17 Non Standard Ringing Procedures

Total Page:16

File Type:pdf, Size:1020Kb

17 Non Standard Ringing Procedures 17 Non Standard Ringing Procedures The manual is intended to deal mainly with ringing as a tool to study bird migration. However, the bird ringing as a method could be used in different ecological research. This can be run as a part of the basic work of the permanent bird station or as programmes for ordinary ringers participating in them as volunteers. The most known are projects following population at breeding grounds: colour bird ringing and Constant Effort Sites programme. At some areas where a lot of birds spend a winter ringing projects at bird feeders are popular. Because some of these activities could be effectively run at permanent ringing stations, a bit of information about could be justified in the manual, especially that there can be used procedures similar to traditional bird ringing. Colour ringing. Tagging of birds using colour markers – colour rings, wing tags, neck collars – is very close to the classic ringing. Generally, colour rings are similar to normal metal rings, but made of colour plastic, but differentiated by colour, not by inscriptions and numbering (although some of them are bearing numbers). After colour ringing, the bird or the bird group is identified from a distance by colour or combination of colour rings; it is not necessary to re-trap the bird to have return information on the bird. This makes collecting ecological information about birds at breeding area much more efficient than waiting for subsequent catches. Colours give possibility to know at least the group the individual bird belongs to: the defined cohort is marked by colour, e.g. nestlings from the year 2010 bear yellow ring, from 2011: red ring, while those from 2012: blue ring, and during breeding season 2013 we will know the exact age of birds breeding in the vicinity. The more sophisticated colour ringing uses combination of several such rings put on one or two legs, right and left: so, yellow ring on the left leg does not mean the same as the yellow ring on the right one. If we use a few rings possibility of individual coding grows and return information, obtained without re-trapping bird grows much. It must be mentioned that colour ringing is the only case when putting more than one ring on one leg is allowed. The disadvantage of common colour rings is that plastic is much less durable than metal and birds can lost some colour rings relatively soon. This problem is solved in the European Laser Signed Advanced ring rings system (ELSA) designed for White Stork ringing and intended that the ring number to be read by binoculars or telescope rather than waiting for traditional bird recovery report. By the way, the idea of reading ring number from a distance is nowadays more and more popular as optical equipment is more accessible and modern cameras with high resolution bring readable pictures easily. The similar idea of identification from a distance is used in a form of wing tags and neck collars; the readings can be easily read, even using common binoculars. Radio tagging. Quick development of electronic devices brought important progress in bird migration studies. At the beginning, there were small radio transmitters, that were fixed on a bird, allowed locating it using directional antenna © 2015 Przemysław Busse, Włodzimierz Meissner This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. 194 Non Standard Ringing Procedures from a distance hundreds meters to a few kilometres. In the bird migration study, they were useful for studying stopover behaviour locally. This kind of radio transmitters still could be useful in such research, as these devices are relatively cheap. However, the work with them is tiring and time consuming. Recent development of miniaturized tracking technology has opened a new perspective in bird migration studies. They differ in applied tracking technology, accuracy and weight (Table 17.1, Figure 17.1). Tracking device deployed on a given bird species must be small enough to be carried without difficulty. It is widely accepted that weight of the tracking device should not exceed 3% of body mass of the bird. Nowadays only geolocator technology may be applied for small birds, weighing not less than 17-20 g. Geolocator mounted on the lower back or on the upper part of the leg of a bird records light levels in relation to an internal timer. According to these light data the latitude and the longitude could be estimated by specialized computer program. Accuracy of geolocators is severely limited in equatorial areas during some parts of the year and in Polar Regions. However, geolocator accuracy is low and varies depending on location, habitat and weather, they are sufficient in studies on long distance migrants (e.g. Egevang et al., 2010; Bairlein et al., 2012; Cormier et al., 2013). Table 17.1: General characteristics of the most popular bird tracking devices in 2013. Tracking Minimum mass of Accuracy Advantages Disadvantages technology the device [g] GPS with satellite 20 High accuracy. Expensive; not more relay systems Global range of than 20 locations operation; SOLAR per day GPS logger with 5 g for short 2-5 m High accuracy; Data downloading radio data (about 400 m) SOLAR possible only when transmitter (UHF) range of birds stay within the transmission; range of antenna 15 g for long (about 4 km) range of transmission GPS logger with 15 2-5 m High accuracy; data Only for larger or GSM transmission transmission through medium sized birds cell phone networks; SOLAR Solar geolocation 0.5 50–200 km Cheap and light; Low accuracy; might be used for require recovery tracking small pas- of the device to serines (about 15 g download data of body mass) data Non Standard Ringing Procedures 195 Figure 17.1-1: Mallard with GPS device. Photo W. Meissner. Figure 17.1-2: GPS device from the White Stork found near Aswan, Egypt. Photo I. Rząd. 196 Non Standard Ringing Procedures Devices based on GPS systems usually record and store location data at a pre- determined interval. GSM module allows changes of operating parameters remotely in loggers set on animals. Data stored in logger memory (usually up to 30 000 GPS positions) are relayed to a central data store or internet-connected computer using an embedded cellular (GPRS), radio, or satellite modem. These devices offer high accuracy of obtained geographical positions of tracked birds, hence, they may be used both for studies on local bird movement and studies on long distance migration. It can be expected that in the future, more accurate devices will be available for tracking small birds, geolocators are currently the only options for majority of passerines and small sized waders. There is no doubt that we are entering a new era in bird migration studies. Nowadays, information on migratory routes may be obtained by combining data from bird rings returns, analyses of biomarkers (e.g., genes and stable isotopes), cage orientation tests and applying modern tracking devices. However, classic studies based on bird ringing and measuring are still widely used providing valuable data not only on migration, but also on mortality, longevity, site fidelity and many other aspect of birds life. Constant Effort Site. This programme, working in several European countries, is generally set for voluntary ringers, but there is no reason to not apply it in a permanent ringing station. The basic idea is to catch the birds in a standardized manner during breeding period. Therefore, the idea is very close to that recommended in this book for the bird migration studies. CES programme monitors numbers of birds inhabiting the defined breeding area, gives information about productivity, from a proportion between number of adults and juveniles, and estimates adult survival rates, for species with breeding site fidelity. The basics of the method used are: twelve ringing visits at the site between May and August, distributed as evenly as possible. The standard set of nets should be used throughout all visits, as well as the nets should be located in the same positions. Recommended number of nets is 10-20 ones, and a time of work should be not less than 6 hours (the same for all visits), starting from the dawn. The scheme allows some flexibility as to these parameters (additional nets as well as additional visits are allowed). The site habitat is limited to more stable wet, scrub and deciduous biotopes being relatively stable as to succession development. Habitat should be carefully described at the start of the site. The problems with changing habitat are the same as it was mentioned for sites used for the standardized migration catching (see Arrangement of the Netting Area - p. 51). Within the CES system biometrics information is not required, but the ringing station that work in the breeding time will surely collect these data, because of their value for comparisons between local and migrating populations. Feeder ringing. Out of migrations seasons and breeding time (CES) ringers, and obviously, permanent ringing stations frequently do ringing during the winter (Figure 17.2). As feeding birds during the winter time is a very common custom of not only ornithologists, ringing at feeders is easy and could be very effective; many birds are attracted by food supplied to the feeder (see also Attracting the Birds to Nets and Non Standard Ringing Procedures 197 Traps – p. 75). Ringing at feeder should be carried out with a special care about safety of birds, among others it must be avoided too much disturbance to the birds when weather conditions are really critical – very low temperature, deep snow cover and, especially, when trees are covered by a slimy ice cover or when cold fog make the birds wet quickly.
