Sea Turtles Disease Risk Analysis and Discovery of the First Australian Green Turtle (Chelonia Mydas) Papillomavirus

Total Page:16

File Type:pdf, Size:1020Kb

Sea Turtles Disease Risk Analysis and Discovery of the First Australian Green Turtle (Chelonia Mydas) Papillomavirus ResearchOnline@JCU This file is part of the following work: Mashkour, Narges (2019) Sea turtles disease risk analysis and discovery of the first Australian green turtle (Chelonia mydas) papillomavirus. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/5ef1605e39520 Copyright © 2019 Narges Mashkour. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] SEA TURTLES DISEASE RISK ANALYSIS AND DISCOVERY OF THE FIRST AUSTRALIAN GREEN TURTLE (Chelonia mydas) PAPILLOMAVIRUS By NARGES MASHKOUR B.Sc. in Cell and Molecular Biology M.Sc. in Biotechnology For the Degree of Doctor of Philosophy College of Public Health, Medical and Veterinary Sciences James Cook University, Australia March 29, 2019 TO WOMEN IN SCIENCE i STATEMENT OF ACCESS DECLARATION I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and; I do wish to place a 12-months embargo on my thesis starting at final acceptance, after which there will be no further restriction on access to this work. Signature Date STATEMENT OF SOURCES DECLARATION I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. Signature Date STATEMENT OF SOURCES ELECTRONIC COPY ii DECLARATION I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within limits of the technology available. Signature Date DECLARATION OF ETHICS The research presented and reported in this thesis was conducted with the approval of the James Cook University Research Ethics Committee and in accordance with the National Statement on Ethical Conduct in Human Research, 2007; Australian Code for the Care and Use of Animals for Scientific Purposes, 2007; and the Queensland Animal Care and Protection Act, 2001. The proposed research methodology received clearance from James Cook University Experimentation Ethics Review Commettee (A 2219). This research was conducted under permits WITK15765815 and WISP16625115 granted by Department of Environment and Heritage Protection (DEHP) and permit G382911 by Great Barrier Marine Park Authority (GBRMPA). Signature Date iii STATEMENT OF THE CONTRIBUTION OF AUTHORS This thesis was supervised by associate professor Ellen Ariel, Dr. Jennifer Elliman and associate professor Leigh Owens. As such they had significant input on the design, execution and analysis of this project as well as reviewing the individual chapters and resulted manuscripts. Dr. Graham Burgess was the expert consultant for chapter four, five and six of the thesis. He had provided valuable advice for the experiments enrichment and analysis along with reviewing the resulted chapters and manuscripts. Katrina Christy, Lauren Burchell and Kelly Johns provided editorial assistance on some chapters. Karina Jones provided the extracted DNA and the samples for the molecular survey in chapter six of the thesis. Alicia Maclaine assisted with some PCRs in chapter four and Wytamma Wirth with some PCRs in chapter six. The samples and data collection was done with the help of the JCU Turtle Health Reseach Team, Girringun and Gudjuda Aboriginal Rangers, Queensland Parks and Wildlife Service, Ecobarge, and the Turtle Hospital at Reef HQ Aquarium. Necropsies and histopathologies were done with the help of Dr. Jennifer Scott and Yissu Martinez at the veterinary pathology department. Outside the university, the necropsies were done in Queensland Parks and Wildlife Service facilities. BIV control DNA was kindly provided by Professor R. Whittington and A. Tweedie, Sydney University. This work was financially supported by the postgraduate SSA account and HDR enhancement scheme allocated from College of Public Health, Medical and Veterinary Sciences, James Cook University. I received a James Cook University Postgraduate Research Scholarship to cover my daily expenses. iv ACKNOWLEDGEMENT This thesis is a result of four years of research, learning and endeavour. I came out of my comfort zone to find myself amongst an extraordinary group of passionate people, to do fieldwork and live in one of the most beautiful places in the world. In this humble acknowledgement I would like to show my gratitude to the people whom without, this project would not have been possible. First I should thank Associate Professor Ellen Ariel for accepting me into her research group, her home and her heart. I will miss our interesting and long-lasting chats. I am profoundly grateful for the opportunity to research what I was, and still am, so