bioRxiv preprint doi: https://doi.org/10.1101/2021.01.24.427284; this version posted January 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Barragan et al. Inbreeding Depression in A. arenosa Homozygosity at its Limit: Inbreeding Depression in Wild Arabidopsis arenosa Populations A. Cristina Barragan1, Maximilian Collenberg1, Rebecca Schwab1, Merijn Kerstens1a, Ilja Bezrukov1, Felix Bemm1,b, Doubravka Požárová2, Filip Kolář2, Detlef Weigel1* 1Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany 2Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic aCurrent address: Department of Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, Netherlands bCurrent address: KWS Saat, 37574 Einbeck, Germany *Corresponding author:
[email protected] (D.W.) Keywords: Arabidopsis arenosa, wild populations, deleterious phenotypes, inbreeding depression Abstract New combinations of genetic material brought together through hybridization can lead to unfit offspring as a result of outbreeding or inbreeding depression. In selfing plants such as Arabidopsis thaliana, outbreeding depression is typically the result of pairwise deleterious epistatic interactions between two alleles that can geographically co-occur. What remains elusive is how often alleles resulting in genetic incompatibilities co-occur in natural populations of outcrossing plant species. To address this question, we screened over two thousand five hundred wild Arabidopsis arenosa hybrid plants in search for potential genetic mismatches. We show that although abnormal deleterious phenotypes are common, the transcriptional profiles of these abnormal A.