Country Report of People's Republic of China.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Country Report of People's Republic of China.Pdf Country Report (2004) For the 37th Session of Typhoon Committee ESCAP/WMO Shanghai, P. R. China 16 – 20 November 2004 People’s Republic of China I. Overview of Meteorological and Hydrological Conditions during the Year 1. Meteorological Assessment From Jan.1 to Sept. 30 2004, in total 22 tropical cyclones were formed over the Western North Pacific and the South China Sea (Figure1.1). The total number was well over the average (19.77). 1 TC was formed in April, 2 in May, 5 in June and 8 in August. The number was more than the average 0.73, 1.04, 1.83 and 5.83, respectively. 3 TCs were formed in July and 3 in September. The number was less than the average 4.13 and 3.58, respectively. Six tropical cyclones landed over China, including Typhoon Mindulle (0407), Tropical Storm Kompasu (0409), Tropical Storm Nameless (04xx), Typhoon Rananim (0413), Typhoon Aere (0417) and Tropical Storm Haima (0420). Moreover, there were eight tropical cyclones impacting the off-shore region of China without making landfalls: Typhoon Nida (0402), Conson (0404), Chanthu (0405), Dianmu (0406), Megi (0415), Chaba (0416), Songda (0418) and Meari (0421). Figure 1.1 Tropical Cyclone Tracks from Jan. to Aug., 2004 There were four characteristics for the tropical cyclones this year. First of all, they had a longer lifespan. Among all the cyclones, 13 lasted for more than (exclusive) 5 days and they made up 59.1% of the total. The one with the longest lifespan was Chaba (0416) and it lasted for 12 days. Secondly, the source regions of tropical 1 cyclones were relatively concentrated. The active regions of tropical cyclones in the Western North Pacific usually were located from the east of Philippines to 150oE. There were 14 tropical cyclones born in this area from January to September this year and they made up 63.6% of all. Furthermore, 5 tropical cyclones generated in the region between 150oE and 180oE and they made up 22.7%. And 3 tropical cyclones formed over the South China Sea, its number is less than the average (3.54). Thirdly, there was an obvious concentrated period of tropical cyclone occurrence. Among the 22 tropical cyclones, 16 were generated between June and August, the number of which amounted to 72.7% of all, which was higher than the average 59.64%. Moreover, 8 tropical cyclones were born in August and they accounted to 36.4% of all, which was higher than the average 29.5%. Finally, the intensities of tropical cyclones were usually strong. Among the 22 tropical cyclones, 15 met the typhoon intensity, and they made up 68.2% of all and this ratio was higher than the average 59.9%. During 2004, the climate backgrounds or the climate conditions, which are all considered as the major factors for the prediction of typhoon activity in 2004, were as follows: SST in the Western Pacific in 2004 was near normal. SSTA in the Western Pacific in 2004 was higher than that in 2003 but lower than that in 2002 (Figure1.2). Figure1.2. Monthly Mean SST (top) and SSTA (bottom) in July, 2004 Tropical convection activity indicated by OLR in the Western Pacific in the 2003/04 (winter) was stronger than that in the 2002/03 (winter), but weaker than that in the 2001/02 (winter). The NW Pacific Subtropical High was stronger and more westward than normal. The precipitation amount and areas hit by typhoons during Jun. - Sep. 2004. There were totally 9 typhoons that impacted China and brought precipitation in land during this period (Figure1.3), with 6 landfall cases (MINDULLE, KOMPASU, an unnamed tropical storm numbered 04XX only by