High-Performance High-Order Simulation of Wave and Plasma Phenomena

Total Page:16

File Type:pdf, Size:1020Kb

High-Performance High-Order Simulation of Wave and Plasma Phenomena High-Performance High-Order Simulation of Wave and Plasma Phenomena by Andreas Klockner¨ Dipl.-Math. techn., Universitat¨ Karlsruhe (TH); Karlsruhe, Germany, 2005 M.S., Brown University; Providence, RI, 2006 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Division of Applied Mathematics at Brown University PROVIDENCE, RHODE ISLAND May 2010 c Copyright 2010 by Andreas Klockner¨ This dissertation by Andreas Klockner¨ is accepted in its present form by The Division of Applied Mathematics as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date Jan Sickmann Hesthaven, Ph.D., Advisor Recommended to the Graduate Council Date Johnny Guzman,´ Ph.D., Reader Date Chi-Wang Shu, Ph.D., Reader Approved by the Graduate Council Date Sheila Bonde, Dean of the Graduate School iii Vitae Biographical Information Birth August 5th, 1977 Konstanz, Germany Education 2005 – 2010 Ph.D. in Applied Mathematics (in progress) Division of Applied Mathematics, Brown University, Providence, RI Advisor: Jan Hesthaven 2005 Diplom degree in Applied Mathematics (Technomathematik) Institut fur¨ Angewandte Mathematik, Universitat¨ Karlsruhe, Ger- many Advisor: Willy Dorfler¨ 2001 – 2002 Exchange Student, Department of Mathematics University of North Carolina at Charlotte, Charlotte, NC 2000 Vordiplom in Computer Science, Universitat¨ Karlsruhe, Germany Experience 6/2006 – 9/2006 J. Wallace Givens Research Associate Mathematics and Computer Science Div., Argonne Nat’l Laboratory, Illinois Worked on high-order unstructured electromagnetic simulation of particle accelerators (with Paul Fischer, Misun Min, and col- leagues at ANL’s Advanced Photon Source). iv 2/2005 – 7/2005 Research Associate (Wissenschaftlicher Mitarbeiter) Institut fur¨ Angewandte Mathematik, Universitat¨ Karlsruhe, Germany Worked on various extensions of my thesis research (with Willy Dorfler).¨ 5/2002 – 11/2002 Research Intern DaimlerChrysler Research & Technology, Palo Alto, CA Worked on driver stress detection, precision GPS, and software infrastructure (with Stefan Schrodl).¨ Publications 2010 Viscous Shock Capturing with an Explicitly Time-Stepped Discontinuous Galerkin Method. AK, T. Warburton, J.S. Hesthaven. In preparation. 2009 PyCUDA: GPU Run-Time Code Generation for High-Performance Computing. AK, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. Submitted, available at http://arxiv.org/abs/0911. 3456. 2009 Nodal Discontinuous Galerkin Methods on Graphics Processors. AK, T. Warburton, J. Bridge, J.S. Hesthaven. Journal of Compu- tational Physics, Volume 228, Issue 21, 20 November 2009. 2009 Deterministic Numerical Schemes for the Boltzmann Equation. A. Narayan, AK. Brown University Scientific Computing Technni- cal Report 2009-39. 2005 On the Computation of Maximally Localized Wannier Functions. Diplom Thesis, Universitat¨ Karlsruhe, Germany. v Acknowledgments First and foremost, the support of my advisor Jan Hesthaven has been the cornerstone of my working life in the past five years. He was a source of questions, of answers, of inspiration, he encouraged me to be bold in the scientific questions I pursue, all while giving me great freedom in following my interests. He has also patiently put up with the things that turned out not to be so smart in hindsight. Beyond science, he has been a role model and a tremendous influence on my life as a whole. I consider myself lucky to have had him as a mentor. Over the years, I have worked very closely with Tim Warburton at Rice University on many of the topics that this thesis discusses. His generosity, help, and insight have benefited me in many ways. Both of the above, along with Chi-Wang Shu and Johnny Guzman´ have graciously agreed to serve on my PhD committee, spent time thinking about my work, and provided invaluable feedback. Throughout my graduate