Double Layer Forces Between Heterogeneous Charged Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Load more

9022 J. Phys. Chem. 1994, 98, 9022-9032 Double Layer Forces between Heterogeneous Charged Surfaces S. J. Miklavic,'*t D. Y. C. Chan,# L. R. White,# and T. W. Healyg Department of Mathematics and Department of Chemistry, University of Melbourne, Parkville, 3052 Victoria, Australia, and Divisions of Physical Chemistry and Food Technology, Chemical Center, University of Lund, S-221 00 Lund, Sweden Received: March 25, 1994" In this paper we study the double layer interaction between two heterogeneous surfaces of either constant charge or constant potential. The surface heterogeneities are assumed to be distributed on periodic lattices of arbitrary structure. General expressions for the 3-D electrostatic potential distribution and the interaction free energy between the two surfaces are given. Asymptotic forms and numerical examples for the interaction potential are provided for the symmetric lattice problem. In general, the interaction potential or osmotic pressure decays exponentially at large separations. When a nonuniform, but net neutral, surface interacts with a uniform surface (charged or uncharged), the interaction can be either attractive or repulsive depending on whether the surfaces are constant potential or constant charge. For two nonuniform net neutral surfaces, the interaction can be either attractive or repulsive depending on whether the surfaces are constrained in configurations in which regions of unlike or like charge are in opposition. For this case, a statistical mechanical average over all relative lateral displacements shows that asymptotically the interaction will always be attractive. The magnitude of the attraction is comparable to or can exceed the van der Waals interaction. The results given here would warrant inclusion in any interpretation of surface force measurements in systems involving adsorbing, neutralizing surfactants. I. Introduction Kuin6 recently considered surfaces held at constant but nonuni- form surface potential. However, Kuin's results were obtained A knowledge of the interaction between particles or between with the superposition approximation which restricted their surfaces in general is fundamental to our understanding of many validity to large separations. properties of colloid science. In a large class of colloidal systems, We recognize that it is difficult to consider a completely the surface forces are dominated by long-range electrostatics, arbitrary charge distribution in a quantitative calculation. the familiar double layer force.' For many applications under Consequently, we shall consider sources of charge or potential colloidal conditions the traditional approach to double layer which are periodically distributed on the surface. In the next two interactions, the mean-field model based on the Poisson-Boltz- sections we present a general formalism, outlining the process of mann equation, has proven to be very useful for experimental solution of the electrostatic potential problem, and the evaluation analysis. In recent years, considerable effort has gone into of the interaction free energy invoking only the assumption that improving the mean-field description of the electrolyte behavior on each surface there is some periodic but otherwise unspecified under more extreme conditions (see, for example, ref 2). In arbitrary two-dimensional lattice distribution of charge or comparison, considerably less effort has been spent in studying potential. We consider the two cases of constant charge and departures from the classical assumptions which arise from a constant potential surfaces when thesurfaces approach each other. more detailed prescription of surface structure. In section IV we present numerical and asymptotic results for the Techniques for scanning surface irregularities with atomic interaction between two surfaces with the same periodic lattice accuracy, such as atomic force microscopy (AFM), now show structure. The calculations are based on distributions of inho- quite convincingly that many systems comprise surfaces which mogeneities which are arguably more relevant than the examples cannot be treated as uniform. In fact, there are many situations given by either Richmond or Kuin. The main effect of periodic wherein nonuniformities can be envisaged to arise. In some cases charge heterogeneities is that the additional interaction that arises this feature has been confirmed by AFM. For example, a host can be repulsive or attractive depending on the relative transverse of these involve solutions of highly surface active species, that is, displacement of the surfaces. In section V, we discuss the species which adsorb strongly. These species may range from procedure of performing the proper statistical mechanical average