enthusiastic about. You spent your valuable time helping me through the ups and downs of this journey. Through it all, you would always allow me to choose and plan the path, as you have always believed this is “my” PhD. My research would have been impossible without the aid and support of my two other advisors Dr. Jennifer Elliman and Associate Professor Leigh Owens. Thank you for enriching my research proposal and for all of the valuable feedback during the progress meetings. Sorry for the many lunch breaks that I interrupted with questions and requests. My sincere thanks to Dr. Graham Burgess; you helped me think outside the box and encouraged me to always examine and investigate. I could not have carried on with some of my experiments without your expertise and consultation. A very special gratitude goes out to James Cook University for giving me the prestigious James Cook University Postgraduate Research Scholarship (JCUPRS) to live in Australia without financial concerns; and for Higher Degree by Research Enhancement Scheme (HDRES) grants to enrich my core research and to travel, presenting my findings in notable conferences. Dear staff and postgraduate students of JCU Veterinary and Biomedical Sciences, it was great sharing laboratories, the tearoom and undercroft with all of you during the last four years. The Friday BBQs and TGI monthly meetings were the highlights of my JCU life. Sherie, Sandra, Tina and Candi, our kind and supportive admin ladies, I will never forget your help with package deliveries, travel bookings and meeting preparations. Jenni and Yissu, thanks for helping with the necropsies and the histopathological analysis. Katy, Bethany, Grace, Helma, Helen and Christine you have given me invaluable help with all the technical support in the laboratories. You are doing an amazing job to keep this old school of us up and running. Katy, thanks for being a great friend and also for giving me your time to read and edit some of my chapters and providing valuable feedback. v I humbly thank my thesis reviewers, thank you for accepting to review my research in the midst of all your activities. It was fantastic to have the opportunity to be a part of the Turtle Health Research Team. Your ever lasting love for the ocean, turtles and conservation is incredible. I learnt so much from all of you and hope to one day see the ultimate goal of having a pure nature without the adverse impact of humans has been achieved. I should thank all the volunteers and collaborators who helped with sample collections and also provided samples for the project. My noisy but lovely office-mates, Shaun, Edith, Karina, Asmor, Kitikarn, Napadol, Alicia, Suchandan, Sara and Femke, I wish you all the best in your future careers. We lived a happy non-conflict life in oppose to our international mixture from various backgrounds, cultures and research interests. I travelled through your life stories and learned to accept and respect. Coming to a new place, especially a new country where you do not know anybody can be intimidating. From day one, I had the support of two angels for whom I am so grateful. Legana and Noushin, your friendship will never fade and I won’t forget your care taking and hospitality to help me settle down in Townsville. My heartfelt thanks go to my family for all your encouragement. I also should say how grateful I am for unending inspirations from my in-laws. I wish I could enjoy this achievement by your side, however, I know that physical distance is of no concern as we live in each other’s mind and heart. Thank you mom, you always believed in me and have provided constant moral support in my life. I will never forget how you say: “It doesn’t matter. It’ll be alright.” Dad, thanks for allowing me to swim against the current, even though it is sometimes in contrary to traditions. And finally, last but by no means least, my fabulous Ramin, my husband and true friend through all these years of experiencing, learning, enduring, enjoying and loving. I know many years down the road this piece of writing is a remembrance for being tough and determined and we would enjoy the outcomes. May God richly bless all of you… vi ABSTRACT Sea turtle populations are in decline, which has been attributed to threats such as predation, bycatch, unsustainable harvesting, habitat degradation, and pollution. The impact of these threats has resulted in the listing of six out of seven sea turtles in the IUCN red list of endangered animals. Infectious diseases are listed among the top five reasons for global species extinctions, but these have not been thoroughly evaluated in sea turtles.