China, RANANIM, AERE and HAIMA) and 3 offshore affecting cases (CHANTHU, MEGI and MEARI). With regard to impacted area, typhoon RANANIM was the most important one, with a precipitation 2 volume of 56km3 which is about 1.5 times of the dam volume of the Three Gorge Dam, and the impacted area was 2,040,000km2 which is more than 1/5 of the area of mainland China. Undoubtedly, RANANIM was the strongest typhoon that hit Zhejiang Province in the past 48 years. In addition, typhoon AERE was the second important case during the period, with a precipitation volume being 21km3 and the impacted area reaching 1,180,000km2, which were much smaller than these of RANANIM. 250 60 impacted area(10000km impacted 台风影响面积 impacted area precipitationvolume(k 台风体积降水precipitation volume 50 200 ) 40 150 10000km2 ( 30 积 面 响 100 影 m 风 2 ) 20 3 台 ) 50 10 0 0 CHANTHU123456789 MINDULLE KOMPASU Nameless RANANIM MEGI AERE HAIMA MEARI 灿都 蒲公英 圆规 (04xx) 云娜 鲇鱼 艾利 海马 米雷 Figure1.3 The precipitation volumes and impacted areas for typhoon cases that impacted China during Jun. to Sep. 2004 2. Hydrological assessment No basin-scale flood occurred during the flood season of 2004 in China. Some small and medium-scale rivers, such as Lihe river in Huai River Basin, Liujiang River in Pear River Basin, Yuanjiang River and Zishui River in Dongting Lake Catchments, witness serious floods caused by torrential rainfall, especially in Niyanghe River, tributary of border River Brahmaputra, and Dayingjiang River, tributary of border River Yiluowadi, flood crest of which broke the historical records. Among 6 tropical cyclones which landed along the coastline of China in 2004, Rananim was most notable one in term of its exceptionally high intensity, longer duration and large scope it affected. 7 Provinces experienced the influence Rananim posed. The maximum rainfall for 12 hours and 24 hours caused by Rananim in Zhejiang province, reached the record in 100 years. However, the heavy rainfall brought by Rananim relieved the long-time drought to some extent. Thanks to the effective measures to combat flood and drought, especially the timely and accurate hydrological data collection, information dissemination, flood forecasting and so on, China had a relatively smooth and safe flood season basically. 3. Socio-economic assessment 3 The landed typhoons and tropical storms in China brought abundant precipitation, and abated the agricultural drought in the southern Yangzi River, and the reservoir water storage was increased. However, the violent gust, heavy rain and associated astronomical tides also brought about severe losses in the coastal areas during this year, especially in Zhejiang Province. According to the preliminary statistics, 22.58 million people and 8890 km2 farmland were affected by tropical cyclones, and 176 are killed, and left 53 missing and 2126 injured or sick, 85.9 thousands of houses collapsed and 265.1 thousands of houses were destroyed. The direct economic losses were about 23.5 billion RMB Yuan. Comparing the disaster losses with those of the last 10 years, the economic losses caused by the typhoon and storms in China during January to August in 2004 were less severe than the first 8 years but more severe than those of the last two years. 