Open-Source Automatic Nonuniform Mesh Generation for FDTD Simulation

Total Page:16

File Type:pdf, Size:1020Kb

Open-Source Automatic Nonuniform Mesh Generation for FDTD Simulation This is a repository copy of Structured Mesh Generation : Open-source automatic nonuniform mesh generation for FDTD simulation. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/100155/ Version: Accepted Version Article: Berens, Michael, Flintoft, Ian David orcid.org/0000-0003-3153-8447 and Dawson, John Frederick orcid.org/0000-0003-4537-9977 (2016) Structured Mesh Generation : Open- source automatic nonuniform mesh generation for FDTD simulation. IEEE Antennas and Propagation Magazine. pp. 45-55. ISSN 1045-9243 https://doi.org/10.1109/MAP.2016.2541606 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Open Source Automatic Non-uniform Mesh Generation for FDTD Simulation Michael K. Berens, Ian D. Flintoft, Senior Member, IEEE, and John F. Dawson, Member, IEEE, Abstract—This article describes a cuboid structured mesh generator suitable for 3D numerical modelling using techniques such as finite-difference time-domain (FDTD) and transmission-line matrix (TLM). The mesh generator takes as its input an unstructured triangular surface mesh such as is available from many CAD systems, determines a suitable variable mesh discretisation and generates solid and surface meshes in a format suitable for import by the numerical solver. The mesher is implemented in the MATLAB language and is available as open source software. Index Terms—mesh generation, ray-casting, finite-difference time-domain, transmission-line matrix ✦ 1 INTRODUCTION the geometrical structure of the problem to be The finite-difference time-domain (FDTD) solved. For example, Figure 1 shows a sphere method is a numerical technique that is widely and a version of the sphere discretised using used to solve Maxwell’s differential equa- cubic elements. tions in the time domain [1]. Both space and Algorithms for automatic structured mesh time are discretised. Space is discretised into generation have been developed since the ca- rectangular-shaped elements in 2D or cuboid pabilities of the FDTD method and computer elements in 3D. Cuboid elements, where the hardware reached the point at which relatively electric fields are located on the edges of the complex geometries could be simulated. A se- cuboid and the magnetic fields normal to the lection of the techniques proposed are reported faces, are called Yee-cells and are the funda- in [3], [4], [5], [6], [7], [8], [9], [10], [11]. The mental elements of most FDTD methods [2]. process of generating a cuboid structured mesh By filling up the problem space with these from an arbitrary model geometry consists of cells, we obtain a 3D mesh, where neighbouring two main steps. The first is to determine an cells share edges and faces. Each cell has three efficient placement of the structured mesh lines, associated electric and magnetic field compo- constrained by the numerical requirements of nents, while the other field components be- the FDTD method, to “best fit” the model ge- long to adjacent cells. The properties of each ometry and the second is the identification of cell are adjusted to represent materials such which structured mesh cell belongs to which as dielectrics or conductors by adjusting the object, a process called material mapping. constitutive parameters used in the field equa- With regard to the mesh line placement an tions in the corresponding cells, hence forming interesting local approach was made in [12], where the non-uniform mesh of overlapping • J. F. Dawson, and I. D. Flintoft are with the Department of objects is considered as a constrained opti- Electronics, University of York, York YO10 5DD, U.K. (e-mail mization problem. By optimizing an objective [email protected], ian.fl[email protected]). function, which expresses all the constraints, • M. Berens is with the Institut f¨urGrundlagen der Elektrotech- such as the maximum and minimum cell sizes, nik und Meßtechnik, University of Hanover, Hanover D-30060, neighbouring cell size ratio and the influence Germany. of neighbouring intervals, an acceptable mesh IEEE ANTENNA AND PROPAGATION MAGAZINE 2 solution for many problems is found. Another local approach was proposed in [13], where the numerical error, caused by a rapid change of mesh size, is reduced by considering only the two cells on either side of a transition point between two intervals. There are also global approaches with a focus on all the in- tervals of a mesh [14]. Less constrained Carte- sian mesh generation algorithms have also been developed, e.g. for the Conformal FDTD al- gorithm [15], [16], [17] and for the hybrid FDTD/FETD algorithm [18]. Another indepen- dent