studies, I have had the honor of working on various projects with a large and diverse group of people. Their insights, commentary and encouragement, shared in many conversations, were and continue to be a great asset to my scientific life. The graduate student and postdoc community at Brown’s Division of Applied Mathe- matics is a great crowd in which to grow up academically. Many of you have become my vi friends, and I hope we will be able to stay close even as life scatters us across the globe. Nvidia Corporation have been very generous with equipment and travel support and were instrumental in initiating, furthering and publicizing the GPU-based part of my research. Many contributors around the world have created the open-source software and tools on which my work has crucially depended. This notably includes the communities that have formed around my various projects. Parts of this thesis are based on two publications, [Klockner¨ et al., 2009b] and [Klockner¨ et al., 2009a]. My coauthors have contributed considerably to both articles through their ideas, suggestions, and feedback. Last, but by no means least, my parents Bina and Heinrich Klockner¨ have, throughout my entire life, given me their unconditional support, advice, and love. Thank you, all of you. Some of the computational meshes used in this work were generated using Triangle [Shewchuk, 1996] and TetGen [Si and Gaertner, 2005]. The surface mesh for Figure 5.10 originates in the FlightGear flight simulator and was processed using Blender and MeshLab, a tool developed with the support of the Epoch European Network of Excellence. vii Abstract of “High-Performance High-Order Simulation of Wave and Plasma Phenomena” by Andreas Klockner,¨ Ph.D., Brown University, May 2010 This thesis presents results aiming to enhance and broaden the applicability of the discon- tinuous Galerkin (“DG”) method in a variety of ways. DG was chosen as a foundation for this work because it yields high-order finite element discretizations with very favorable numerical properties for the treatment of hyperbolic conservation laws. In a first part, I examine progress that can be made on implementation aspects of DG. In adapting the method to mass-market massively parallel computation hardware in the form of graphics processors (“GPUs”), I obtain an increase in computation performance per unit of cost by more than an order of magnitude over conventional processor architectures. Key to this advance is a recipe that adapts DG to a variety of hardware through automated self-tuning. I discuss new parallel programming tools supporting GPU run-time code generation which are instrumental in the DG self-tuning process and contribute to its reaching application floating point throughput greater than 200 GFlops/s on a single GPU and greater than 3 TFlops/s on a 16-GPU cluster in simulations of electromagnetics problems in three dimensions. I further briefly discuss the solver infrastructure that makes this possible. In the second part of the thesis, I introduce a number of new numerical methods whose motivation is partly rooted in the opportunity created by GPU-DG: First, I construct and examine a novel GPU-capable shock detector, which, when used to control an artificial viscosity, helps stabilize DG computations in gas dynamics and a number of other fields. Second, I describe my pursuit of a method that allows the simulation of rarefied plasmas using a DG discretization of the electromagnetic field. Finally, I introduce new explicit multi-rate time integrators for ordinary differential equations with multiple time scales, with a focus on applicability to DG discretizations of time-dependent problems. Contents Vitae iv Acknowledgments vi 1 Introduction 1 1.1 About this Thesis . 2 1.2 The Scientific Method and the Computational Experiment . 3 1.3 An Argument for Hybrid Codes . 5 1.4 Assembling a Set of Tools . 6 1.5 Reproducibility for Results in this Thesis . 7 2 Preliminaries 10 2.1 The Discontinuous Galerkin Method . 