4 II. Meteorology 1. Progress in Member’s and Regional Cooperation and Selected RCPIP Goals and Objectives a. Hardware and/or Software progress The geo-stationary meteorological satellite FY-2C FY-2C is the first operational Geostationary Meteorological Satellite in China, which is located in 105°E, it is also the first one for the second FY-2 group, which is consisted of three satellites. It is planned that this group will be in service from 2004 to 2012. FY-2C was successfully launched in October .19th in 2004, and ten day later, the first visible image was received (Figure2.1), and now it is in orbit test period,it will be in operational service on March in 2005. Figure2.1 The First Visible Image of FY-2C Compared with first group of FY-2, the second group has 5 spectral channels on Visible and Infrared Spin Scan Radiometer (VISSR); it means two channels are increased. ¾ The infrared window channel (10.5-12.5µm) is split to two channels. It will improve the accuracy of sea surface temperature (SST) product. ¾ The new channel (3.5-4.0µm) can improve the accuracy of land surface temperature (LST) product, cloud parameters and the watching capability of forest/grass fire. 5 ¾ The visible channel band is changed from 0.5-1.05µm to .55-0.90µm; this will reduce the affection of water vapor absorbability to visible data. ¾ The infrared channels radiative resolution are improved, the quantification scale is changed from 8bit to 10 bits. ¾ The space resolution of visible channel is also improved from 1.44km to 1.25km. The characteristics of the FY-2 second group VISSR are shown in Table2.1 and Table2.2. Table2.1 Visible Channel Characteristics Wavelength 0.55~0.90 micrometer FOV 35 microrad Resolution (at Nadir) 1.25 km Dynamic Range of Sensor 0~98% Noise Performance S/N=1.5 ( Albedo =0.5%) S/N=50 (Albedo=95%) Number of Sensor 4 + 4 Quantification Scale 6bit Calibration Solar and Electronic Table2.2 Infrared Channels Characteristics Band IR1 IR2 IR3 IR4 Wavelength(µm) 10.3~11.3 11.5~12.5 6.3~7.6 3.5~4.0 FOV 140 140 140 140 Resolution(km) 5 5 5 5 Dynamic Range of Sensor 180~330K 180~330K 190~300K 180~340K Tem. Resolution 0.4~0.2K 0.4~0.2k 0.5~0.3K 0.6~0.5K Number of Sensor 1 + 1 1 + 1 1 + 1 1 + 1 Quantification Scale 10bit 10bit 10bit 10bit The products include: ¾ All kind of image, such as full disk image and all sub area image; ¾ Automatic quantitative products, they are TBB, OLR, SST, Cloud Mask, Cloud Wind, Precipitation estimating and index, Albedo, Water vapor, etc.
Recommended publications
  • P1.24 a Typhoon Loss Estimation Model for China
    P1.24 A TYPHOON LOSS ESTIMATION MODEL FOR CHINA Peter J. Sousounis*, H. He, M. L. Healy, V. K. Jain, G. Ljung, Y. Qu, and B. Shen-Tu AIR Worldwide Corporation, Boston, MA 1. INTRODUCTION the two. Because of its wind intensity (135 mph maximum sustained winds), it has been Nowhere 1 else in the world do tropical compared to Hurricane Katrina 2005. But Saomai cyclones (TCs) develop more frequently than in was short lived, and although it made landfall as the Northwest Pacific Basin. Nearly thirty TCs are a strong Category 4 storm and generated heavy spawned each year, 20 of which reach hurricane precipitation, it weakened quickly. Still, economic or typhoon status (cf. Fig. 1). Five of these reach losses were ~12 B RMB (~1.5 B USD). In super typhoon status, with windspeeds over 130 contrast, Bilis, which made landfall a month kts. In contrast, the North Atlantic typically earlier just south of where Saomai hit, was generates only ten TCs, seven of which reach actually only tropical storm strength at landfall hurricane status. with max sustained winds of 70 mph. Bilis weakened further still upon landfall but turned Additionally, there is no other country in the southwest and traveled slowly over a period of world where TCs strike with more frequency than five days across Hunan, Guangdong, Guangxi in China. Nearly ten landfalling TCs occur in a and Yunnan Provinces. It generated copious typical year, with one to two additional by-passing amounts of precipitation, with large areas storms coming close enough to the coast to receiving more than 300 mm.