category of non-uniform mesh generation is adaptive mesh refinement (AMR) [19], [20], [21]. This method is used to refine the mesh in regions of interest after (or during) a simulation without creating a completely new mesh. A number of different ray tracing methods have been reported for the material mapping stage. A good method should be fast, memory conserving and capable of handling different kinds of special cases, e.g. intersections in a very narrow angle or exactly in the object Fig. 1. Unstructured triangular mesh (top) and structured cubic plane, edge or node. These special cases can mesh (bottom) of a sphere. cause “singularities” and make the ray casting more difficult to implement. These issues are as a tool to aid the understanding of mesh explained in more detail in [22] and [23]. Very generation, and for experimentation with mesh efficient ray casting approachs are described generation techniques. in [24] and [25]. Although there are many freely available The geometry of structures to be modelled computer-aided design (CAD) or meshing pro- using an FDTD solver must be defined by grams that can directly create an unstructured some means which allows the production of polygonal mesh there are no freely available a suitable cuboid mesh. Here we assume the meshers that create structured cuboid meshes description is principally in the form of an with sufficient generality for practical EM sim- unstructured triangulated mesh describing the ulations of complex structures. Therefore we surface of each object, such as that shown in the have developed a MATLAB [27] code for uni- top part of Figure 1 for a sphere, since such a form and non-uniform structured mesh gener- representation can be generated by most CAD ation and published it as open source software. software packages. The code also works in GNU Octave [28]. The output data format has been kept quite generic 2 STRUCTURED MESH GENERATION so it can be easily adapted to create structured FOR FDTD SOLVERS output meshes for a wide range of numerical solvers. While the mesher is mostly based on In this section we consider the factors that affect the known algorithms briefly reviewed above, the placement of the mesh lines. Since the mesh we hope the open-source nature of the code cell size determines both the time step duration will make it useful to research and teaching and upper frequency limit, it is one of the most institutions that write and use their own nu- important factors limiting the FDTD simula- merical solvers. Moreover, the code can be used tion. In addition, the cell size has to be chosen IEEE ANTENNA AND PROPAGATION MAGAZINE 3 in such a way that the geometrical structure can to a number close to unity. Nevertheless there be represented appropriately and the numerical are advantages of non-uniform meshes, which error is acceptably small. However the smaller allow a fine mesh where geometrical detail or the cell size the larger the memory consumed field variation requires (for example material and the longer the run-time for a given prob- interfaces) and a coarse mesh elsewhere. This lem. Therefore a mesher should produce mesh allows a trade-off between numerical error and lines with the largest spacing that satisfies the computational efficiency. In addition, a variable above constraints. mesh cell size allows the mesh-to-object fitting to be adjusted, which can be important, for ex- 2.1 Numerical errors due to cell size and ample, to ensure accurate resonant frequencies cell size variation are obtained. Nevertheless, the ratio of adjacent mesh cell sizes needs to be constrained; in most Numerical errors are inherent undesired ef- cases it is sufficient to chose the upper limit for fects within the classical Yee-cell based FDTD- this ratio as di/di+1 < 1.5. methods that originate from numerical disper- sion and anisotropy. In other words they orig- inate from the dependence of the numerical 3 AN ALGORITHM FOR STRUCTURED wave propagation velocity in the mesh on fre- MESH GENERATION quency and direction [29]. Because numerical dispersion causes cumulative phase errors and 3.1 Input unstructured mesh non-physical refraction, it is necessary to min- Since most CAD packages are capable of ex- imize these effects. In general the dispersion porting an unstructured mesh, regardless of error per wavelength can be expressed as their internal representation, we chose to use λ an unstructured mesh, rather than a particular ψerr =2π · − 1 , (1) CAD representation as input to the mesher. For λ ! the internal unstructured and structured mesh where λ/λ is the ratio ofe the exact (continu- formats we created a format based on those ous space) wavelength to the numerical wave- defined in the AMELET-HDF specification [34].