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Federico Escobar Sarria Investigador Titular C Instituto de Ecología, A. C INVESTIGADOR NACIONAL NIVEL II SISTEMA NACIONAL DE INVESTIGADORES CONSEJO NACIONAL DE CIENCIA Y TECNOLOGÍA CONACYT MÉXICO FORMACIÓN ACADEMICA 2005 DOCTORADO. Ecología y Manejo de Recursos Naturales, Instituto de Ecología, A. C., Xalapa, Veracruz, México. Tesis: “DIVERSIDAD, DISTRIBUCIÓN Y USO DE HÁBITAT DE LOS ESCARABAJOS DEL ESTIÉRCOL (COLEÓPTERA: SCARABAEIDAE, SCARABAEINAE) EN MONTAÑAS DE LA REGIÓN NEOTROPICAL”. 1994 LICENCIATURA. Biología - Entomología. Departamento de Biología, Facultad de Ciencias, Universidad del Valle, Cali, Colombia. Tesis: “EXCREMENTO, COPRÓFAGOS Y DEFORESTACIÓN EN UN BOSQUE DE MONTAÑA AL SUR OCCIDENTE DE COLOMBIA”. TESIS MERITORIA. EXPERIENCIA PROFESIONAL 2018 Investigador Titular C (ITC), Instituto de Ecología, A. C., México 2014 Investigador Titular B (ITB), Instituto de Ecología, A. C., México 2009 Investigador Titular A (ITA), Instituto de Ecología, A. C., México 2008 Investigador por recursos externos, Instituto de Ecología, A. C., México 1995-2000 Investigador Programa de Inventarios de Biodiversidad, Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt, Colombia. DISTINCIONES ACADÉMICAS, RECONOCIMIENTOS y BECAS 2018 Investigador Nacional Nivel II (2do periodo: enero 2018 a diciembre 2022). 2015 1er premio mejor póster: Sistemas silvopastoriles y agroforestales: Aspectos ambientales y mitigación al cambio climático, 3er Congreso Nacional Silvopastoril. VIII Congreso 1 Latinoamericano de Sistemas Agroforestales. Iguazú, Misiones, Argentina, 7 al 9 de mayo de 2015. Poster: CAROLINA GIRALDO, SANTIAGO MONTOYA, KAREN CASTAÑO, JAMES MONTOYA, FEDERICO ESCOBAR, JULIÁN CHARÁ & ENRIQUE MURGUEITIO. SISTEMAS SILVOPASTORILES INTENSIVOS: ELEMENTOS CLAVES PARA LA REHABILITACIÓN DE LA FUNCIÓN ECOLÓGICA DE LOS ESCARABAJOS DEL ESTIÉRCOL EN FINCAS GANADERAS DEL VALLE DEL RÍO CESAR, COLOMBIA. 2014 Investigador Nacional Nivel II (1er periodo: enero de 2014 a diciembre 2017).
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • (Apicomplexa: Adeleorina) from the Blood of Echis Pyramidum: Morphology and SSU Rdna Sequence Hepatozoon Pyramidumi Sp
    Original Article ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) from the blood of Echis pyramidum: morphology and SSU rDNA sequence Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) do sangue de Echis pyramidum: morfologia e sequência de SSU rDNA Lamjed Mansour1,2; Heba Mohamed Abdel-Haleem3; Esam Sharf Al-Malki4; Saleh Al-Quraishy1; Abdel-Azeem Shaban Abdel-Baki3* 1 Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia 2 Unité de Recherche de Biologie Intégrative et Écologie Évolutive et Fonctionnelle des Milieux Aquatiques, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisia 3 Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt 4 Department of Biology, College of Sciences, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia How to cite: Mansour L, Abdel-Haleem HM, Al-Malki ES, Al-Quraishy S, Abdel-Baki AZS. Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) from the blood of Echis pyramidum: morphology and SSU rDNA sequence. Braz J Vet Parasitol 2020; 29(2): e002420. https://doi.org/10.1590/S1984-29612020019 Abstract Hepatozoon pyramidumi sp. n. is described from the blood of the Egyptian saw-scaled viper, Echis pyramidum, captured from Saudi Arabia. Five out of ten viper specimens examined (50%) were found infected with Hepatozoon pyramidumi sp. n. with parasitaemia level ranged from 20-30%. The infection was restricted only to the erythrocytes. Two morphologically different forms of intraerythrocytic stages were observed; small and mature gamonts. The small ganomt with average size of 10.7 × 3.5 μm. Mature gamont was sausage-shaped with recurved poles measuring 16.3 × 4.2 μm in average size.