Recommended publications
  • The Mysteries of Bird Migration – Still Much to Be Learnt
    The mysteries of bird migration – still much to be learnt Franz Bairlein ABSTRACT Bird ringing has unveiled many mysteries of avian migrations, notably routes and destinations. However, there is still much to be explored by the use of ringing and other marking techniques. Satellite tracking, geolocation and global positioning systems are new tools, as well as particular chemical and molecular markers which appear to be very useful in the study of bird migration by delineating origin of birds and connectivity between breeding and non-breeding grounds. Understanding of bird migrations also gained much from captive studies about the internal mechanisms in the control of bird migration, but we still lack knowledge about external factors, such as food availability, weather, competitors, parasites or diseases.This paper summarises ongoing studies on Northern Wheatears Oenanthe oenanthe to illustrate the benefit of such an integrated approach. Future migration research must aim much more at comparative research and a more integrated approach at various spatial and temporal scales, and linking various sub-disciplines. It is also important to realise that migration is only one part of the life-cycle of a migrating species.Thus, linking migration and breeding is another future challenge, for both basic science and conservation of migratory birds. or centuries, the seasonal arrival and The study of bird migration by ringing departure of bird species to and from Our knowledge of bird migration improved Ftheir breeding grounds remained a dramatically with the development of bird mystery. Although these events were described ringing, first practised by the Danish school by early observers such as the wall and floor teacher Hans Christian Cornelius Mortensen in painters of ancient Egypt, Aristotle and the 1899 (Jespersen & Tåning 1950; Bairlein 2001).
    [Show full text]
  • A Bird's EYE View on Flyways
    A BIRD’S EYE VIEW ON FLywayS A brief tour by the Convention on the Conservation of Migratory Species of Wild Animals IMPRINT Published by the United Nations Environment Programme (UNEP) and the Secretariat of the Convention on the Conservation of Migratory Species of Wild Animals (CMS) A BIRD’S EYE VIEW ON FLywayS A brief tour by the Convention on the Conservation of Migratory Species of Wild Animals UNEP / CMS Secretariat, Bonn, Germany. 68 pages. Produced by UNEP/CMS Text based on a report by Joost Brouwer in colaboration with Gerard Boere Coordinator Francisco Rilla, CMS Secretariat, E-mail: [email protected] Editing & Proof Reading Hanah Al-Samaraie, Robert Vagg Editing Assistant Stéphanie de Pury Publishing Manager Hanah Al-Samaraie, Email: [email protected] Design Karina Waedt © 2009 United Nations Environment Programme (UNEP) / Convention on Migratory Species (CMS). This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP or contributory organizations.The designations employed and the presentations do not imply the expression of any opinion whatsoever on the part of UNEP or contrib- utory organizations concerning the legal status of any country, territory, city or area in its authority, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Partial Migration in the Mediterranean Storm Petrel Hydrobates Pelagicus Melitensis
    Lago et al.: Partial migration in Mediterranean Storm Petrel 105 PARTIAL MIGRATION IN THE MEDITERRANEAN STORM PETREL HYDROBATES PELAGICUS MELITENSIS PAULO LAGO*, MARTIN AUSTAD & BENJAMIN METZGER BirdLife Malta, 57/28 Triq Abate Rigord, Ta’ Xbiex XBX 1120, Malta *([email protected]) Received 27 November 2018, accepted 05 February 2019 ABSTRACT LAGO, P., AUSTAD, M. & METZGER, B. 2019. Partial migration in the Mediterranean Storm Petrel Hydrobates pelagicus melitensis. Marine Ornithology 47: 105–113. Studying the migration routes and wintering areas of seabirds is crucial to understanding their ecology and to inform conservation efforts. Here we present results of a tracking study carried out on the little-known Mediterranean Storm Petrel Hydrobates pelagicus melitensis. During the 2016 breeding season, Global Location Sensor (GLS) tags were deployed on birds at the largest Mediterranean colony: the islet of Filfla in the Maltese Archipelago. The devices were retrieved the following season, revealing hitherto unknown movements and wintering areas of this species. Most individuals remained in the Mediterranean throughout the year, with birds shifting westwards or remaining in the central Mediterranean during winter. However, one bird left the Mediterranean through the Strait of Gibraltar and wintered in the North Atlantic. Our results from GLS tracking, which are supported by data from ringed and recovered birds, point toward a system of partial migration with high inter-individual variation. This highlights the importance of trans-boundary marine protection for the conservation of vulnerable seabirds. Key words: Procellariformes, movement, geolocation, wintering, Malta, capture-mark-recovery INTRODUCTION The Mediterranean Storm Petrel has been described as sedentary, because birds are present in their breeding areas throughout the year The Mediterranean Storm Petrel Hydrobates pelagicus melitensis is (Zotier et al.