11 2.1.1 Implementing DG . 14 2.2 GPU Hardware: A Brief Introduction . 15 2.2.1 Specifics of Nvidia hardware . 18 3 A Code-Generating Discontinuous Galerkin Solver 21 3.1 On the Design of a Discontinuous Galerkin PDE Solver . 22 3.2 A Language for Discontinuous Galerkin Methods . 26 3.2.1 Fluxes and Flux-Local Binding . 30 3.2.2 Common Subexpression Elimination . 31 3.2.3 An Example . 32 3.2.4 Discussion . 34 3.3 The Processing Pipeline . 35 3.3.1 Type Inference and Operator Specialization . 35 3.3.2 Optimizations . 36 3.3.3 Target-Specific Rewriting . 37 3.4 The Virtual Machine . 38 3.4.1 The Compilation Step . 38 3.4.2 The Execution Model . 40 viii 3.5 Conclusions . 42 4 Code Generation on Graphics Processors 45 4.1 Introduction . 46 4.2 GPU Software Creation . 50 4.3 Problems Solved by GPU Run-Time Code Generation . 51 4.3.1 Automated Tuning . 52 4.3.2 The Cost of Flexibility . 53 4.3.3 High-Performance Abstractions . 54 4.3.4 GPUs and the Need for Flexibility . 56 4.4 PyCUDA: A Scripting-Based Approach to GPU RTCG . 57 4.4.1 Abstractions in PyCUDA . 61 4.4.2 Code Generation with PyCUDA . 63 4.4.3 PyOpenCL: OpenCL and GPU RTCG . 66 4.5 Successful Applications . 66 4.6 Conclusions . 68 5 Discontinuous Galerkin Methods on Graphics Processors 70 5.1 Introduction . 71 5.2 DG on the GPU: Design . 74 5.3 DG on the GPU: Implementation . 78 5.3.1 How to read this Section . 78 5.3.2 Flux Lifting . 79 5.3.3 Flux Extraction . 82 5.3.4 Element-Local Differentiation . 89 5.4 Experimental Results . 94 5.4.1 Further Results: Double Precision, Distributed Computation . 105 5.5 Conclusions . 109 6 Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method 111 6.1 Introduction . 112 6.2 Basic Design Considerations . 116 6.3 Applications and Equations . 120 6.3.1 Advection Equation . 120 6.3.2 Second-Order Wave Equation . 121 6.3.3 Burgers’ Equation . 122 6.3.4 Euler’s Equations of Gas Dynamics .
Recommended publications
  • Arxiv:1911.09220V2 [Cs.MS] 13 Jul 2020
    MFEM: A MODULAR FINITE ELEMENT METHODS LIBRARY ROBERT ANDERSON, JULIAN ANDREJ, ANDREW BARKER, JAMIE BRAMWELL, JEAN- SYLVAIN CAMIER, JAKUB CERVENY, VESELIN DOBREV, YOHANN DUDOUIT, AARON FISHER, TZANIO KOLEV, WILL PAZNER, MARK STOWELL, VLADIMIR TOMOV Lawrence Livermore National Laboratory, Livermore, USA IDO AKKERMAN Delft University of Technology, Netherlands JOHANN DAHM IBM Research { Almaden, Almaden, USA DAVID MEDINA Occalytics, LLC, Houston, USA STEFANO ZAMPINI King Abdullah University of Science and Technology, Thuwal, Saudi Arabia Abstract. MFEM is an open-source, lightweight, flexible and scalable C++ library for modular finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of dis- cretization approaches and emphasis on usability, portability, and high-performance computing efficiency. MFEM's goal is to provide application scientists with access to cutting-edge algorithms for high-order finite element mesh- ing, discretizations and linear solvers, while enabling researchers to quickly and easily develop and test new algorithms in very general, fully unstructured, high-order, parallel and GPU-accelerated settings. In this paper we describe the underlying algorithms and finite element abstractions provided by MFEM, discuss the software implementation, and illustrate various applications of the library. arXiv:1911.09220v2 [cs.MS] 13 Jul 2020 1. Introduction The Finite Element Method (FEM) is a powerful discretization technique that uses general unstructured grids to approximate the solutions of many partial differential equations (PDEs). It has been exhaustively studied, both theoretically and in practice, in the past several decades [1, 2, 3, 4, 5, 6, 7, 8]. MFEM is an open-source, lightweight, modular and scalable software library for finite elements, featuring arbitrary high-order finite element meshes and spaces, support for a wide variety of discretization approaches and emphasis on usability, portability, and high-performance computing (HPC) efficiency [9].