    [Show full text]
  • Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR Sitrep 2014‐001 ‐ Updated July 8, 2014, 10:00 CET
    Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR sitrep 2014‐001 ‐ updated July 8, 2014, 10:00 CET Summary Report Ongoing typhoon situation The storm had lost strength early Tuesday July 8, going from the equivalent of a Category 5 hurricane to a Category 3 on the Saffir‐Simpson Hurricane Wind Scale, which means devastating damage is expected to occur, with major damage to well‐built framed homes, snapped or uprooted trees and power outages. It is approaching Okinawa, Japan, and is moving northwest towards South Korea and the Philippines, bringing strong winds, flooding rainfall and inundating storm surge. Typhoon Neoguri is a once‐in‐a‐decade storm and Japanese authorities have extended their highest storm alert to Okinawa's main island. The Global Assessment Report (GAR) 2013 ranked Japan as first among countries in the world for both annual and maximum potential losses due to cyclones. It is calculated that Japan loses on average up to $45.9 Billion due to cyclonic winds every year and that it can lose a probable maximum loss of $547 Billion.2 What are the most devastating cyclones to hit Okinawa in recent memory? There have been 12 damaging cyclones to hit Okinawa since 1945. Sustaining winds of 81.6 knots (151 kph), Typhoon “Winnie” caused damages of $5.8 million in August 1997. Typhoon "Bart", which hit Okinawa in October 1999 caused damages of $5.7 million. It sustained winds of 126 knots (233 kph). The most damaging cyclone to hit Japan was Super Typhoon Nida (reaching a peak intensity of 260 kph), which struck Japan in 2004 killing 287 affecting 329,556 people injuring 1,483, and causing damages amounting to $15 Billion.
    [Show full text]
  • An Efficient Method for Simulating Typhoon Waves Based on A
    Journal of Marine Science and Engineering Article An Efficient Method for Simulating Typhoon Waves Based on a Modified Holland Vortex Model Lvqing Wang 1,2,3, Zhaozi Zhang 1,*, Bingchen Liang 1,2,*, Dongyoung Lee 4 and Shaoyang Luo 3 1 Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China; [email protected] 2 College of Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China 3 NAVAL Research Academy, Beijing 100070, China; [email protected] 4 Korea Institute of Ocean, Science and Technology, Busan 600-011, Korea; [email protected] * Correspondence: [email protected] (Z.Z.); [email protected] (B.L.) Received: 20 January 2020; Accepted: 23 February 2020; Published: 6 March 2020 Abstract: A combination of the WAVEWATCH III (WW3) model and a modified Holland vortex model is developed and studied in the present work. The Holland 2010 model is modified with two improvements: the first is a new scaling parameter, bs, that is formulated with information about the maximum wind speed (vms) and the typhoon’s forward movement velocity (vt); the second is the introduction of an asymmetric typhoon structure. In order to convert the wind speed, as reconstructed by the modified Holland model, from 1-min averaged wind inputs into 10-min averaged wind inputs to force the WW3 model, a gust factor (gf) is fitted in accordance with practical test cases. Validation against wave buoy data proves that the combination of the two models through the gust factor is robust for the estimation of typhoon waves.
    [Show full text]
  • Integrating Spatial, Temporal, and Size Probabilities for the Annual Landslide Hazard Maps in the Shihmen Watershed, Taiwan
    Open Access Nat. Hazards Earth Syst. Sci., 13, 2353–2367, 2013 Natural Hazards www.nat-hazards-earth-syst-sci.net/13/2353/2013/ doi:10.5194/nhess-13-2353-2013 and Earth System © Author(s) 2013. CC Attribution 3.0 License. Sciences Integrating spatial, temporal, and size probabilities for the annual landslide hazard maps in the Shihmen watershed, Taiwan C. Y. Wu and S. C. Chen Department of Soil and Water Conservation, National Chung-Hsing University, Taichung 40227, Taiwan Correspondence to: S. C. Chen ([email protected]) Received: 23 February 2013 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 19 March 2013 Revised: 13 August 2013 – Accepted: 13 August 2013 – Published: 25 September 2013 Abstract. Landslide spatial, temporal, and size probabilities susceptible to landslides, and heavy rainfall during typhoons were used to perform a landslide hazard assessment in this or storms have indeed caused large landslides of loosened study. Eleven intrinsic geomorphological, and two extrinsic soil (Wu and Chen, 2009). Furthermore, climate change en- rainfall factors were evaluated as landslide susceptibility re- larges bare land areas, thereby increasing the frequency of lated factors as they related to the success rate curves, land- landslides in Taiwan (Chen and Huang, 2010). Because of slide ratio plots, frequency distributions of landslide and non- the uncertainties associated with natural disasters, risk man- landslide groups, as well as probability–probability plots. agement is necessary to minimize losses (Chen et al., 2010). Data on landslides caused by Typhoon Aere in the Shihmen In view of the growing emphasis on risk management in dis- watershed were selected to train the susceptibility model.