Recommended publications
  • Arxiv:1911.09220V2 [Cs.MS] 13 Jul 2020
    MFEM: A MODULAR FINITE ELEMENT METHODS LIBRARY ROBERT ANDERSON, JULIAN ANDREJ, ANDREW BARKER, JAMIE BRAMWELL, JEAN- SYLVAIN CAMIER, JAKUB CERVENY, VESELIN DOBREV, YOHANN DUDOUIT, AARON FISHER, TZANIO KOLEV, WILL PAZNER, MARK STOWELL, VLADIMIR TOMOV Lawrence Livermore National Laboratory, Livermore, USA IDO AKKERMAN Delft University of Technology, Netherlands JOHANN DAHM IBM Research { Almaden, Almaden, USA DAVID MEDINA Occalytics, LLC, Houston, USA STEFANO ZAMPINI King Abdullah University of Science and Technology, Thuwal, Saudi Arabia Abstract. MFEM is an open-source, lightweight, flexible and scalable C++ library for modular finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of dis- cretization approaches and emphasis on usability, portability, and high-performance computing efficiency. MFEM's goal is to provide application scientists with access to cutting-edge algorithms for high-order finite element mesh- ing, discretizations and linear solvers, while enabling researchers to quickly and easily develop and test new algorithms in very general, fully unstructured, high-order, parallel and GPU-accelerated settings. In this paper we describe the underlying algorithms and finite element abstractions provided by MFEM, discuss the software implementation, and illustrate various applications of the library. arXiv:1911.09220v2 [cs.MS] 13 Jul 2020 1. Introduction The Finite Element Method (FEM) is a powerful discretization technique that uses general unstructured grids to approximate the solutions of many partial differential equations (PDEs). It has been exhaustively studied, both theoretically and in practice, in the past several decades [1, 2, 3, 4, 5, 6, 7, 8]. MFEM is an open-source, lightweight, modular and scalable software library for finite elements, featuring arbitrary high-order finite element meshes and spaces, support for a wide variety of discretization approaches and emphasis on usability, portability, and high-performance computing (HPC) efficiency [9].
    [Show full text]
  • MFEM: a Modular Finite Element Methods Library
    MFEM: A Modular Finite Element Methods Library Robert Anderson1, Andrew Barker1, Jamie Bramwell1, Jakub Cerveny2, Johann Dahm3, Veselin Dobrev1,YohannDudouit1, Aaron Fisher1,TzanioKolev1,MarkStowell1,and Vladimir Tomov1 1Lawrence Livermore National Laboratory 2University of West Bohemia 3IBM Research July 2, 2018 Abstract MFEM is a free, lightweight, flexible and scalable C++ library for modular finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of discretization approaches and emphasis on usability, portability, and high-performance computing efficiency. Its mission is to provide application scientists with access to cutting-edge algorithms for high-order finite element meshing, discretizations and linear solvers. MFEM also enables researchers to quickly and easily develop and test new algorithms in very general, fully unstructured, high-order, parallel settings. In this paper we describe the underlying algorithms and finite element abstractions provided by MFEM, discuss the software implementation, and illustrate various applications of the library. Contents 1 Introduction 3 2 Overview of the Finite Element Method 4 3Meshes 9 3.1 Conforming Meshes . 10 3.2 Non-Conforming Meshes . 11 3.3 NURBS Meshes . 12 3.4 Parallel Meshes . 12 3.5 Supported Input and Output Formats . 13 1 4 Finite Element Spaces 13 4.1 FiniteElements....................................... 14 4.2 DiscretedeRhamComplex ................................ 16 4.3 High-OrderSpaces ..................................... 17 4.4 Visualization . 18 5 Finite Element Operators 18 5.1 DiscretizationMethods................................... 18 5.2 FiniteElementLinearSystems . 19 5.3 Operator Decomposition . 23 5.4 High-Order Partial Assembly . 25 6 High-Performance Computing 27 6.1 Parallel Meshes, Spaces, and Operators . 27 6.2 Scalable Linear Solvers .
