Paper,Wepresentbasicsubdivisionrulesforgeneratingthe Penrose Tiling Using a Set of Four Robinson Tiles

Total Page:16

File Type:pdf, Size:1020Kb

Paper,Wepresentbasicsubdivisionrulesforgeneratingthe Penrose Tiling Using a Set of Four Robinson Tiles ON THE SPECTRUM OF THE PENROSE LAPLACIAN MICHAEL DAIRYKO, CHRISTINE HOFFMAN, JULIE PATTYSON, AND HAILEE PECK Abstract. Since the early 1960’s, aperiodic tilings have been a topic of par- ticular interest to mathematicians. The Penrose tiling is one example of such atiling.Inthispaper,wepresentbasicsubdivisionrulesforgeneratingthe Penrose tiling using a set of four Robinson tiles. We introduce code written in MatLab that creates and stores the Penrose tiling as a set of data struc- tures and produces the Laplacian matrix of the tiling. In doing so, we provide insight into the spectrum of the Penrose tiling. Contents 1. Introduction 1 2. Generating a Penrose Tiling 2 2.1. Substitution Method 3 2.2. Rules for Substitution with Robinson Triangles 4 2.3. Computational Methods for Penrose Tiling 7 3. The Laplacian and Spectrum 7 3.1. Computational Methods of the Laplacian and Spectrum 9 4. The Hausdor↵Dimension 10 4.1. Computational Methods for The Hausdor↵Dimension 11 5. Results 11 6. Conclusion and Future Work 13 7. Acknowledgments 14 Appendix A: MatLab Code 15 A.1. genPenTiling.m 15 A.2. tilingLaplacian.m 22 A.3. plotMat.m 25 A.4. cdf.m 25 A.5. ndsTable.m 26 References 28 1. Introduction Before 1982, crystalline structures were defined as having periodic lattice struc- ture. However, on April 8, 1982, Dan Shechtman discovered an aluminum-manganese quasicrystalline structure that had long-range order but did not exhibit the peri- odic patterns that characterized crystals [12]. Instead, the structure had icosahedral Date:August1,2013. This work was supported by NSF grant DMS-0739338. 1 2 M.DAIRYKO,C.HOFFMAN,J.PATTYSON,ANDH.PECK symmetry that was not possible, by definition, in crystal form. In 2011, Shecht- man was awarded the Nobel Prize in Chemistry for his discovery of and work with quasicrystals. Since his groundbreaking discovery, many examples of quasicrystals have been examined. However, mathematical interest in periodicity began before these discoveries of the physical applications occurred. The following discussion of this history comes from [8]. Questions relating to tiling and periodicity began with Hao Wang’s work in 1960 on tiling the plane with Wang dominoes, which are sets of unit squares with colored edges. This work began because of its relation to questions in symbolic logic. Wang conjectured that there was a way to tile the plane periodically given any set of tiles so that bordering edges share the same color. In 1964, Robert Berger provided a counterexample to the Wang conjecture. Berger showed that there is a set (of more than 20,000 Wang dominoes) that tiles only nonperiodically, and later much smaller sets (of 104 and 92 Wang dominoes) with the same property were found. Figure 1. Penrose rhombus and diamond prototiles divided into Robinson triangles Berger’s findings inspired further exploration with polygonal tiles. Raphael Robinson and Robert Ammann, in 1971 and 1977, respectively, constructed two di↵erent sets of 6 “square” tiles that tile only nonperiodically. These tiles are like jigsaw puzzle pieces which can be rotated and reflected. The projections and indentations on these tiles force specific tiles to match together. In 1973, Roger Penrose found a set of six “non-square” tiles that tile only nonpe- riodically. He later reduced it to a set of four tiles, and then two tiles. Each of these sets of Penrose tiles generate nonperiodic tilings, which are two-dimensional models of quasicrystals. Robinson took a set of two prototiles, a rhombus and diamond, and divided them into a set of four triangles as shown in Figures 1 and 2. These tiles are known as Robinson triangles. Our work is based on these Penrose tilings, which can be generated from any of the sets of prototiles that Penrose found. In Section 2, we discuss the method we use to construct the Penrose tiling and give an explanation of MatLab code that constructs finite tilings. In Section 3, we define the Laplacian matrix and spectrum and explain the corresponding MatLab code. In Section 4, we examine the Hausdor↵dimension and describe the MatLab code developed to estimate the Hausdor↵dimension of the finite Penrose tilings. 2. Generating a Penrose Tiling Let us first present relevant definitions about tilings. ON THE SPECTRUM OF THE PENROSE LAPLACIAN 3 Definition 1. [7] Prototiles are a set of finite inequivalent tiles (i.e. are not equivalent under rigid motions, expansions, or contractions). Definition 2. [7] A tiling is an arrangement of tiles, such that their union covers and packs R2 so that distinct tiles have non-intersecting interiors. Definition 3. [9] A nonperiodic tiling does not have a period. Definition 4. [9] An aperiodic set of prototiles admits infinitely many tilings of the plane, none of which are periodic. Remark 1. An iteration is one application of the substitution method to a set of tiles. There are three main methods that can be used to construct the Penrose tiling. The matching method assigns matching rules to the edges of the prototiles, only allowing pairings of certain edges. These rules guarantee a nonperiodic tiling. The substitution method starts with a finite subset of the tiling and inflates and sub- divides existing tiles to expand the tiling to cover the plane. The cut and project method takes a higher dimensional lattice and then reduces the order, projecting it to a lower dimension. For a more detailed explanation, see [5] and [1]. 