    [Show full text]
  • Recent Advances in Research on Tropical Cyclogenesis
    Available online at www.sciencedirect.com ScienceDirect Tropical Cyclone Research and Review 9 (2020) 87e105 www.keaipublishing.com/tcrr Recent advances in research on tropical cyclogenesis Brian H. Tang a,*, Juan Fang b, Alicia Bentley a,y, Gerard Kilroy c, Masuo Nakano d, Myung-Sook Park e, V.P.M. Rajasree f, Zhuo Wang g, Allison A. Wing h, Liguang Wu i a University at Albany, State University of New York, Albany, USA b Nanjing University, Nanjing, China c Ludwig-Maximilians University of Munich, Munich, Germany d Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan e Korea Institute of Ocean Science and Technology, Busan, South Korea f Centre for Atmospheric and Climate Physics Research, University of Hertfordshire, Hatfield, UK g University of Illinois, Urbana, USA h Florida State University, Tallahassee, USA i Fudan University, Shanghai, China Available online 7 May 2020 Abstract This review article summarizes recent (2014e2019) advances in our understanding of tropical cyclogenesis, stemming from activities at the ninth International Workshop on Tropical Cyclones. Tropical cyclogenesis involves the interaction of dynamic and thermodynamic processes at multiple spatio-temporal scales. Studies have furthered our understanding of how tropical cyclogenesis may be affected by external processes, such as intraseasonal oscillations, monsoon circulations, the intertropical convergence zone, and midlatitude troughs and cutoff lows. Addi- tionally, studies have furthered our understanding of how tropical cyclogenesis may be affected by internal processes, such as the organization of deep convection; the evolution of the “pouch” structure; the role of friction; the development of the moist, warm core; the importance of surface fluxes; and the role of the mid-level vortex.
    [Show full text]
  • Appendix 8: Damages Caused by Natural Disasters
    Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall.
    [Show full text]
  • Help Families Affected by Typhoon Nina (Nock-Ten) Despite Typhoon
    Help Families Affected by Typhoon Nina (Nock-ten) Despite typhoon Nina (Nock-ten) being downgraded to a severe tropical storm as it leaves the country, families in central Philippines will still need assistance following the damage to their homes and sources of income. “Clearing operations have started in the different parts of Camarines. While traveling to Naga City, we saw families leaving evacuation centres to head back home to gauge the damage caused to their property,” says Maricel Francia, World Vision‟s Programme Officer based in Camarines Norte. World Vision emergency response teams in the Bicol region have been constantly coordinating with local government units since yesterday, December 26 to determine the immediate need of the affected population and the extent of damages to infrastructure and property. World Vision‟s rapid assessment team of staff skilled in emergency response management, child protection, health and nutrition and documentation is now heading to Bicol region from Manila, to reinforce WV staff on the ground. According to the national disaster risk reduction and management council (NDRRMC), about 25,000 families, with around 81% coming from the Bicol region, were affected by typhoon Nina (international name: Nock-ten). Officials have declared a „state of calamity‟ in the provinces of Catanduanes, Camarines Sur and Albay. Six casualties have been reported. As of December 27, 13 road sections and three bridges in regions II, MIMAROPA, V and VII are still not passable while 114 areas are experiencing power cuts since December 25. “Our main focus is on assessing the immediate needs of families and communities, especially the children displaced by the typhoon.
