which provide ample insulation from such a temperature.
    [Show full text]
  • Stony Brook University
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Invasions, Insurgency and Interventions: Sweden’s Wars in Poland, Prussia and Denmark 1654 - 1658. A Dissertation Presented by Christopher Adam Gennari to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in History Stony Brook University May 2010 Copyright by Christopher Adam Gennari 2010 Stony Brook University The Graduate School Christopher Adam Gennari We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Ian Roxborough – Dissertation Advisor, Professor, Department of Sociology. Michael Barnhart - Chairperson of Defense, Distinguished Teaching Professor, Department of History. Gary Marker, Professor, Department of History. Alix Cooper, Associate Professor, Department of History. Daniel Levy, Department of Sociology, SUNY Stony Brook. This dissertation is accepted by the Graduate School """"""""" """"""""""Lawrence Martin "" """""""Dean of the Graduate School ii Abstract of the Dissertation Invasions, Insurgency and Intervention: Sweden’s Wars in Poland, Prussia and Denmark. by Christopher Adam Gennari Doctor of Philosophy in History Stony Brook University 2010 "In 1655 Sweden was the premier military power in northern Europe. When Sweden invaded Poland, in June 1655, it went to war with an army which reflected not only the state’s military and cultural strengths but also its fiscal weaknesses. During 1655 the Swedes won great successes in Poland and captured most of the country. But a series of military decisions transformed the Swedish army from a concentrated, combined-arms force into a mobile but widely dispersed force.
    [Show full text]
  • Single Family Residence Design Guidelines
    ADOPTED BY SANTA BARBARA CITY COUNCIL IN 2007 Available at the Community Development Department, 630 Garden Street, Santa Barbara, California, (805) 564-5470 or www.SantaBarbaraCA.gov 2007 CITY COUNCIL, 2007 ARCHITECTURAL BOARD OF REVIEW, 2007 Marty Blum, Mayor Iya Falcone Mark Wienke Randall Mudge Brian Barnwell Grant House Chris Manson-Hing Dawn Sherry Das Williams Roger Horton Jim Blakeley Clay Aurell Helene Schneider Gary Mosel SINGLE FAMILY DESIGN BOARD, 2010 UPDATE PLANNING COMMISSION, 2007 Paul R. Zink Berni Bernstein Charmaine Jacobs Bruce Bartlett Glen Deisler Erin Carroll George C. Myers Addison Thompson William Mahan Denise Woolery John C. Jostes Harwood A. White, Jr. Gary Mosel Stella Larson PROJECT STAFF STEERING COMMITTEE Paul Casey, Community Development Director Allied Neighborhood Association: Bettie Weiss, City Planner Dianne Channing, Chair & Joe Guzzardi Jaime Limón, Design Review Supervising Planner City Council: Helene Schneider & Brian Barnwell Heather Baker, Project Planner Planning Commission: Charmaine Jacobs & Bill Mahan Jason Smart, Planning Technician Architectural Board of Review: Richard Six & Bruce Bartlett Tony Boughman, Planning Technician (2009 Update) Historic Landmarks Commission: Vadim Hsu GRAPHIC DESIGN, PHOTOS & ILLUSTRATIONS HISTORIC LANDMARKS COMMISSION, 2007 Alison Grube & Erin Dixon, Graphic Design William R. La Voie Susette Naylor Paul Poirier & Michael David Architects, Illustrations Louise Boucher H. Alexander Pujo Bill Mahan, Illustrations Steve Hausz Robert Adams Linda Jaquez & Kodiak Greenwood,
    [Show full text]
  • Pierre Simon Laplace - Biography Paper
    Pierre Simon Laplace - Biography Paper MATH 4010 Melissa R. Moore University of Colorado- Denver April 1, 2008 2 Many people contributed to the scientific fields of mathematics, physics, chemistry and astronomy. According to Gillispie (1997), Pierre Simon Laplace was the most influential scientist in all history, (p.vii). Laplace helped form the modern scientific disciplines. His techniques are used diligently by engineers, mathematicians and physicists. His diverse collection of work ranged in all fields but began in mathematics. Laplace was born in Normandy in 1749. His father, Pierre, was a syndic of a parish and his mother, Marie-Anne, was from a family of farmers. Many accounts refer to Laplace as a peasant. While it was not exactly known the profession of his Uncle Louis, priest, mathematician or teacher, speculations implied he was an educated man. In 1756, Laplace enrolled at the Beaumont-en-Auge, a secondary school run the Benedictine order. He studied there until the age of sixteen. The nest step of education led to either the army or the church. His father intended him for ecclesiastical vocation, according to Gillispie (1997 p.3). In 1766, Laplace went to the University of Caen to begin preparation for a career in the church, according to Katz (1998 p.609). Cristophe Gadbled and Pierre Le Canu taught Laplace mathematics, which in turn showed him his talents. In 1768, Laplace left for Paris to pursue mathematics further. Le Canu gave Laplace a letter of recommendation to d’Alembert, according to Gillispie (1997 p.3). Allegedly d’Alembert gave Laplace a problem which he solved immediately.