polyelectrolytes, or bulky multivalent ions, of charge opposite to over possible transverse displacements of the patchy heterogeneous that of the surface to ionic amphiphiles. Our focus is on systems surfaces. The general conclusion is that when averaged over which possess isolated surface regions which are occupied by a transverse displacements, the extra contribution to the interaction concentration of charge opposite to that of the surface as for between from charge heterogeneities is an additional attraction instance in the case of negatively charged mica surfaces with between the surfaces. The paper closes with a summary of the adsorbed or deposited cationic surfactants.3 major results. Richmond4and Nelson and McQuarrieS examined the effects of discrete surface charge distributions on the double layer 11. Electrostatic Double Layer Potential interaction between surfaces. From these studies one already sees that interesting and potentially important behavior can be Consider two infinite planar half-spaces with dielectric per- found. While Richmond studied surfaces held at constant charge, mittivities, c1 and t3. These are separated by a third dielectric continuum of permittivity e2 and of width h; see Figure 1. This * To whom correspondence should be addressed. central medium contains a solution of simple electrolyte of species f University of Lund. valence, in chemical equilibrium with a bulk solution of molar t Department of Mathematics, University of Melbourne. zi, 8 Department of Chemistry, University of Melbourne. concentration cm, or number density, nm, at a temperature T.We Abstract published in Aduance ACS Abstracts. July 15, 1994. are interested in determining the mean electrostatic potential, 0022-3654194 /2098-9022%04.5O JO 0 1994 American Chemical Society Double Layer Forces between Heterogeneous Surfaces The Journal of Physical Chemistry. Vol. 98. No. 36, 1994 9023 For an arbitrary electrolyte the electrostatic potential, $(r), satisfies the following equations V2$(r) = 0 for z < 0, z > h (34 47r V2J.(r) = --p(r) for 0 < z < h (3h) e2 with volume charge density, p(r) at r given by (,9 = 1 JksT) p(r) = xz,qoexp(-z,ep$(r)) (4) i Since the surface source distributions are no longer uniform, the scalar mean potential retains its dependence on the three- dimensional vector position, r, and the equations to be solved are oartial differential eauations. A simolifvine assumotion that can bften be made is to &me that $6)ii small everywhere, Le., &(r)/ksT< I; wemaythen linearize thedependenceoftheionic densities on the mean potential to give Figure 1. A schematic representation of the system under study. Two surfaces with a periodic distribution of sources of charge separated by an electrolyte solution of thickness h. p(r) = -Cz,’e2ndJ.(r) (5) i $(I)across this intervening region, when the interfaces between Note that this approximation is better for symmetric electrolytes medium 1 and 2, at = 0, and between medium 2 and 3, at z z as the O(Y) term in theexpansionvanishes identically. Basically, = h, carry specified surface charge or surface potential distribu- the linearization assumption is needed to achieve any analytical tions. In this paper we concentrate on either of the two limiting progress. However, what qualitative features appear in the conditions where the surface charge or surface potential distribu- linearized model are certain to remain in the more complex tions are independent of separation. Weshall refer to thesecases nonlinear calculation. The approximation we adopt therefore as constant charge or constant potential. The intermediatecases does not detract from our conclusions. Given the form of the of self-consistent regulating surfaces and the asymmetric system source functions the boundaries, together with the linearity of one surface held at constant potential and the other held at on of the problem, the solution for the electrostatic potential $(I) constant charge are made the subject of a separate report. can be expressed as a Fourier expansion in terms of the transverse We consider nonuniform distributions of sources +(s) and coordinates s = (x,y) yR(s)on the left and right surfaces, respectively. We use the subscripts and superscripts Lor R to refer quantities to the left (z = 0) or right (z = h) interfaces, respectively. The variable y represents either the surface potential, 9,or surface charge, g, as the case may be, and s = (x,y) represents the transverse vector where the Fourier coefficients, &), depend on the wave vector position. k and the normal coordinate z. Without lossof generality, wecanassume that for eachsurface, Substitution of (6) into (3) gives a set of four ordinary y contain a uniform part, yo,on which is superimposed a periodic differential equations for each k distribution of sources, yp. Since yp.and
Recommended publications
  • Subsurface Science