    [Show full text]
  • Science Discussion Started: 22 October 2018 C Author(S) 2018
    Discussions Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-127 Earth System Manuscript under review for journal Earth Syst. Sci. Data Science Discussion started: 22 October 2018 c Author(s) 2018. CC BY 4.0 License. Open Access Open Data 1 Field Investigations of Coastal Sea Surface Temperature Drop 2 after Typhoon Passages 3 Dong-Jiing Doong [1]* Jen-Ping Peng [2] Alexander V. Babanin [3] 4 [1] Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, 5 Taiwan 6 [2] Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Rostock, Germany 7 [3] Department of Infrastructure Engineering, Melbourne School of Engineering, University of 8 Melbourne, Australia 9 ---- 10 *Corresponding author: 11 Dong-Jiing Doong 12 Email: [email protected] 13 Tel: +886 6 2757575 ext 63253 14 Add: 1, University Rd., Tainan 70101, Taiwan 15 Department of Hydraulic and Ocean Engineering, National Cheng Kung University 16 -1 Discussions Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-127 Earth System Manuscript under review for journal Earth Syst. Sci. Data Science Discussion started: 22 October 2018 c Author(s) 2018. CC BY 4.0 License. Open Access Open Data 1 Abstract 2 Sea surface temperature (SST) variability affects marine ecosystems, fisheries, ocean primary 3 productivity, and human activities and is the primary influence on typhoon intensity. SST drops 4 of a few degrees in the open ocean after typhoon passages have been widely documented; 5 however, few studies have focused on coastal SST variability. The purpose of this study is to 6 determine typhoon-induced SST drops in the near-coastal area (within 1 km of the coast) and 7 understand the possible mechanism.
    [Show full text]
  • Understanding Disaster Risk ~ Lessons from 2009 Typhoon Morakot, Southern Taiwan
    Understanding disaster risk ~ Lessons from 2009 Typhoon Morakot, Southern Taiwan Wen–Chi Lai, Chjeng-Lun Shieh Disaster Prevention Research Center, National Cheng-Kung University 1. Introduction 08/10 Rainfall 08/07 Rainfall started & stopped gradually typhoon speed decrease rapidly 08/06 Typhoon Warning for Inland 08/03 Typhoon 08/05 Typhoon Morakot warning for formed territorial sea 08/08 00:00 Heavy rainfall started 08/08 12:00 ~24:00 Rainfall center moved to south Taiwan, which triggered serious geo-hazards and floodings Data from “http://weather.unisys.com/” 1. Introduction There 4 days before the typhoon landing and forecasting as weakly one for norther Taiwan. Emergency headquarters all located in Taipei and few raining around the landing area. The induced strong rainfalls after typhoon leaving around southern Taiwan until Aug. 10. The damages out of experiences crush the operation system, made serious impacts. Path of the center of Typhoon Morakot 1. Introduction Largest precipitation was 2,884 mm Long duration (91 hours) Hard to collect the information High intensity (123 mm/hour) Large depth (3,000 mm-91 hour) Broad extent (1/4 of Taiwan) The scale and type of the disaster increasing with the frequent appearance of extreme weather Large-scale landslide and compound disaster become a new challenge • Area:202 ha Depth:84 meter Volume: 24 million m3 2.1 Root Cause and disaster risk drivers 3000 Landslide Landslide (Shallow, Soil) (Deep, Bedrock) Landslide dam break Flood Debris flow Landslide dam form Alisan Station ) 2000
    [Show full text]
  • Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preexisting Typhoon
    VOLUME 63 JOURNAL OF THE ATMOSPHERIC SCIENCES MAY 2006 Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preexisting Typhoon. Part I: Satellite Data Analyses* TIM LI AND BING FU Department of Meteorology, and International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii (Manuscript submitted 20 September 2004, in final form 7 June 2005) ABSTRACT The structure and evolution characteristics of Rossby wave trains induced by tropical cyclone (TC) energy dispersion are revealed based on the Quick Scatterometer (QuikSCAT) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data. Among 34 cyclogenesis cases analyzed in the western North Pacific during 2000–01 typhoon seasons, six cases are associated with the Rossby wave energy dispersion of a preexisting TC. The wave trains are oriented in a northwest–southeast direction, with alternating cyclonic and anticyclonic vorticity circulation. A typical wavelength of the wave train is about 2500 km. The TC genesis is observed in the cyclonic circulation region of the wave train, possibly through a scale contraction process. The satellite data analyses reveal that not all TCs have a Rossby wave train in their wakes. The occur- rence of the Rossby wave train depends to a certain extent on the TC intensity and the background flow. Whether or not a Rossby wave train can finally lead to cyclogenesis depends on large-scale dynamic and thermodynamic conditions related to both the change of the seasonal mean state and the phase of the tropical intraseasonal oscillation. Stronger low-level convergence and cyclonic vorticity, weaker vertical shear, and greater midtropospheric moisture are among the favorable large-scale conditions.