    [Show full text]
  • MFEM: a Modular Finite Element Methods Library
    MFEM: A Modular Finite Element Methods Library Robert Anderson1, Andrew Barker1, Jamie Bramwell1, Jakub Cerveny2, Johann Dahm3, Veselin Dobrev1,YohannDudouit1, Aaron Fisher1,TzanioKolev1,MarkStowell1,and Vladimir Tomov1 1Lawrence Livermore National Laboratory 2University of West Bohemia 3IBM Research July 2, 2018 Abstract MFEM is a free, lightweight, flexible and scalable C++ library for modular finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of discretization approaches and emphasis on usability, portability, and high-performance computing efficiency. Its mission is to provide application scientists with access to cutting-edge algorithms for high-order finite element meshing, discretizations and linear solvers. MFEM also enables researchers to quickly and easily develop and test new algorithms in very general, fully unstructured, high-order, parallel settings. In this paper we describe the underlying algorithms and finite element abstractions provided by MFEM, discuss the software implementation, and illustrate various applications of the library. Contents 1 Introduction 3 2 Overview of the Finite Element Method 4 3Meshes 9 3.1 Conforming Meshes . 10 3.2 Non-Conforming Meshes . 11 3.3 NURBS Meshes . 12 3.4 Parallel Meshes . 12 3.5 Supported Input and Output Formats . 13 1 4 Finite Element Spaces 13 4.1 FiniteElements....................................... 14 4.2 DiscretedeRhamComplex ................................ 16 4.3 High-OrderSpaces ..................................... 17 4.4 Visualization . 18 5 Finite Element Operators 18 5.1 DiscretizationMethods................................... 18 5.2 FiniteElementLinearSystems . 19 5.3 Operator Decomposition . 23 5.4 High-Order Partial Assembly . 25 6 High-Performance Computing 27 6.1 Parallel Meshes, Spaces, and Operators . 27 6.2 Scalable Linear Solvers .
    [Show full text]
  • Open-Source Automatic Nonuniform Mesh Generation for FDTD Simulation
    This is a repository copy of Structured Mesh Generation : Open-source automatic nonuniform mesh generation for FDTD simulation. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/100155/ Version: Accepted Version Article: Berens, Michael, Flintoft, Ian David orcid.org/0000-0003-3153-8447 and Dawson, John Frederick orcid.org/0000-0003-4537-9977 (2016) Structured Mesh Generation : Open- source automatic nonuniform mesh generation for FDTD simulation. IEEE Antennas and Propagation Magazine. pp. 45-55. ISSN 1045-9243 https://doi.org/10.1109/MAP.2016.2541606 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Open Source Automatic Non-uniform Mesh Generation for FDTD Simulation Michael K. Berens, Ian D. Flintoft, Senior Member, IEEE, and John F. Dawson, Member, IEEE, Abstract—This article describes a cuboid structured mesh generator suitable for 3D numerical modelling using techniques such as finite-difference time-domain (FDTD) and transmission-line matrix (TLM).
    [Show full text]
  • Aparallel Implementation of a Femsolver in Scilab
    powered by A PARALLEL IMPLEMENTATION OF A FEM SOLVER IN SCILAB Author: Massimiliano Margonari Keywords. Scilab; Open source software; Parallel computing; Mesh partitioning, Heat transfer equation. Abstract: In this paper we describe a parallel application in Scilab to solve 3D stationary heat transfer problems using the finite element method. Two benchmarks have been done: we compare the results with reference solutions and we report the speedup to measure the effectiveness of the approach. Contacts [email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. EnginSoft SpA - Via della Stazione, 27 - 38123 Mattarello di Trento | P.I. e C.F. IT00599320223 A parallel FEM solver in Scilab 1. Introduction Nowadays many simulation software have the possibility to take advantage of multi- processors/cores computers in the attempt to reduce the solution time of a given task. This not only reduces the annoying delays typical in the past, but allows the user to evaluate larger problems and to do more detailed analyses and to analyze a greater number of scenarios. Engineers and scientists who are involved in simulation activities are generally familiar with the terms “high performance computing” (HPC). These terms have been coined to indicate the ability to use a powerful machine to efficiently solve hard computational problems. One of the most important keywords related to the HPC is certainly parallelism. The total execution time can be reduced if the original problem can be divided into a given number of subtasks. Total time is reduced because these subtasks can be tackled concurrently, that means in parallel, by a certain number of machines or cores.