    Subsurface Science

    Subsurface Science H. Levine G. MacDonald O. Rothaus M. Ruderman ~5_io__ n __ F_o __ r ____~.1 , __ J S. Treiman NTIS CRA&I ~ E. Williams OTIC TAB Ulldnfl0U'lCed J li s tifica tion In collaboration with: By ........... _._ ... _.... _...... ____ ._ .. ______ J ]. Banfield Distribution I R. Colwell r------------------ Avcilab!li~y (oces B. Ensley t-------;---------- .--.--- Avail21lCJioi D. Galas Oist ;:.pecial July 1995 JSR-94-330 Approved for public release; distribution unlimited. JASON The MITRE Corporation 7525 Coishire Drive Mclean, Vrrginia 22102-3481 (703) 883-6997 Form Approved REPORT DOCUMENTATION PAGE OM8 No. 0704·0188 PUblIC reporting burden for thiS collection of Information estimated to average 1 hour per response. includmg the time for review instructions, searc hing eXisting data sources, gathering and maintaining the data needed, and completing and revieWing the collection of information. Send comments regarding thls burden estimate or any other aspect of this collection of information, including suggestions for reducing thiS burden, to Washington Headquarte~ Services, Directorate for Information Operations and Reports. 1215 Jefferson DaviS Highway. Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork. Reduction Project (0704-0188), Washington, OC 20503, 1. AGENCY USE ONLY (LeavB blank) r. REPORT DATE 13. REPORT TYPE AND DATES COVERED July 25, 1995 4. TITLE AND SUBTITLE s. FUNDING NUMBERS SUBSURFACE SCIENCE 04-958534-01 6.~~OR(S). vme, G. MacDonald, O. Rot h aus, M. Ru d erman, S. Trelman,. E. Williams. In collaboration with: J. Banfield, R. Colwell, B. Ensley, D. Galas 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
  • Electrical Double Layer Interactions with Surface Charge Heterogeneities

    Electrical Double Layer Interactions with Surface Charge Heterogeneities

    Electrical double layer interactions with surface charge heterogeneities by Christian Pick A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October 2015 © 2015 Christian Pick All rights reserved Abstract Particle deposition at solid-liquid interfaces is a critical process in a diverse number of technological systems. The surface forces governing particle deposition are typically treated within the framework of the well-known DLVO (Derjaguin-Landau- Verwey-Overbeek) theory. DLVO theory assumes of a uniform surface charge density but real surfaces often contain chemical heterogeneities that can introduce variations in surface charge density. While numerous studies have revealed a great deal on the role of charge heterogeneities in particle deposition, direct force measurement of heterogeneously charged surfaces has remained a largely unexplored area of research. Force measurements would allow for systematic investigation into the effects of charge heterogeneities on surface forces. A significant challenge with employing force measurements of heterogeneously charged surfaces is the size of the interaction area, referred to in literature as the electrostatic zone of influence. For microparticles, the size of the zone of influence is, at most, a few hundred nanometers across. Creating a surface with well-defined patterned heterogeneities within this area is out of reach of most conventional photolithographic techniques. Here, we present a means of simultaneously scaling up the electrostatic zone of influence and performing direct force measurements with micropatterned heterogeneously charged surfaces by employing the surface forces apparatus (SFA). A technique is developed here based on the vapor deposition of an aminosilane (3- aminopropyltriethoxysilane, APTES) through elastomeric membranes to create surfaces for force measurement experiments.
  • Nonlinear Electrostatics. the Poisson-Boltzmann Equation