    [Show full text]
  • Issue Number 118 October 2007 ISSN 0839-7708 in THIS
    Issue Number 118 October 2007 Green turtle hatchling from Turkey with extra carapacial scutes (see pp. 6-8). Photo by O. Türkozan IN THIS ISSUE: Editorial: Conservation Conflicts, Conflicts of Interest, and Conflict Resolution: What Hopes for Marine Turtle Conservation?..........................................................................................L.M. Campbell Articles: From Hendrickson (1958) to Monroe & Limpus (1979) and Beyond: An Evaluation of the Turtle Barnacle Tubicinella cheloniae.........................................................A. Ross & M.G. Frick Nest relocation as a conservation strategy: looking from a different perspective...................O. Türkozan & C. Yılmaz Linking Micronesia and Southeast Asia: Palau Sea Turtle Satellite Tracking and Flipper Tag Returns......S. Klain et al. Morphometrics of the Green Turtle at the Atol das Rocas Marine Biological Reserve, Brazil...........A. Grossman et al. Notes: Epibionts of Olive Ridley Turtles Nesting at Playa Ceuta, Sinaloa, México...............................L. Angulo-Lozano et al. Self-Grooming by Loggerhead Turtles in Georgia, USA..........................................................M.G. Frick & G. McFall IUCN-MTSG Quarterly Report Announcements News & Legal Briefs Recent Publications Marine Turtle Newsletter No. 118, 2007 - Page 1 ISSN 0839-7708 Editors: Managing Editor: Lisa M. Campbell Matthew H. Godfrey Michael S. Coyne Nicholas School of the Environment NC Sea Turtle Project A321 LSRC, Box 90328 and Earth Sciences, Duke University NC Wildlife Resources Commission Nicholas School of the Environment 135 Duke Marine Lab Road 1507 Ann St. and Earth Sciences, Duke University Beaufort, NC 28516 USA Beaufort, NC 28516 USA Durham, NC 27708-0328 USA E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] Fax: +1 252-504-7648 Fax: +1 919 684-8741 Founding Editor: Nicholas Mrosovsky University of Toronto, Canada Editorial Board: Brendan J.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Reptile Clinical Pathology Vickie Joseph, DVM, DABVP (Avian)
    Reptile Clinical Pathology Vickie Joseph, DVM, DABVP (Avian) Session #121 Affiliation: From the Bird & Pet Clinic of Roseville, 3985 Foothills Blvd. Roseville, CA 95747, USA and IDEXX Laboratories, 2825 KOVR Drive, West Sacramento, CA 95605, USA. Abstract: Hematology and chemistry values of the reptile may be influenced by extrinsic and intrinsic factors. Proper processing of the blood sample is imperative to preserve cell morphology and limit sample artifacts. Identifying the abnormal changes in the hemogram and biochemistries associated with anemia, hemoparasites, septicemias and neoplastic disorders will aid in the prognostic and therapeutic decisions. Introduction Evaluating the reptile hemogram is challenging. Extrinsic factors (season, temperature, habitat, diet, disease, stress, venipuncture site) and intrinsic factors (species, gender, age, physiologic status) will affect the hemogram numbers, distribution of the leukocytes and the reptile’s response to disease. Certain procedures should be ad- hered to when drawing and processing the blood sample to preserve cell morphology and limit sample artifact. The goal of this paper is to briefly review reptile red blood cell and white blood cell identification, normal cell morphology and terminology. A detailed explanation of abnormal changes seen in the hemogram and biochem- istries in response to anemia, hemoparasites, septicemias and neoplasia will be addressed. Hematology and Chemistries Blood collection and preparation Although it is not the scope of this paper to address sites of blood collection and sample preparation, a few im- portant points need to be explained. For best results to preserve cell morphology and decrease sample artifacts, hematologic testing should be performed as soon as possible following blood collection.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Distribution and Feeding Behavior of Omorgus Suberosus (Coleoptera: Trogidae) in Lepidochelys Olivacea Turtle Nests