    [Show full text]
  • Understanding the Relationships Between Aesthetic Properties Of
    Understanding the relationships between aesthetic properties of shapes and geometric quantities of free-form curves and surfaces using Machine Learning Techniques Aleksandar Petrov To cite this version: Aleksandar Petrov. Understanding the relationships between aesthetic properties of shapes and ge- ometric quantities of free-form curves and surfaces using Machine Learning Techniques. Mechanical engineering [physics.class-ph]. Ecole nationale supérieure d’arts et métiers - ENSAM, 2016. English. NNT : 2016ENAM0007. tel-01344873 HAL Id: tel-01344873 https://pastel.archives-ouvertes.fr/tel-01344873 Submitted on 12 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°: 2009 ENAM XXXX 2016-ENAM-0007 PhD THESIS in cotutelle To obtain the degree of Docteur de l’Arts et Métiers ParisTech Spécialité “Mécanique – Conception” École doctorale n° 432: “Science des Métiers de l’ingénieur” and Dottore di Ricerca della Università degli Studi di Genova Specialità “Ingeneria Meccanica” Scuola di Dottorato: “Scienze e tecnologie per l’ingegneria” ciclo XXVI Presented and defended publicly by Aleksandar PETROV January 25th, 2016 Understanding the relationships between aesthetic properties of shapes and geometric quantities of free-form curves and surfaces using Machine Learning Techniques Director of thesis: Philippe VÉRON Co-director of thesis: Franca GIANNINI T Co-supervisors of the thesis: Jean-Philippe PERNOT, Bianca FALCIDIENO H È Jury M.
    [Show full text]
  • Octave Package, User's Guide
    Octave package, User’s Guide∗ version 0.1.0 François Cuveliery March 24, 2019 Abstract This Octave package make it possible to generate mesh files from .geo files by using gmsh. It’s also possible with the ooGmsh2 and ooGmsh4 classes to read the mesh file (respectively for MSH file format version 2.2 and version 4.x) and to store its contains in more user-friendly form. This package must be regarded as a very simple interface between gmsh files and Octave. So you are free to create any data structures or objects you want from an ooGmsh2 object or an ooGmsh4 object. 0 Contents 1 Introduction 2 2 Installation 3 2.1 Installation automatic, all in one (recommanded) . .3 3 gmsh interface 4 3.1 function fc_oogmsh.gmsh.buildmesh2d ............................4 3.2 function fc_oogmsh.gmsh.buildmesh3d ............................6 3.3 function fc_oogmsh.gmsh.buildmesh3ds ...........................6 3.4 function fc_oogmsh.gmsh.buildpartmesh2d .........................6 3.5 function fc_oogmsh.gmsh.buildpartmesh3d .........................8 3.6 function fc_oogmsh.gmsh.buildpartmesh3ds .........................8 3.7 function fc_oogmsh.gmsh.buildPartRectangle .......................8 4 ooGmsh4 class (version 4.x) 9 4.1 Methods . 10 4.1.1 ooGms4 constructor . 10 4.1.2 info method . 10 ∗LATEX manual, revision 0.1.0.a, compiled with Octave 5.1.0, and packages fc-oogmsh[0.1.0], fc-tools[0.0.27], fc-meshtools[0.1.0], fc-graphics4mesh[0.0.4], and using gmsh 4.2.2 yLAGA, UMR 7539, CNRS, Université Paris 13 - Sorbonne Paris Cité, Université Paris 8, 99 Avenue J-B Clément, F-93430 Villetaneuse, France, [email protected].
    [Show full text]
  • Quality Tetrahedral Mesh Generation with HXT and the Growing SPR Operation
    Received: Added at production Revised: Added at production Accepted: Added at production DOI: xxx/xxxx ARTICLE TYPE Quality tetrahedral mesh generation with HXT Célestin Marot* | Jean-François Remacle 1 Institute of Mechanics, Materials and Civil Engineering, Université catholique de Summary Louvain, Louvain-la-Neuve, Belgium We proposed, in a recent paper 1, a fast 3D parallel Delaunay kernel for tetrahedral Correspondence mesh generation. This kernel was however incomplete in the sense that it lacked Célestin Marot, Institute of Mechanics, the necessary mesh improvement tools. The present paper builds on that previous Materials and Civil Engineering, Université catholique de Louvain, work and proposes a fast parallel mesh improvement stage that delivers high-quality Avenue Georges Lemaitre 4, bte L4.05.02, tetrahedral meshes compared to alternative open-source mesh generators. Our mesh 1348 Louvain-la-Neuve, Belgium. Email: [email protected] improvement toolkit includes edge removal and improved Laplacian smoothing as well as a brand new operator called the Growing SPR Cavity, which can be regarded Funding Information as the mother of all flips. The paper describes the workflow of the new mesh improve- This research was supported by the ment schedule, as well as the details of the implementation. The result of this research European Union’s Horizon 2020 research is a series of open-source scalable software components, called HXT, whose overall and innovation programme, ERC-2015AdG-694020. efficiency is demonstrated on practical examples by means of a detailed comparative benchmark with two open-source mesh generators: Gmsh and TetGen. KEYWORDS: HXT, Growing SPR Cavity, quality, tetrahedral, mesh, improvement 1 INTRODUCTION Tetrahedral meshes are the geometrical support for most finite element discretizations.