    [Show full text]
  • Aparallel Implementation of a Femsolver in Scilab
    powered by A PARALLEL IMPLEMENTATION OF A FEM SOLVER IN SCILAB Author: Massimiliano Margonari Keywords. Scilab; Open source software; Parallel computing; Mesh partitioning, Heat transfer equation. Abstract: In this paper we describe a parallel application in Scilab to solve 3D stationary heat transfer problems using the finite element method. Two benchmarks have been done: we compare the results with reference solutions and we report the speedup to measure the effectiveness of the approach. Contacts [email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. EnginSoft SpA - Via della Stazione, 27 - 38123 Mattarello di Trento | P.I. e C.F. IT00599320223 A parallel FEM solver in Scilab 1. Introduction Nowadays many simulation software have the possibility to take advantage of multi- processors/cores computers in the attempt to reduce the solution time of a given task. This not only reduces the annoying delays typical in the past, but allows the user to evaluate larger problems and to do more detailed analyses and to analyze a greater number of scenarios. Engineers and scientists who are involved in simulation activities are generally familiar with the terms “high performance computing” (HPC). These terms have been coined to indicate the ability to use a powerful machine to efficiently solve hard computational problems. One of the most important keywords related to the HPC is certainly parallelism. The total execution time can be reduced if the original problem can be divided into a given number of subtasks. Total time is reduced because these subtasks can be tackled concurrently, that means in parallel, by a certain number of machines or cores.
    [Show full text]
  • Understanding the Relationships Between Aesthetic Properties Of
    Understanding the relationships between aesthetic properties of shapes and geometric quantities of free-form curves and surfaces using Machine Learning Techniques Aleksandar Petrov To cite this version: Aleksandar Petrov. Understanding the relationships between aesthetic properties of shapes and ge- ometric quantities of free-form curves and surfaces using Machine Learning Techniques. Mechanical engineering [physics.class-ph]. Ecole nationale supérieure d’arts et métiers - ENSAM, 2016. English. NNT : 2016ENAM0007. tel-01344873 HAL Id: tel-01344873 https://pastel.archives-ouvertes.fr/tel-01344873 Submitted on 12 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°: 2009 ENAM XXXX 2016-ENAM-0007 PhD THESIS in cotutelle To obtain the degree of Docteur de l’Arts et Métiers ParisTech Spécialité “Mécanique – Conception” École doctorale n° 432: “Science des Métiers de l’ingénieur” and Dottore di Ricerca della Università degli Studi di Genova Specialità “Ingeneria Meccanica” Scuola di Dottorato: “Scienze e tecnologie per l’ingegneria” ciclo XXVI Presented and defended publicly by Aleksandar PETROV January 25th, 2016 Understanding the relationships between aesthetic properties of shapes and geometric quantities of free-form curves and surfaces using Machine Learning Techniques Director of thesis: Philippe VÉRON Co-director of thesis: Franca GIANNINI T Co-supervisors of the thesis: Jean-Philippe PERNOT, Bianca FALCIDIENO H È Jury M.
    [Show full text]
  • Octave Package, User's Guide
    Octave package, User’s Guide∗ version 0.1.0 François Cuveliery March 24, 2019 Abstract This Octave package make it possible to generate mesh files from .geo files by using gmsh. It’s also possible with the ooGmsh2 and ooGmsh4 classes to read the mesh file (respectively for MSH file format version 2.2 and version 4.x) and to store its contains in more user-friendly form. This package must be regarded as a very simple interface between gmsh files and Octave. So you are free to create any data structures or objects you want from an ooGmsh2 object or an ooGmsh4 object. 0 Contents 1 Introduction 2 2 Installation 3 2.1 Installation automatic, all in one (recommanded) . .3 3 gmsh interface 4 3.1 function fc_oogmsh.gmsh.buildmesh2d ............................4 3.2 function fc_oogmsh.gmsh.buildmesh3d ............................6 3.3 function fc_oogmsh.gmsh.buildmesh3ds ...........................6 3.4 function fc_oogmsh.gmsh.buildpartmesh2d .........................6 3.5 function fc_oogmsh.gmsh.buildpartmesh3d .........................8 3.6 function fc_oogmsh.gmsh.buildpartmesh3ds .........................8 3.7 function fc_oogmsh.gmsh.buildPartRectangle .......................8 4 ooGmsh4 class (version 4.x) 9 4.1 Methods . 10 4.1.1 ooGms4 constructor . 10 4.1.2 info method . 10 ∗LATEX manual, revision 0.1.0.a, compiled with Octave 5.1.0, and packages fc-oogmsh[0.1.0], fc-tools[0.0.27], fc-meshtools[0.1.0], fc-graphics4mesh[0.0.4], and using gmsh 4.2.2 yLAGA, UMR 7539, CNRS, Université Paris 13 - Sorbonne Paris Cité, Université Paris 8, 99 Avenue J-B Clément, F-93430 Villetaneuse, France, [email protected].