    [Show full text]
  • CMS/CAF/Inf.4.13 1 Central Asian Flyway Action Plan for Waterbirds and Their Habitat Country Report
    CMS/CAF/Inf.4.13 Central Asian Flyway Action Plan for Waterbirds and their Habitat Country Report - INDIA A. Introduction India situated north of the equator covering an area of about 3,287,263 km2 is one of the largest country in the Asian region. With 10 distinctly different bio geographical zones and many different habitat types, the country is known amongst the top 12 mega biodiversity countries. India is known to support 1225 species of bird species, out of these 257 species are water birds. India remains in the core central region of the Central Asian Flyway (CAF) and holds some crucial important wintering population of water bird species. India is also a key breeding area for many other water birds such as Pygmy cormorant and Ruddy-shelduck, globally threatened water birds such as Dalmatian Pelican, Lesser White-fronted Goose, Siberian crane, oriental white stork, greater adjutant stork, white winged wood duck etc. Being located in the core of the CAF, and several important migration routes the country covers a large intra-continental territory between Arctic and Indian Ocean. Being aware of the importance of the wetlands within the geographic boundary of the India for migrating avifauna, India has developed a wetland conservation programme. India currently has 19 RAMSAR sites. India has identified more than 300 sites which has the potential to be consider as the RAMSAR sites. However, being the second most populus nation in the world with agricultural economy, wetlands are one of the most used habitat with water bird and human interface. Much of the Indian landmass also being dependent to the normal monsoonal rainfall for precipitation is also subjected to extremes of drought and flood making the wetlands vulnerable to drastic ecological changes.
    [Show full text]
  • Hitchhikers' Guide to Analysing Bird Ringing Data
    Ornis Hungarica 2015. 23(2): 163–188. DOI: 10.1515/orhu-2015-0018 Hitchhikers’ guide to analysing bird ringing data Part 1: data cleaning, preparation and exploratory analyses ANDREA HARNOS1*, PÉTER FEHÉRVÁRI2 & Tibor Csörgő3 Andrea Harnos, Péter Fehérvári & Tibor Csörgő 2015. Hitchhikers’ guide to analysing bird ring- ing data – Part 1. – Ornis Hungarica 23(2): 163–188. Abstract Bird ringing datasets constitute possibly the largest source of temporal and spatial in- formation on vertebrate taxa available on the globe. Initially, the method was invented to un- derstand avian migration patterns. However, data deriving from bird ringing has been used in an array of other disciplines including population monitoring, changes in demography, conservation management and to study the effects of climate change to name a few. Despite the widespread usage and importance, there are no guidelines available specifically describing the practice of data management, preparation and analyses of ringing datasets. Here, we present the first of a series of comprehensive tutorials that may help fill this gap. We describe in detail and through a real-life example the intricacies of data cleaning and how to create a data table ready for analy- ses from raw ringing data in the R software environment. Moreover, we created and present here the R package; ringR, designed to carry out various specific tasks and plots related to bird ringing data. Most methods described here can also be applied to a wide range of capture-recapture type data based on individual marking, regardless to taxa or research question. Keywords: data cleaning, R statistical software, banding data, statistical analysis, mark-recapture, data management Összefoglalás Feltehetően a madárgyűrűzésből származó adatok szolgáltatják a leghosszabb időtávot felölelő és legtöbb adatot tartalmazó gerinces adatbázist a Földön.