    [Show full text]
  • Large Scale Finite Element Mesh Generation with Gmsh
    Towards (very) large scale finite element mesh generation with Gmsh Christophe Geuzaine Universit´e de Li`ege ELEMENT workshop, October 20, 2020 1 Some background • I am a professor at the University of Li`ege in Belgium, where I lead a team of about 15 people in the Montefiore Institute (EECS Dept.), at the intersection of applied math, scientific computing and engineering physics • Our research interests include modeling, analysis, algorithm development, and simulation for problems arising in various areas of engineering and science • Current applications: low- and high-frequency electromagnetics, geophysics, biomedical problems • We write quite a lot of codes, some released as open source software: http://gmsh.info, http://getdp.info, http://onelab.info 2 What is Gmsh? • Gmsh (http://gmsh.info) is an open source 3D finite element mesh generator with a built-in CAD engine and post-processor • Includes a graphical user interface (GUI) and can drive any simulation code through ONELAB • Today, Gmsh represents about 500k lines of C++ code • still same 2 core developers (Jean-Francois Remacle from UCLouvain and myself); about 100 with ≥ 1 commit • about 1,000 people on mailing lists • about 10,000 downloads per month (70% Windows) • about 500 citations per year – the main Gmsh paper is cited about 4,500 times • Gmsh has probably become one of the most popular (open source) finite element mesh generators? 3 ∼ 20 years of Gmsh development in 1 minute A warm thank you to all the contributors! A little bit of history • Gmsh was started in 1996, as
    [Show full text]
  • Unstructured WW3
    WW3 Tutorial 5.1: Unstructured WW3 1. Purpose In this tutorial exercise, we will construct a hindcast simulation using WW3’s unstructured grid mode. Topics covered are the generation of unstructured meshes and the setting up of the unstructured model run, including the specification of offshore wave boundary conditions for coastal applications. 2. Input files At the start of this tutorial exercise, you will find the following files in the directory day_5/tutorial_unstructured/ : ww3_grid.inp (ww3 grid preprocessor input file) ww3_bound.inp (ww3 boundary condition preprocessor input file) ww3_shel.inp (ww3 main model input file) ww3_ounf.inp (ww3 field output postprocessor input file, NetCDF format) hawaii_v5.msh (unstructured computational mesh) mww3.?????????.spec (Various boundary condition input files) plot_gmsh.m (Matlab script for visualizing the unstructured mesh) plot_ounf_unstr.m (Matlab script for visualizing unstructured output, from NetCDF) 2.1 Unstructured mesh definition The main difference in this model configuration relative to the regular grid option is the presence of the unstructured mesh file *.msh . Since this mesh does not have a regular structure as in the case of a regular grid, the grid points (called nodes ) and their connections (called elements ) need to be explicitly defined. The unstructured meshes used by WW3 comprise of triangular elements, but in general unstructured grids can also feature quadrilateral, pentagonal, hexagonal, etc. elements. The construction of a good unstructured mesh is a time-consuming process, and we will only discuss the general principles here. There are a number of grid generation programs available to build meshes, either relatively simple open source systems such as Gmsh 1 , Triangle 2 , BatTri 3 , or more sophisticated proprietary software such as SMS 4.