    [Show full text]
  • High-Performance High-Order Simulation of Wave and Plasma Phenomena
    High-Performance High-Order Simulation of Wave and Plasma Phenomena by Andreas Klockner¨ Dipl.-Math. techn., Universitat¨ Karlsruhe (TH); Karlsruhe, Germany, 2005 M.S., Brown University; Providence, RI, 2006 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Division of Applied Mathematics at Brown University PROVIDENCE, RHODE ISLAND May 2010 c Copyright 2010 by Andreas Klockner¨ This dissertation by Andreas Klockner¨ is accepted in its present form by The Division of Applied Mathematics as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date Jan Sickmann Hesthaven, Ph.D., Advisor Recommended to the Graduate Council Date Johnny Guzman,´ Ph.D., Reader Date Chi-Wang Shu, Ph.D., Reader Approved by the Graduate Council Date Sheila Bonde, Dean of the Graduate School iii Vitae Biographical Information Birth August 5th, 1977 Konstanz, Germany Education 2005 – 2010 Ph.D. in Applied Mathematics (in progress) Division of Applied Mathematics, Brown University, Providence, RI Advisor: Jan Hesthaven 2005 Diplom degree in Applied Mathematics (Technomathematik) Institut fur¨ Angewandte Mathematik, Universitat¨ Karlsruhe, Ger- many Advisor: Willy Dorfler¨ 2001 – 2002 Exchange Student, Department of Mathematics University of North Carolina at Charlotte, Charlotte, NC 2000 Vordiplom in Computer Science, Universitat¨ Karlsruhe, Germany Experience 6/2006 – 9/2006 J. Wallace Givens Research Associate Mathematics and Computer Science Div., Argonne Nat’l Laboratory,
    [Show full text]
  • Quality Tetrahedral Mesh Generation with HXT and the Growing SPR Operation
    Received: Added at production Revised: Added at production Accepted: Added at production DOI: xxx/xxxx ARTICLE TYPE Quality tetrahedral mesh generation with HXT Célestin Marot* | Jean-François Remacle 1 Institute of Mechanics, Materials and Civil Engineering, Université catholique de Summary Louvain, Louvain-la-Neuve, Belgium We proposed, in a recent paper 1, a fast 3D parallel Delaunay kernel for tetrahedral Correspondence mesh generation. This kernel was however incomplete in the sense that it lacked Célestin Marot, Institute of Mechanics, the necessary mesh improvement tools. The present paper builds on that previous Materials and Civil Engineering, Université catholique de Louvain, work and proposes a fast parallel mesh improvement stage that delivers high-quality Avenue Georges Lemaitre 4, bte L4.05.02, tetrahedral meshes compared to alternative open-source mesh generators. Our mesh 1348 Louvain-la-Neuve, Belgium. Email: [email protected] improvement toolkit includes edge removal and improved Laplacian smoothing as well as a brand new operator called the Growing SPR Cavity, which can be regarded Funding Information as the mother of all flips. The paper describes the workflow of the new mesh improve- This research was supported by the ment schedule, as well as the details of the implementation. The result of this research European Union’s Horizon 2020 research is a series of open-source scalable software components, called HXT, whose overall and innovation programme, ERC-2015AdG-694020. efficiency is demonstrated on practical examples by means of a detailed comparative benchmark with two open-source mesh generators: Gmsh and TetGen. KEYWORDS: HXT, Growing SPR Cavity, quality, tetrahedral, mesh, improvement 1 INTRODUCTION Tetrahedral meshes are the geometrical support for most finite element discretizations.