    Nonlinear Electrostatics. the Poisson-Boltzmann Equation

    Nonlinear Electrostatics. The Poisson-Boltzmann Equation C. G. Gray* and P. J. Stiles# *Department of Physics, University of Guelph, Guelph, ON N1G2W1, Canada ([email protected]) #Department of Molecular Sciences, Macquarie University, NSW 2109, Australia ([email protected]) The description of a conducting medium in thermal equilibrium, such as an electrolyte solution or a plasma, involves nonlinear electrostatics, a subject rarely discussed in the standard electricity and magnetism textbooks. We consider in detail the case of the electrostatic double layer formed by an electrolyte solution near a uniformly charged wall, and we use mean-field or Poisson-Boltzmann (PB) theory to calculate the mean electrostatic potential and the mean ion concentrations, as functions of distance from the wall. PB theory is developed from the Gibbs variational principle for thermal equilibrium of minimizing the system free energy. We clarify the key issue of which free energy (Helmholtz, Gibbs, grand, …) should be used in the Gibbs principle; this turns out to depend not only on the specified conditions in the bulk electrolyte solution (e.g., fixed volume or fixed pressure), but also on the specified surface conditions, such as fixed surface charge or fixed surface potential. Despite its nonlinearity the PB equation for the mean electrostatic potential can be solved analytically for planar or wall geometry, and we present analytic solutions for both a full electrolyte, and for an ionic solution which contains only counterions, i.e. ions of sign opposite to that of the wall charge. This latter case has some novel features. We also use the free energy to discuss the inter-wall forces which arise when the two parallel charged walls are sufficiently close to permit their double layers to overlap.
  • FORCES and INTERACTIONS BETWEEN NANOPARTICLES for CONTROLLED STRUCTURES by PAUL R. MARK a Dissertation Submitted to the Graduate

    FORCES and INTERACTIONS BETWEEN NANOPARTICLES for CONTROLLED STRUCTURES by PAUL R. MARK a Dissertation Submitted to the Graduate

    FORCES AND INTERACTIONS BETWEEN NANOPARTICLES FOR CONTROLLED STRUCTURES by PAUL R. MARK A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Materials Science and Engineering Written under the direction of Dr. Laura Fabris And approved by ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ New Brunswick, New Jersey January, 2013 ABSTRACT OF THE DISSERTATION Forces and Interactions Between Nanoparticles for Controlled Structures PAUL R MARK Dissertation Director: Dr. Laura Fabris In recent years, structured nanomaterials have started to demonstrate their full potential in breakthrough technologies. However, in order to fulfill the expectations held for the field, it is necessary to carefully design these structures depending upon the targeted application. This tailoring process suggests that a feedback between theory and experiment could potentially allow us to obtain a structure as near optimum as possible. This thesis seeks to describe the theory and experiment needed to understand and control the interactions among nanoparticles to build a functional device for the efficient conversion of sunlight into energy. This thesis will discuss a simulation built from the existing theories explaining nanoparticle interactions
  • Arxiv:1706.04027V2

    Arxiv:1706.04027V2

    Interactions between Silica Particles in the Presence of Multivalent Coions Biljana Uzelac, Valentina Valmacco,∗ and Gregor Trefalt† Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland (Dated: July 25, 2017) Forces between charged silica particles in solutions of multivalent coions are measured with col- loidal probe technique based on atomic force microscopy. The concentration of 1:z electrolytes is systematically varied to understand the behavior of electrostatic interactions and double-layer prop- erties in these systems. Although the coions are multivalent the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory perfectly describes the measured force profiles. The diffuse-layer potentials and regulation properties are extracted from the forces profiles by using the DLVO theory. The de- pendencies of the diffuse-layer potential and regulation parameter shift to lower concentration with increasing coion valence when plotted as a function of concentration of 1:z salt. Interestingly, these profiles collapse to a master curve if plotted as a function of monovalent counterion concentration. I. INTRODUCTION in the case of multivalent coion systems. Force pro- files across solutions containing multivalent counterions Interactions between charged objects in electrolyte so- are usually exponential, which is typical for double-layer lutions are important for many biological systems [1], and forces. Interestingly, their coion counterparts invoke non- in processes such as paper making [2], waste water treat- exponential and soft long-ranged forces, which can be ment [3], ceramic processing [4], ink-jet printing [5], par- well described with the PB theory [21, 27]. Extreme case ticle design [6], and concrete hardening [7].
  • Heteroaggregation and Homoaggregation of Latex Particles in the Presence of Alkyl Sulfate Surfactants