    [Show full text]
  • Freefem++ Is a Open Source Program of the Finite Element Method to Solve
    □ What is FreeFem++ ? FreeFEM++ is a open source program of the finite element method to solve the partial differential equation developed by the staff of "Pierre et Marie Curie university" of France. The user only describes , 1) Shape of boundary, 2) Boundary condition, and 3) Partial differential equation in the language of the Pascal style that is called "Gfem". FreeFEM++ does the all of the work, automatic mesh generation and obtaining numerical solutions. A wide-ranging problem can be solved extremely easily compared with other programs. FreeFem++ is one of the most popular simulation tools in the field of engineering and science. FreeFem++ example code for 2D Poisson equation: real NX=20, NY=20 ; mesh T0h=square(NX,NY,[1.0*x,1.0*y]); plot (T0h,wait=true); fespace V0h(T0h,P1); V0h u0,v0; solve eq(u0,v0) =int2d(T0h)(dx(u0)*dx(v0)+dy(u0)*dy(v0)) -int2d(T0h)(1.0*v0) +on(2,3,u0=1.0); // boundary condition plot(u0,wait=true); FreeFem++ is written in C++ and the FreeFem++ language is a C++ idiom. It runs on any Unix-like OS (with g++ version 3 or higher, X11R6 or OpenGL with GLUT) Linux, FreeBSD, Solaris 10, Microsoft Windows (95, 98, 2000, NT, XP, Vista) and MacOS X (native version using OpenGL). FreeFem++ replaces the older freefem and freefem+. 2D and 3D analysis is now available supporting popular pre/post tools. FreeFem++ is freely downloaded from FreeFem++ home page (http://www/freefem.org) under the GNU public license, GPL. □ How to run FreeFem++ To run FreeFem++ program, click FreeFem++ program file icon and FreeFem++ starts automatically.
    [Show full text]
  • Evaluation of Gmsh Meshing Algorithms in Preparation of High-Resolution Wind Speed Simulations in Urban Areas
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy EVALUATION OF GMSH MESHING ALGORITHMS IN PREPARATION OF HIGH-RESOLUTION WIND SPEED SIMULATIONS IN URBAN AREAS M. Langheinrich*1 1 German Aerospace Center, Weßling, Germany Remote Sensing Technology Institute Department of Photogrammetry and Image Analysis [email protected] Commission II, WG II/4 KEY WORDS: CFD, meshing, 3D, computational fluid dynamics, spatial data, evaluation, wind speed ABSTRACT: This paper aims to evaluate the applicability of automatically generated meshes produced within the gmsh meshing framework in preparation for high resolution wind speed and atmospheric pressure simulations for detailed urban environments. The process of creating a skeleton geometry for the meshing process based on level of detail (LOD) 2 CityGML data is described. Gmsh itself offers several approaches for the 2D and 3D meshing process respectively. The different algorithms are shortly introduced and preliminary rated in regard to the mesh quality that is to be expected, as they differ inversely in terms of robustness and resulting mesh element quality. A test area was chosen to simulate the turbulent flow of wind around an urban environment to evaluate the different mesh incarnations by means of a relative comparison of the residuals resulting from the finite-element computational fluid dynamics (CFD) calculations. The applied mesh cases are assessed regarding their convergence evolution as well as final residual values, showing that gmsh 2D and 3D algorithm combinations utilizing the Frontal meshing approach are the preferable choice for the kind of underlying geometry as used in the on hand experiments.
    [Show full text]
  • Programing the Finite Element Method with Matlab
    Programing the Finite Element Method with Matlab Jack Chessa∗ 3rd October 2002 1 Introduction The goal of this document is to give a very brief overview and direction in the writing of finite element code using Matlab. It is assumed that the reader has a basic familiarity with the theory of the finite element method, and our attention will be mostly on the implementation. An example finite element code for analyzing static linear elastic problems written in Matlab is presented to illustrate how to program the finite element method. The example program and supporting files are available at http://www.tam.northwestern.edu/jfc795/Matlab/ 1.1 Notation For clarity we adopt the following notation in this paper; the bold italics font v denotes a vector quantity of dimension equal to the spacial dimension of the problem i.e. the displacement or velocity at a point, the bold non-italicized font d denotes a vector or matrix which is of dimension of the number of unknowns in the discrete system i.e. a system matrix like the stiffness matrix, an uppercase subscript denotes a node number whereas a lowercase subscript in general denotes a vector component along a Cartesian unit vector. So, if d is the system vector of nodal unknowns, uI is a displacement vector of node I and uIi is the component of the displacement at node I in the i direction, or uI ei. Often Matlab syntax will be intermixed with mathematical notation · ∗Graduate Research Assistant, Northwestern University ([email protected]) 1 which hopefully adds clarity to the explanation.
    [Show full text]