    [Show full text]
  • Large Scale Finite Element Mesh Generation with Gmsh
    Towards (very) large scale finite element mesh generation with Gmsh Christophe Geuzaine Universit´e de Li`ege ELEMENT workshop, October 20, 2020 1 Some background • I am a professor at the University of Li`ege in Belgium, where I lead a team of about 15 people in the Montefiore Institute (EECS Dept.), at the intersection of applied math, scientific computing and engineering physics • Our research interests include modeling, analysis, algorithm development, and simulation for problems arising in various areas of engineering and science • Current applications: low- and high-frequency electromagnetics, geophysics, biomedical problems • We write quite a lot of codes, some released as open source software: http://gmsh.info, http://getdp.info, http://onelab.info 2 What is Gmsh? • Gmsh (http://gmsh.info) is an open source 3D finite element mesh generator with a built-in CAD engine and post-processor • Includes a graphical user interface (GUI) and can drive any simulation code through ONELAB • Today, Gmsh represents about 500k lines of C++ code • still same 2 core developers (Jean-Francois Remacle from UCLouvain and myself); about 100 with ≥ 1 commit • about 1,000 people on mailing lists • about 10,000 downloads per month (70% Windows) • about 500 citations per year – the main Gmsh paper is cited about 4,500 times • Gmsh has probably become one of the most popular (open source) finite element mesh generators? 3 ∼ 20 years of Gmsh development in 1 minute A warm thank you to all the contributors! A little bit of history • Gmsh was started in 1996, as
    [Show full text]
  • Unstructured WW3
    WW3 Tutorial 5.1: Unstructured WW3 1. Purpose In this tutorial exercise, we will construct a hindcast simulation using WW3’s unstructured grid mode. Topics covered are the generation of unstructured meshes and the setting up of the unstructured model run, including the specification of offshore wave boundary conditions for coastal applications. 2. Input files At the start of this tutorial exercise, you will find the following files in the directory day_5/tutorial_unstructured/ : ww3_grid.inp (ww3 grid preprocessor input file) ww3_bound.inp (ww3 boundary condition preprocessor input file) ww3_shel.inp (ww3 main model input file) ww3_ounf.inp (ww3 field output postprocessor input file, NetCDF format) hawaii_v5.msh (unstructured computational mesh) mww3.?????????.spec (Various boundary condition input files) plot_gmsh.m (Matlab script for visualizing the unstructured mesh) plot_ounf_unstr.m (Matlab script for visualizing unstructured output, from NetCDF) 2.1 Unstructured mesh definition The main difference in this model configuration relative to the regular grid option is the presence of the unstructured mesh file *.msh . Since this mesh does not have a regular structure as in the case of a regular grid, the grid points (called nodes ) and their connections (called elements ) need to be explicitly defined. The unstructured meshes used by WW3 comprise of triangular elements, but in general unstructured grids can also feature quadrilateral, pentagonal, hexagonal, etc. elements. The construction of a good unstructured mesh is a time-consuming process, and we will only discuss the general principles here. There are a number of grid generation programs available to build meshes, either relatively simple open source systems such as Gmsh 1 , Triangle 2 , BatTri 3 , or more sophisticated proprietary software such as SMS 4.