    [Show full text]
  • Slave Housing Data Base
    Slave Housing Data Base Building Name: Howard’s Neck, Quarter B Evidence Type: Extant Historical Site Name: Howard's Neck City or Vicinity: Pemberton (near Cartersville, and Goochland C.H.) County: Goochland State: Virginia Investigators: Douglas W. Sanford; Dennis J. Pogue Institutions: Center for Historic Preservation, UMW; Mount Vernon Ladies' Association Project Start: 8/7/08 Project End: 8/7/08 Summary Description: Howards’ Neck Quarter B is a one-story, log duplex with a central chimney and side-gable roof, supported by brick piers, and is the second (or middle) of three surviving currently unoccupied quarters arranged in an east-west line positioned on a moderately western sloping ridge. The quarters are located several hundred yards southwest of the main house complex. The core of the structure consists of a hewn log crib, joined at the corners with v-notches, with a framed roof (replaced), and a modern porch on the front and shed addition to the rear. Wooden siding currently covers the exterior walls, but the log rear wall enclosed by the shed is exposed; it is whitewashed. The original log core measures 31 ft. 9 in. (E-W) x 16 ft. 4 in. (N-S); the 20th-century rear addition is 11 ft. 8 in. wide (N-S) x 31 ft. 9 in. long (E-W). A doorway allows direct access between the two main rooms, which may be an original feature; a doorway connecting the log core with the rear shed has been cut by enlarging an original window opening in Room 1. As originally constructed, the structure consisted of two first-floor rooms, with exterior doorways in the south facade and single windows opposite the doorways in the rear wall.
    [Show full text]
  • 30” Built-In Refrigerator Column (Right-Hand Door Swing)
    30” BUILT-IN REFRIGERATOR COLUMN (RIGHT-HAND DOOR SWING) Signature Features JBRFR30IGX OVER 250 TRINITY COOLING REMOTE ACCESS CONFIGURATIONS Revel in the trinity of food Open door. Power outages. Freezer or refrigerator. Left- preservation: three zones, three Filter changes. Connect to WiFi hand or right-hand swing. One, precision sensors, calibrated for real-time notifications and two, three columns in a row. every second. Fortified by an control your columns from Four different widths. With 12 exposed air tower, you can anywhere. Tap and swipe on one-unit options, 75 two-unit conquer humidity levels and both iOS and Android devices. combinations and over 250 three- customize the temperature of <sup>1</sup><br><sup>1 unit combinations, configuration each zone to your deepest Appliance must be set to remote is where bespoke begins. desires. enable. WiFi & app required. Features subject to change. For ECLIPTIC LIGHTING DARING OBSIDIAN details and privacy statement, INTERIOR visit jennair.com/connect.</sup> Live beyond the shadow. Abandoning the dark spots cast Inspired by the beauty of SOLID GLASS AND METAL by dated puck lighting, over 650 volcanic glass, this industry- LEDs frame and fill your exclusive dark finish erupts with All-metal bin and shelf frames. column, coming alive at a touch reflective, high-contrast style. Thick, naturally odor-resistant of the controls. Each zone Reject the unfeeling, lifeless solid glass. A forcefield at the awakens and pulses as you mold vessel of harsh steel. Let fine edge that prevents spillovers. To your column to your desires. foods and beverages emerge hell with cheap plastic in luxury from the interior of your door bins, shelves and liners.