    [Show full text]
  • ADU Guide 5 SAFRING Bird Ringing Manual
    ADU Guide 5 SAFRING Bird Ringing Manual S.J. de Beer G.M. Lockwood J.H.F.A. Raijmakers J.M.H. Raijmakers W.A. Scott H.D. Oschadleus L.G. Underhill Cape Town, July 2001 Avian Demography Unit DEA & T The Avian Demography Unit (ADU) is a research unit of the University of Cape ADU Guide 5 Town. It conducts research in partnership with BirdLife South Africa. The ADU provides a channel through which birders can make a unique and significant input to the science of ornithology. BirdLife South Africa members form a net- work of observers who contribute data to projects coordinated by the ADU. The SAFRING ADU produces the newsletter Bird Numbers twice a year. The mission of the Avian Demography Unit is to contribute to the improved Bird Ringing Manual understanding of bird populations, especially bird population dynamics, and thus make a contribution to bird conservation. The Avian Demography Unit achieves this through mass-participation projects, long-term monitoring, innovative statistical modelling, and population-level interpretation of results. The empha- sis is on the curation, analysis, publication and dissemination of data. S.J. de Beer ADU Guides provide information on projects of the Avian Demography Unit G.M. Lockwood at the University of Cape Town. J.H.F.A. Raijmakers Birders interested in being involved in projects of the ADU should write to: J.M.H. Raijmakers Avian Demography Unit, University of Cape Town, Rondebosch 7701, South Africa, tel. (021) 650-2423, e-mail [email protected]. W.A. Scott Other publications in this series: H.D.
    [Show full text]
  • Capturing Birds with Mist Nets: a Review
    Capturingbirds with mist nets: A review Brt•mE. Keyesand Chr/sflanE. Grue provementshave been made in their design.These in- heovermist 300netyears was agodeveloped as a techniquebyJapanese for capturing hunters clude a choiceof smallerand larger meshsizes and the birds for food (Austin1947, Spencer 1972). Today mist replacementof cotton,silk, and nylon webbing with netsare undoubtedlythe mostcommonly used method monofilamentnylon and terylenefor increasedstrength for capturingbirds for research(Spencer 1972). As a and durability.Mist netswith a varietyof specifications result, many improvementsand modificationsin mist are now available commercially.Consult recent issues nets and their use have been suggestedby nettersfor of thisand otherornithological iournals for suppliers. particularspecies and habitats.With a few exceptions, Black mist nets are used most often since this color thisinformation is widely scatteredthroughout the orni- absorbsrather than reflectslight. However, othercolors thologicalliterature. Low (1957)has describedbasic mist-netoperations. Methods for mist-nettingin adverse are available for specifichabitat conditions.For exam- weatherconditions or particularhabitats have been de- ple,fine sand-colored nets have been effective in cap- turing shorebirdsin open-beachareas (Bleitz 1961). scribedby Bleitz (1970)and Spencer(1972). The most Pale green-aqua,dark green, dark brown, and white comprehensivereviews of mist-nettingtechniques pres- netshave alsobeen usedsuccessfully in marshes,for- ently available to netters are those of Wilson et al. ests and fields, mud flats, and snow-covered areas, re- (1965]and Bub (1967].In this paper we provide a re- spectively(Bleitz 1962b, 1964). view suitablefor both novice and experiencednetters emphasizingNorth Americanbird speciesand habitats. Various net sizes are also available. The standard mist net measuresabout 2 x 9 m (7 x 30 ft).