    [Show full text]
  • Freefem++ Is a Open Source Program of the Finite Element Method to Solve
    □ What is FreeFem++ ? FreeFEM++ is a open source program of the finite element method to solve the partial differential equation developed by the staff of "Pierre et Marie Curie university" of France. The user only describes , 1) Shape of boundary, 2) Boundary condition, and 3) Partial differential equation in the language of the Pascal style that is called "Gfem". FreeFEM++ does the all of the work, automatic mesh generation and obtaining numerical solutions. A wide-ranging problem can be solved extremely easily compared with other programs. FreeFem++ is one of the most popular simulation tools in the field of engineering and science. FreeFem++ example code for 2D Poisson equation: real NX=20, NY=20 ; mesh T0h=square(NX,NY,[1.0*x,1.0*y]); plot (T0h,wait=true); fespace V0h(T0h,P1); V0h u0,v0; solve eq(u0,v0) =int2d(T0h)(dx(u0)*dx(v0)+dy(u0)*dy(v0)) -int2d(T0h)(1.0*v0) +on(2,3,u0=1.0); // boundary condition plot(u0,wait=true); FreeFem++ is written in C++ and the FreeFem++ language is a C++ idiom. It runs on any Unix-like OS (with g++ version 3 or higher, X11R6 or OpenGL with GLUT) Linux, FreeBSD, Solaris 10, Microsoft Windows (95, 98, 2000, NT, XP, Vista) and MacOS X (native version using OpenGL). FreeFem++ replaces the older freefem and freefem+. 2D and 3D analysis is now available supporting popular pre/post tools. FreeFem++ is freely downloaded from FreeFem++ home page (http://www/freefem.org) under the GNU public license, GPL. □ How to run FreeFem++ To run FreeFem++ program, click FreeFem++ program file icon and FreeFem++ starts automatically.
    [Show full text]
  • Evaluation of Gmsh Meshing Algorithms in Preparation of High-Resolution Wind Speed Simulations in Urban Areas
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy EVALUATION OF GMSH MESHING ALGORITHMS IN PREPARATION OF HIGH-RESOLUTION WIND SPEED SIMULATIONS IN URBAN AREAS M. Langheinrich*1 1 German Aerospace Center, Weßling, Germany Remote Sensing Technology Institute Department of Photogrammetry and Image Analysis [email protected] Commission II, WG II/4 KEY WORDS: CFD, meshing, 3D, computational fluid dynamics, spatial data, evaluation, wind speed ABSTRACT: This paper aims to evaluate the applicability of automatically generated meshes produced within the gmsh meshing framework in preparation for high resolution wind speed and atmospheric pressure simulations for detailed urban environments. The process of creating a skeleton geometry for the meshing process based on level of detail (LOD) 2 CityGML data is described. Gmsh itself offers several approaches for the 2D and 3D meshing process respectively. The different algorithms are shortly introduced and preliminary rated in regard to the mesh quality that is to be expected, as they differ inversely in terms of robustness and resulting mesh element quality. A test area was chosen to simulate the turbulent flow of wind around an urban environment to evaluate the different mesh incarnations by means of a relative comparison of the residuals resulting from the finite-element computational fluid dynamics (CFD) calculations. The applied mesh cases are assessed regarding their convergence evolution as well as final residual values, showing that gmsh 2D and 3D algorithm combinations utilizing the Frontal meshing approach are the preferable choice for the kind of underlying geometry as used in the on hand experiments.
    [Show full text]
  • Programing the Finite Element Method with Matlab
    Programing the Finite Element Method with Matlab Jack Chessa∗ 3rd October 2002 1 Introduction The goal of this document is to give a very brief overview and direction in the writing of finite element code using Matlab. It is assumed that the reader has a basic familiarity with the theory of the finite element method, and our attention will be mostly on the implementation. An example finite element code for analyzing static linear elastic problems written in Matlab is presented to illustrate how to program the finite element method. The example program and supporting files are available at http://www.tam.northwestern.edu/jfc795/Matlab/ 1.1 Notation For clarity we adopt the following notation in this paper; the bold italics font v denotes a vector quantity of dimension equal to the spacial dimension of the problem i.e. the displacement or velocity at a point, the bold non-italicized font d denotes a vector or matrix which is of dimension of the number of unknowns in the discrete system i.e. a system matrix like the stiffness matrix, an uppercase subscript denotes a node number whereas a lowercase subscript in general denotes a vector component along a Cartesian unit vector. So, if d is the system vector of nodal unknowns, uI is a displacement vector of node I and uIi is the component of the displacement at node I in the i direction, or uI ei. Often Matlab syntax will be intermixed with mathematical notation · ∗Graduate Research Assistant, Northwestern University ([email protected]) 1 which hopefully adds clarity to the explanation.
    [Show full text]