    Heteroaggregation and Homoaggregation of Latex Particles in the Presence of Alkyl Sulfate Surfactants

    colloids and interfaces Article Heteroaggregation and Homoaggregation of Latex Particles in the Presence of Alkyl Sulfate Surfactants Tianchi Cao 1,2, Michal Borkovec 1 and Gregor Trefalt 1,* 1 Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland; [email protected] (T.C.); [email protected] (M.B.) 2 Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA * Correspondence: [email protected] Received: 19 October 2020; Accepted: 6 November 2020; Published: 13 November 2020 Abstract: Heteroaggregation and homoaggregation is investigated with time-resolved multi-angle dynamic light scattering. The aggregation rates are measured in aqueous suspensions of amidine latex (AL) and sulfate latex (SL) particles in the presence of sodium octyl sulfate (SOS) and sodium dodecyl sulfate (SDS). As revealed by electrophoresis, the surfactants adsorb to both types of particles. For the AL particles, the adsorption of surfactants induces a charge reversal and triggers fast aggregation close to the isoelectric point (IEP). The negatively charged SL particles remain negatively charged and stable in the whole concentration range investigated. The heteroaggregation rates for AL and SL particles are fast at low surfactant concentrations, where the particles are oppositely charged. At higher concentrations, the heteroaggregation slows down above the IEP of the AL particles, where the particles become like-charged. The SDS has higher affinity to the surface compared to the SOS, which induces a shift of the IEP and of the fast aggregation regime to lower surfactant concentrations. Keywords: colloidal stability; heteroaggregation; DLVO 1. Introduction Aggregation of particles in suspensions is important in many practical applications, such as ceramic processing, paint fabrication, or drug formulation [1–4].
  • Understanding Adhesion: a Means for Preventing Fouling

    Understanding Adhesion: a Means for Preventing Fouling

    ELSEVIER Understanding Adhesion: A Means for Preventing Fouling R. Oliveira • Adhesion of particulate materials is an important step in the formation Engenharia Biol6gica, of fouling. Because the size of such materials is generally less than 1 tzm, Unicersidade do Minho, the phenomenon can be described in terms of colloid chemistry. Accord- Braga, Portugal ingly, the net force of interaction between foulants and the surface has been described in terms of DLVO theory (van der Waals attraction and electrostatic double-layer repulsion). However, those forces are sometimes not sufficient to describe the formation of fouling. Recent works have made it possible to calculate the effect of hydrophobic interactions and steric forces, which can also be taken into account. In aqueous media, the various types of interactions can be strongly affected by the pH, the ionic strength, the type of ions, and the presence of polymeric molecules. The objective of this work is to give a general overview of the basic physicochemical factors playing a role in fouling and to outline some practical aspects related to the theoretical reasoning to help prevent or at leasl[ mitigate fouling. © Elsevier Science Inc., 1997 Keywords: adhesion, DLVO theory, surface free energy, hydrophobic interactions, steric forces, ionic strength, ion bridging INTRODUCTION tant roles. In bifouling, the adhesion of microorganisms can be strongly dependent on their external appendages. The accumulation of inorganic particles, microorganisms, The net effect is a balance between all possible interac- macromolecules, and corrosion products on heat ex- tions. A knowledge of the roles of the main variables changer surfaces gives rise to the so-called fouling phe- affecting the interactions outlined above is of great impor- nomenon.
  • UCLA Electronic Theses and Dissertations