    [Show full text]
  • Speed of Bird Migratory Movements As an Adaptive Behavior V
    ISSN 20790864, Biology Bulletin Reviews, 2013, Vol. 3, No. 3, pp. 219–231. © Pleiades Publishing, Ltd., 2013. Original Russian Text © V.A. Payevsky, 2012, published in Zhurnal Obshchei Biologii, 2012, Vol. 73, No. 5, pp. 360–376. Speed of Bird Migratory Movements as an Adaptive Behavior V. A. Payevsky Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg, 199034 Russia email: [email protected]; [email protected] Received January 10, 2012 Abstract—The migration speed of 115 bird species from 35 families of 14 orders has been analyzed on the basis of ring recovery data from published sources. The results show that the average speed varies between 10 and 880 km/day and the maximum speed varies between 30 and 1392 km/day, but the respective values in the majority of species fall within the ranges of 20–100 and 40–360 km/day. There is a significant positive corre lation between the average and maximum speed values. The ratio between them varies significantly between the species, with the overall average ratio being 4 : 1. On average, shorebirds migrate twice as rapidly as pas serines, and the average migration speed in birds of prey is slightly higher than in shorebirds. Species of the family Turdidae migrate significantly faster than species of the family Fringillidae, and the latter migrate faster than the Paridae. No significant differences in migration speed have been revealed between the Sylvi idae and Turdidae as well as between the Sylviidae and Motacillidae species. The average migration speed in shorebirds shows a significant negative correlation with body mass, but no such correlation is observed in the passerines.
    [Show full text]
  • Quantifying the Movement Patterns of Birds from Ring Recoveries
    Ringing & Migration (2009) 24, 180–188 Quantifying the movement patterns of birds from ring recoveries JACQUIE A. CLARK1*, KASPER THORUP2 and DAVID A. STROUD3 1BTO, The Nunnery, Thetford, Norfolk IP24 2PU, UK 2Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark 3Joint Nature Conservation Committee, Monkstone House, City Road, Peterborough PE1 1JY, UK Scientific bird ringing was initiated to study the movements of birds, particularly annual migrants. When a ringed bird is reported to the ringing scheme we have the location of that bird at two points in time – where and when it was ringed and where and when it was found. The collation of reports of ringed birds (recoveries) allows patterns of location change with time to be described. Different methods of presenting these simple data have been devised over the years; initially, the aim was to summarise our knowledge of where birds go. Quantitative inference about population behaviour from recovery data is complicated by several factors, particularly the differences in recovery probabilities between different regions. However, the power of ringing-data analysis is now being increased using statistical methods to correct for the expected geographical biases in recovery patterns. The quantitative interpretation of movement patterns of birds is essential for basing conservation policy on sound evidence. The continuation of large-scale ringing and recovery efforts, and the development of statistical tools for analysis and interpretation of the data at continental scales, are therefore vital for the conservation of migratory birds and to understand the impact and spread of disease. Scientific bird ringing was started to try to understand the ‘migration atlas’ – Atlas des Vogelzugs (Schüz & Weigold movements of wild birds and continues to provide vital 1931) – consisted of a bound text and 150 loose-leaf pages information on migration and dispersal and on how these of 262 maps, covering a wide range of species and using change and evolve in relation to environmental conditions.