    [Show full text]
  • NICAM Predictability of the Monsoon Gyre Over The
    EARLY ONLINE RELEASE This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release. This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below. The DOI for this manuscript is DOI:10.2151/jmsj.2019-017 J-STAGE Advance published date: December 7th, 2018 The final manuscript after publication will replace the preliminary version at the above DOI once it is available. 1 NICAM predictability of the monsoon gyre over the 2 western North Pacific during August 2016 3 4 Takuya JINNO1 5 Department of Earth and Planetary Science, Graduate School of Science, 6 The University of Tokyo, Bunkyo-ku, Tokyo, Japan 7 8 Tomoki MIYAKAWA 9 Atmosphere and Ocean Research Institute 10 The University of Tokyo, Tokyo, Japan 11 12 and 13 Masaki SATOH 14 Atmosphere and Ocean Research Institute 15 The University of Tokyo, Tokyo, Japan 16 17 18 19 20 Sep 30, 2018 21 22 23 24 25 ------------------------------------ 26 1) Corresponding author: Takuya Jinno, School of Science, 7-3-1, Hongo, Bunkyo-ku, 27 Tokyo 113-0033 JAPAN. 28 Email: [email protected] 29 Tel(domestic): 03-5841-4298 30 Abstract 31 In August 2016, a monsoon gyre persisted over the western North Pacific and was 32 associated with the genesis of multiple devastating tropical cyclones.
    [Show full text]
  • Is Nuclear Power History? the Awesome Power of Water
    GENERATION Is nuclear power history? The awesome power of water... by Chris Meyer, technical journalist This is the 13th in a series of articles being published in Energize tracing the history of nuclear power throughout the world, and some key renewable alternatives. “It was the worst maritime disaster in U.S. repaired. Instead of “removing and replacing as part of the Los Angeles Aqueduct. Three history, more costly than even the April 14, the bulge in the boiler”, the ship’s captain minutes before midnight on March 12, 1928, 1912 sinking of the Titanic, when 1 517 people merely ordered “a patch of metal put over the dam catastrophically failed, and the were lost… It is scarcely remembered today.” the bulge”. This repair could be done “in one resulting flood killed more than 600 people.” National Geographic News (Ref. 3;1) day”, while proper repairs, which would have (Ref. 4; 1) taken “three to four days”, would have meant “It” was the sinking of the steamboat Sultana Until 1995, the failure of the St. Francis dam that other steamboats would have taken the almost 121 years to the day before the was thought to have been “the worst civil POWs home: and made a huge amount of Chernobyl disaster. Like Chernobyl, a massive engineering failure of the 20th century”. money (Ref. 3;2). steam explosion was the culprit. But, unlike However, we now know otherwise. The largest Chernobyl, the steam explosion that killed The result of all this was that, at 02h00 on the civil engineering disaster was unimaginably more than 1700 people shortly after 02h00 on morning of 27 April, more than 1700 ( some greater, and occurred not in the USA, or 27 April 1865 has long been forgotten.
    [Show full text]