    UCLA Electronic Theses and Dissertations

    UCLA UCLA Electronic Theses and Dissertations Title Achieving Uniform Nanoparticle Dispersion in Metal Matrix Nanocomposites Permalink https://escholarship.org/uc/item/91r0q1x9 Author Xu, Jiaquan Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Achieving Uniform Nanoparticle Dispersion in Metal Matrix Nanocomposites A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Materials Science and Engineering by Jiaquan Xu 2015 © Copyright by Jiaquan Xu 2015 ABSTRACT OF THE DISSERTATION Achieving Uniform Nanoparticle Dispersion in Metal Matrix Nanocomposites By Jiaquan Xu Doctor of Philosophy in Materials Science and Engineering University of California, Los Angeles, 2015 Professor Xiaochun Li, Co-Chair Professor Jenn-Ming Yang, Co-Chair The objective of this study is to gain fundamental knowledge on the interactions between nanoparticles to achieve a uniform dispersion of nanoparticles in metals for manufacturing metal matrix nanocomposites (MMNCs). MMNC, also known as nanoparticles reinforced metal, is an emerging class of materials exhibiting unusual mechanical, physical, and chemical properties. However, a lack of fundamental knowledge and technology on how to achieve a uniform nanoparticle dispersion in MMNCs has hindered the rapid development of the MMNC field. In ii this dissertation, several methods were explored to achieve a uniform nanoparticle dispersion in MMNCs. In-situ oxidation method were applied to fabricate Al-Al2O3 nanocomposites with a uniform dispersion of Al2O3 nanoparticles. Pure Al nanoparticles were cold compressed in a steel mold and then melted in an alumina container. Al2O3 nanoparticles were in situ synthesized through the oxidation of the Al nanoparticle surfaces to form bulk Al nanocomposites during the process.
  • A Review of Current and Planned Smooth Surface Technologies for Fouling Resistance in Boiler

    A Review of Current and Planned Smooth Surface Technologies for Fouling Resistance in Boiler

    MATERIAL- OCH KEMITEKNIK 1232 Smooth Surfaces: A review of current and planned smooth surface technologies for fouling resistance in boiler Robert Corkery, Linda Bäfver, Kent Davidsson, Adam Feiler Smooth Surfaces: A review of current and planned smooth surface technologies for fouling resistance in boiler. Glatta ytor: En genomgång av glatta ytor som teknik för att stå emot bildning av beläggningar på värmeöverförande ytor. Robert Corkery, Linda Bäfver, Kent Davidsson, Adam Feiler M08-838 VÄRMEFORSK Service AB 101 53 STOCKHOLM · Tel 08-677 25 80 Februari 2012 ISSN 1653-1248 VÄRMEFORSK Abstract Here we have described the basics of boilers, fuels, combustion, flue gas composition and mechanisms of deposition. We have reviewed coating technologies for boiler tubes, including their materials compositions, nanostructures and performances. The surface forces in boilers, in particular those relevant to formation of unwanted deposits in boilers have also been reviewed, and some comparative calculations have been included to indicate the procedures needed for further study. Finally practical recommendations on the important considerations in minimizing deposition on boiler surfaces are made. i VÄRMEFORSK ii VÄRMEFORSK Sammanfattning Det höga innehållet av alkali (kalium och natrium) och klor i avfall och biobränsle leder till drift- och underhållsproblem genom bildning av påslag och efterföljande korrosion på överhettare i förbränningsanläggningar. Detta projekt handlar om interaktioner på överhettartubers ytor vid förbränning av avfall och biobränsle. En genomlysning av tekniker som kan användas för att skapa glatta tubytor i pannor presenteras. Glatta ytor skall förhindra eller fördröja bildning av påslag. Påslag består av askelement från bränslet. Vid överhettare är kaliumklorid särskilt kritiskt och vid avfallsförbränning även natriumklorid.
  • A Multi-Modal Miniature Surface Forces Apparatus (Μsfa)

    A Multi-Modal Miniature Surface Forces Apparatus (Μsfa)