    [Show full text]
  • Office Market Assessment Montgomery County, Maryland
    Office Market Assessment Montgomery County, Maryland Prepared for the Montgomery County Planning Department June 18, 2015 Contents Executive Summary..................................................................................................................... iv Regional Office Vacancies (Second Quarter, 2015) ............................................................... iv Findings .................................................................................................................................... v Recommendations .................................................................................................................... v Introduction .................................................................................................................................... 1 Montgomery County’s Challenge ............................................................................................ 1 I. Forces Changing the Office Market ....................................................................................... 3 Types of Office Tenants ........................................................................................................... 3 Regional and County Employment ......................................................................................... 4 Regional Employment Trends ............................................................................................. 4 Montgomery County Employment Trends .......................................................................... 6 Regional
    [Show full text]
  • Multi-Family Residential Design Guidelines[PDF]
    MULTI-FAMILY RESIDENTIAL DESIGN GUIDELINES Adopted by the Marin County Board of Supervisors on December 10, 2013 ACKNOWLEDGMENTS BOARD OF SUPERVISORS COUNTY STAFF Susan Adams, District 1 Brian C. Crawford Katie Rice, District 2 Director of Community Development Agency Kathrin Sears, District 3 Thomas Lai Steve Kinsey, District 4 Assistant Director of Community Development Agency Judy Arnold, District 5 Jeremy Tejirian Planning Manager of Planning Division PLANNING COMMISSION Stacey Laumann Katherine Crecelius, At-Large Planner of Planning Division Ericka Erickson, At-Large Don Dickenson, District 1 Margot Biehle, District 2 John Eller, District 3 Michael Dyett, Principal-In-Charge Wade Holland, District 4 Matt Taecker, Principal Peter Theran, District 5 Jeannie Eisberg, Senior Associate WORKING GROUP Supported by a grant from the Metropolitan Transportation Bob Hayes Commission Smart Growth Technical Assistance Program Bruce Burman John Eller Steven Aiello Curry Eckelhoff Rich Gumbiner Allan Bortel Marge Macris Kathleen Harris Robert Pendoley Scott Gerber Steven Lucas Sim Van der Ryn Cover image adapted from: The American Transect, http://www.transect.org/rural_img.htm i CONTENTS INTRODUCTION ...............................................................................................................................................................1-1 Purpose ...............................................................................................................................................................1-1 Fundamental Design
    [Show full text]
  • HOME OFFICE SOLUTIONS Hettich Ideas Book Table of Contents
    HOME OFFICE SOLUTIONS Hettich Ideas Book Table of Contents Eight Elements of Home Office Design 11 Home Office Furniture Ideas 15 - 57 Drawer Systems & Hinges 58 - 59 Folding & Sliding Door Systems 60 - 61 Further Products 62 - 63 www.hettich.com 3 How will we work in the future? This is an exciting question what we are working on intensively. The fact is that not only megatrends, but also extraordinary events such as a pandemic are changing the world and influencing us in all areas of life. In the long term, the way we live, act and furnish ourselves will change. The megatrend Work Evolution is being felt much more intensively and quickly. www.hettich.com 5 Work Evolution Goodbye performance society. Artificial intelligence based on innovative machines will relieve us of a lot of work in the future and even do better than we do. But what do we do then? That’s a good question, because it puts us right in the middle of a fundamental change in the world of work. The creative economy is on the advance and with it the potential development of each individual. Instead of a meritocracy, the focus is shifting to an orientation towards the strengths and abilities of the individual. New fields of work require a new, flexible working environment and the work-life balance is becoming more important. www.hettich.com 7 Visualizing a Scenario Imagine, your office chair is your couch and your commute is the length of your hallway. Your snack drawer is your entire pantry. Do you think it’s a dream? No! Since work-from-home is very a reality these days due to the pandemic crisis 2020.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]