    RESEARCH ARTICLE Distribution and Feeding Behavior of Omorgus suberosus (Coleoptera: Trogidae) in Lepidochelys olivacea Turtle Nests Martha L. Baena1, Federico Escobar2*, Gonzalo Halffter2, Juan H. García–Chávez3 1 Instituto de Investigaciones Biológicas, Universidad Veracruzana (IIB–UV), Xalapa, Veracruz, México, 2 Instituto de Ecología, A. C., Red de Ecoetología, Xalapa, Veracruz, México, 3 Laboratorio de Ecología de Poblaciones, Escuela de Biología, Benemérita Universidad Autónoma de Puebla, Puebla, México * [email protected] Abstract Omorgus suberosus (Fabricius, 1775) has been identified as a potential predator of the eggs of the turtle Lepidochelys olivacea (Eschscholtz, 1829) on one of the main turtle nesting beaches in the world, La Escobilla in Oaxaca, Mexico. This study presents an analysis of the – OPEN ACCESS spatio temporal distribution of the beetle on this beach (in areas of high and low density of L. olivacea nests over two arrival seasons) and an evaluation, under laboratory conditions, of Citation: Baena ML, Escobar F, Halffter G, García– Chávez JH (2015) Distribution and Feeding Behavior the probability of damage to the turtle eggs by this beetle. O. suberosus adults and larvae of Omorgus suberosus (Coleoptera: Trogidae) in exhibited an aggregated pattern at both turtle nest densities; however, aggregation was Lepidochelys olivacea Turtle Nests. PLoS ONE 10(9): greater in areas of low nest density, where we found the highest proportion of damaged eggs. e0139538. doi:10.1371/journal.pone.0139538 Also, there were fluctuations in the temporal distribution of the adult beetles following the arrival Editor: Jodie L. Rummer, James Cook University, of the turtles on the beach. Under laboratory conditions, the beetles quickly damaged both AUSTRALIA dead eggs and a mixture of live and dead eggs, but were found to consume live eggs more Received: November 20, 2014 slowly.
    [Show full text]
  • Emys Trinacris, Placobdella Costata and Haemogregarina Stepanowi in Sicily (Testudines, Annelida and Apicomplexa)
    © Institute of Parasitology, Biology Centre CAS #$;1-'<<2-1+ doi: '-'55''=1-'<-1+ http://folia.paru.cas.cz Research Article The good, the bad and the ugly: Emys trinacris, Placobdella costata and Haemogregarina stepanowi in Sicily (Testudines, Annelida and Apicomplexa) Vincenzo Arizza', Francesco Sacco', Debora Russo', Rita Scardino', Marco Arculeo', Melita Vamberger1 and Federico Marrone' ' Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Biologia Animale ed Antropologia ;;9$%$%!6 1 Museum für Tierkunde, Senckenberg Dresden, Dresden, Germany Abstract: Endemic Sicilian pond turtles Emys trinacris Fritz, Fattizzo, Guicking, Tripepi, Pennisi, Lenk, Joger et Wink were exam7 ined for the presence of haemogregarine parasites. The presence of haemogregarines, occurring mainly in the microgametocyte stage ?'21/-'1)%;<5/-K1)%NQNRU%+V%E. trinacris. Based on the R%;X9;9'*YN[Haemogregarina stepanowi Dani7 NZ'**K[%99RNH. stepanowi9ƽ; in erythrocyte shape depending on the infective stage. ƽ99Z%NH. stepanowi N;[ƽ%N%]N;R%N%;R9 by H. stepanowi in the closely related European pond turtle Emys orbicularis (Linneaus), monitoring of the health status of the infected Sicilian populations of E. trinacris is desirable. The restricted distribution of populations of Emys infected with haemogregarines in X99;R9%7%9R\9 Keywords: %R%!7 ]%;; ?"Q % R9[99; widely distributed blood parasites in turtles worldwide of the genus Placobdella ?Q?TZ ? 1-'1Q %U N 1-'KQ involve merogony and the formation of gametocytes in Emys trinacris Fritz, Fattizzo, Guicking, Tripepi, Pen7 a vertebrate host, and gamogony and sporogony in the nisi, Lenk, Joger et Wink is a Sicilian endemic pond turtle. ;9R?1--*Q9; Although it is morphologically similar to E.