    A Multi-Modal Miniature Surface Forces Apparatus (µSFA) for Interfacial Science Measurements Kai Kristiansen‡,*,9, Stephen H. Donaldson Jr†,9, Zachariah J. Berkson‡,ֆ, Jeffrey Scott§, Rongxin Su┴, Xavier Banquy¶, Dong Woog Lee#, Hilton B. de Aguiar†, Joshua D. McGraw†,‖, George D. Degen‡, and Jacob N. Israelachvili‡. ‡Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106, United States †Département de Physique, Ecole Normale Supérieure/PSL,Research University, CNRS, 24 rue Lhomond, 75005 Paris, France §SurForce LLC, Goleta, CA, 93117, United States ┴State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China ¶Faculty of Pharmacy, Université de Montréal, Succursale Centre Ville, Montréal Quebec H3C 3J7, Canada #School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea ‖ Gulliver CNRS UMR 7083, PSL Research University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France 9KK and SHD contributed equally to this work. 1 ABSTRACT Advances in the research of intermolecular and surface interactions result from the development of new and improved measurement techniques and combinations of existing techniques. Here, we present a new miniature version of the Surface Force Apparatus – the µSFA – that has been designed for ease of use and multi-modal capabilities with retention of the capabilities of other SFA models including accurate measurement of surface separation distance and physical characterization of dynamic and static physical forces (i.e., normal, shear, and friction) and interactions (e.g., van der Waals, electrostatic, hydrophobic, steric, bio-specific).
  • Non-Covalent Short Range Interactions

    Non-Covalent Short Range Interactions

    WORKSHOP Nanoscience on the Tip Non-Covalent Short Range Interactions Table of Contents: 1. Motivation ............................................................................................................ 1 2. Short Range Interactions and Surface Forces ...................................................... 1 3. Van der Waals Interactions for Point Interactions ............................................... 3 4. Surface Forces...................................................................................................... 4 5. Hamaker Constant................................................................................................ 5 6. Van der Waals Retardation Effects ...................................................................... 6 7. Adhesion and Surface Energies............................................................................ 6 8. Cutoff Distance for Van der Waals Calculations................................................. 7 9. Capillary Forces due to Vapor Condensation ...................................................... 8 10. Critical Humidity for Capillary Neck Formation................................................. 9 11. Estimation of the Tip Radius Utilizing the Capillary Effects ............................10 12. Modification of Hydrophobicity (Wettability)................................................... 12 13. Force Displacement Curves ............................................................................... 13 References ................................................................................................................
  • Heteroaggregation of Nanoparticles with Biocolloids and Geocolloids

    Heteroaggregation of Nanoparticles with Biocolloids and Geocolloids

    UC Santa Barbara UC Santa Barbara Previously Published Works Title Heteroaggregation of nanoparticles with biocolloids and geocolloids. Permalink https://escholarship.org/uc/item/98x882rd Journal Advances in colloid and interface science, 226(Pt A) ISSN 0001-8686 Authors Wang, Hongtao Adeleye, Adeyemi S Huang, Yuxiong et al. Publication Date 2015-12-01 DOI 10.1016/j.cis.2015.07.002 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Advances in Colloid and Interface Science 226 (2015) 24–36 Contents lists available at ScienceDirect Advances in Colloid and Interface Science journal homepage: www.elsevier.com/locate/cis Historical perspective Heteroaggregation of nanoparticles with biocolloids and geocolloids Hongtao Wang a,⁎, Adeyemi S. Adeleye b, Yuxiong Huang b,FengtingLia, Arturo A. Keller b,⁎⁎ a State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China b Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA article info abstract Available online 22 July 2015 The application of nanoparticles has raised concern over the safety of these materials to human health and the ecosystem. After release into an aquatic environment, nanoparticles are likely to experience heteroaggregation Keywords: with biocolloids, geocolloids, natural organic matter (NOM) and other types of nanoparticles. Heteroaggregation Heteroaggregation is of vital importance for determining the fate and transport of nanoparticles in aqueous phase and sediments. In Nanoparticles this article, we review the typical cases of heteroaggregation between nanoparticles and biocolloids and/or Biocolloid geocolloids, mechanisms, modeling, and important indicators used to determine heteroaggregation in aqueous Geocolloid phase.