    [Show full text]
  • International Single Species Action Plan for the Conservation of the Eurasian Spoonbill Platalea Leucorodia
    TECHNICAL SERIES No. 35 International Single Species Action Plan for the Conservation of the Eurasian Spoonbill Platalea leucorodia Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) International Single Species Action Plan for the Conservation of the Eurasian Spoonbill Platalea leucorodia AEWA Technical Series No. 35 September 2008 Prepared and printed with funding from Vogelbescherming Nederland (BirdLife Netherlands) Compiled by: Patrick Triplet, Otto Overdijk, Michael Smart, Szabolcs Nagy, Martin Schneider-Jacoby, E. Sühendan Karauz, Csaba Pigniczki, Sherif Baha El Din, Jelena Kralj, Attila Sandor, Juan G. Navedo. Jointly edited by Eurosite, Syndicat Mixte Baie de Somme, Vereniging Natuurmonumenten, Wetlands International, Euronatur, International Spoonbill Working Group. E-mail for correspondence: [email protected] With contributions from: Platalea leucorodia leucorodia: Atlantic Breeding Population Belgium: Koen Devos, Geert Spanoghe, Glenn Vermeersch, Jean-Paul Jacob Denmark: Jan Skriver, Michael Grell France: Jean-Pierre Artel, Christophe Aulert, Maurice Benmergui, Philippe Carruette, Xavier Commecy, Frédéric Dupuy, Michel Fouquet, Guillaume Gélinaud, Olivier Girard, Julien Gonin, David Hémery, Roger Mahéo, Loïc Marion, Rémy Tréabol, Nicolas Sadoul, François Sueur, Patrick Triplet Gambia: Clive Barlow, Alagie Manjang, Kawsu Jammeh, Modou Colley Germany: Klaus Günther (for Schleswig-Holstein), Peter Südbeck (for Lower Saxony) Guinea (Conakry): Atigou Balde Luxembourg: Sandra Cellina, Patric Lorgé,
    [Show full text]
  • Pathogen Dynamics in Wild Bird Species: Circulation of Avian Influenza Viruses in Natural Vs
    Pathogen dynamics in wild bird species: circulation of avian influenza viruses in natural vs. anthropic ecosystems and concurrent infections with other agents in waterbirds Olalla Torrontegui Vega 1 Pathogen dynamics in wild bird species; circulation of avian influenza viruses in natural vs. anthropic ecosystems and concurrent infections with other agents in waterbirds Olalla Torrontegui Vega 2017 Work performed at the Animal Health Department of NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario for the degree of Doctor of Phylosophy in Biology with international mention at the University of the Basque Country Thesis directors: Marta Barral DVM, PhD and Ursula Höfle DVM, PhD Department of Zoology and Animal Cell Biology Faculty of Science and Technology University of the Basque Country (c)2017 OLALLA TORRONTEGUI VEGA This thesis was accomplished with financial support from the Spanish National Institute for Agricultural and Food Research and Technology (INIA) (RTA2011-00111-C03 grant), and with financial support from the Department of Agriculture and Fisheries (Basque Government). Olalla Torrontegui was recipient of an INIA predoctoral grant. Index Index List of Content Thesis outline ................................................................................................................... 1 Literature review .............................................................................................................. 5 Avian Influenza Virus: morphology, replication and assembly ..............................................................
    [Show full text]
  • A Bird's EYE View on Flyways
    A BIRD’S EYE VIEW ON FLywayS A brief tour by the Convention on the Conservation of Migratory Species of Wild Animals Second edition IMPRINT Published by the United Nations Environment Programme (UNEP) and the Secretariat of the Convention on the Conservation of Migratory Species of Wild Animals (CMS) A BIRD’S EYE VIEW ON FLywayS A brief tour by the Convention on the Conservation of Migratory Species of Wild Animals UNEP / CMS Secretariat, Bonn, Germany. 64 pages. Produced by UNEP/CMS Text based on a report by Joost Brouwer in collaboration with Gerard Boere Coordinator Hanah Al-Samaraie, E-mail: [email protected] Editing & Proof Reading Hanah Al-Samaraie, Robert Vagg, Darinka Blies, Tracy Johnston Publishing Manager Francisco Rilla, CMS Secretariat, E-mail: [email protected] Design Karina Waedt, E-mail: [email protected] Second edition © 2012 United Nations Environment Programme (UNEP)/Convention on Migratory Species (CMS). This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permis- sion in writing from the United Nations Environment Programme. DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP or contributory organizations.The designations employed and the presentations do not imply the expression of any opinion whatsoever on the part of UNEP or contri- butory organizations concerning the legal status of any country, territory, city or area in its authority, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]