    [Show full text]
  • INSECTS of MICRONESIA Coleoptera: Scarabaeidae
    INSECTS OF MICRONESIA Coleoptera: Scarabaeidae By o. L. CARTWRIGHT EMERITUS ENTOMOLOGIST, DEPARTMENT OF ENTOMOLOGY, UNITED STATES NATIONAL MUSEUM OF NATURAL HISTORY AND R. D. GORDON SYSTEMATIC ENTOMOLOGY LABORATORY, ENTOMOLOGY Research Division. ARS. USDA INTRODUCTION The Scarabaeidae, one of the larger and better known families of beetles has world-wide distribution. The group has penetrated in surpris­ ing numbers even the remote islands of the Pacific Ocean. How this has been accomplished can only be surmised but undoubtedly many have managed to accompany man in his travels, with his food and domestic animals, accidental­ ly hidden in whatever he carried with him or in his means of conveyance. Commerce later greatly increased such possible means. Others may have been carried by ocean currents or winds in floating debris of various kinds. Although comparatively few life cycles have been completely studied, their very diverse habits increase the chances of survival of at least some members of the group. The food habits of the adults range from the leaf feeding Melolonthinae to the coprophagous Scarabaeinae and scavenging Troginae. Most of the larvae or grubs find their food in the soil. Many species have become important as economic pests, the coconut rhinoceros beetle, Oryctes rhinoceros (Linn.) being a Micronesian example. This account of the Micronesian Scarabaeidae, as part of die Survey of Micronesian Insects, has been made possible by the support provided by the Bernice P. Bishop Museum, the Pacific Science Board, the National Science Foundation, the United States office of Naval Research and the National Academy of Sciences. The material upon which this report is based was assembled in the United States National Museum of Natural History from existing collections and survey collected specimens.
    [Show full text]
  • Systematics and Distribution of the Tribe Mesosini (Cerambycidae: Lamiinae) in Sarawak
    SYSTEMATICS AND DISTRIBUTION OF THE TRIBE MESOSINI (CERAMBYCIDAE: LAMIINAE) IN SARAWAK WOON YEA WEN This project is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science with Honours (Animal Resource Science and Management Programme) Faculty of Resource Science and Technology UNIVERSITI MALAYSIA SARAWAK 2006 ACKNOWLEDGEMENTS I would like to express my heartfelt gratitude to my supervisor, Assoc. Professor Dr. Fatimah Haji Abang for her valuable advice and time, and her guidance and belief that sustained me at all times. Not forgetting all the lecturers especially Assoc. Prof. Dr. Mohd. Tajuddin Abdullah and Puan Ramlah Zainudin, and others who directly and indirectly contributed to the project. Also, my most sincere thanks to Dr. Charles Leh and Miss Lucy Chong, for accessing me to the specimens, which is of great help to the accomplishment of this study. I would also like to thank Mr. Mahmud of Sarawak Museum and Mr. Paulus Meleng of Sarawak Forestry for being so helpful during my research visits to the repositories. In particular I must thank Ngumbang A. J., Jayaraj V. K., Fong Pooi Har, Audrey A. M., Jalani Mortada, and Wahap Marni, whose help was always efficiently and promptly supplied. My love and gratefulness for my course mates and housemates, whose support and friendship I deeply appreciate. Last but not least, I owe a special debt to my beloved family for their encouragement and understanding. i TABLE OF CONTENTS Acknowledgements i Table of Contents ii List of Tables III iv List of Figures Abstract I 1.0 Introduction 2 1.1 Objectives 4 2.0 Literature Review 5 3.0 Materials and Methods 8 4.0 Results II 4.1 Species Diversity II 4.2 Geographical Distribution 13 4.3 UPGMA Tree 13 4.4 Systematics Accounts 15 5.0 Discussion 57 5.1 Species Diversity 57 5.2 Geographical Distribution 60 5.3 UPGMA Tree 61 6.0 Conclusion and Recommendations 63 References 64 Appendices 67 ii LIST OF TABLES Table IA list of species evaluated in the present study in relation to 12 species recorded for Borneo (Heffern, 2005).
    [Show full text]