2.1. Substitution Method. In this paper, we construct the Penrose tiling using the substitution method. The substitution we use is based on the set of two Penrose prototiles, the rhombus and diamond (see Figure 1). The two tiles are each sliced temporarily in half into two triangles (called Robinson triangles), resulting in a substitution with four base prototiles: B, P , Y , and W (see Figure 2). As the substitution method for the rhombus and diamond allows for overlap, we implement the Robinson triangle substitution to avoid this problem. This method inflates 1+p5 each triangle prototile by 2 and replaces the inflated tile with a predetermined subdivision. Figure 2. How to subdivide Robinson triangle prototiles (not drawn to scale) The rhombus is composed of two triangles, which we label B and P . As shown in Figure 1, Triangle B is inflated and subdivided into three triangles: P 1,Y1, and B1. Triangle P is also inflated and subdivided into three triangles: B2,W2, and 4 M.DAIRYKO,C.HOFFMAN,J.PATTYSON,ANDH.PECK P 2. Similarly, the diamond is composed of two triangles, which we label Y and W . The triangle Y is inflated and subdivided into two triangles: P 3 and Y 3. The triangle W is also inflated and subdivided into two triangles: W 4 and B4. Figure 2 shows this inflation and subdivision of the four prototiles. Figure 3. First three iterations with Robinson triangles We begin with ten prototiles (five triangle B tiles and five triangle P tiles) and use this substitution to generate larger iterations of the Penrose tiling. See Figure 3 for the first two iterations of the tiling using the substitution. For a more detailed explanation see [7] and [11]. Figures 1, 2, and 3 were inspired by and modified from [7]. 2.2. Rules for Substitution with Robinson Triangles. The sides of each tri- angle are marked with either one arrow, two arrows, or no arrows. In the tiling, a one arrow side can only be adjacent to another one arrow side, a two arrow side can only be adjacent to a two arrow side, and a side with no arrows can only be adjacent to another side with no arrows (we will refer to this as the third side). In addition, the arrows on the shared sides of adjacent tiles must point in the same direction. The nine rules in Table 1 are the only possible ways that tiles can share edges. For example, the second side of a W tile can only be matched to the second side of a P tile or to the second side of a Y tile (following rules 7 and 8, respectively). Initially, one might think that the second side of a W tile could be matched to the second side of a B tile. However, if you were to match these two sides, you would see that arrows of the second side of each of these tiles do not point in the same direction. It is not possible to rotate these tiles in any way and match them on their second side so that the arrows on the second side of these tiles point in the same direction on their shared edge. Therefore these two tiles will not meet on their respective second sides. In Table 1, the “Shared Edge” column contains a tree diagram for each of the nine rules mentioned above. The two vertices connected by the solid black line represent which two parent prototiles share an edge. The side that they share is the number in superscript. The dashed arrows denote the children of each adjacent ON THE SPECTRUM OF THE PENROSE LAPLACIAN 5 parent. Each child is directly connected only to its parent tile, where the subscripts index the children. The “External Adjacencies” column contains the external adjacencies formed be- tween the new child prototiles after subdivision of the two parent prototiles which shared an edge. We say an adjacency is external if it connects children of dis- tinct prototiles. The adjacencies are separated by commas. Again, the superscript represents the side on which the tiles are adjacent and the subscript denotes the corresponding child. For example, Rule 5 describes P and Y prototiles that are adjacent on the first side (superscript 1).
Recommended publications
  • ON a PROOF of the TREE CONJECTURE for TRIANGLE TILING BILLIARDS Olga Paris-Romaskevich
    ON A PROOF OF THE TREE CONJECTURE FOR TRIANGLE TILING BILLIARDS Olga Paris-Romaskevich To cite this version: Olga Paris-Romaskevich. ON A PROOF OF THE TREE CONJECTURE FOR TRIANGLE TILING BILLIARDS. 2019. hal-02169195v1 HAL Id: hal-02169195 https://hal.archives-ouvertes.fr/hal-02169195v1 Preprint submitted on 30 Jun 2019 (v1), last revised 8 Oct 2019 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ON A PROOF OF THE TREE CONJECTURE FOR TRIANGLE TILING BILLIARDS. OLGA PARIS-ROMASKEVICH To Manya and Katya, to the moments we shared around mathematics on one winter day in Moscow. Abstract. Tiling billiards model a movement of light in heterogeneous medium consisting of homogeneous cells in which the coefficient of refraction between two cells is equal to −1. The dynamics of such billiards depends strongly on the form of an underlying tiling. In this work we consider periodic tilings by triangles (and cyclic quadrilaterals), and define natural foliations associated to tiling billiards in these tilings. By studying these foliations we manage to prove the Tree Conjecture for triangle tiling billiards that was stated in the work by Baird-Smith, Davis, Fromm and Iyer, as well as its generalization that we call Density property.
    [Show full text]
  • Tiles of the Plane: 6.891 Final Project
    Tiles of the Plane: 6.891 Final Project Luis Blackaller Kyle Buza Justin Mazzola Paluska May 14, 2007 1 Introduction Our 6.891 project explores ways of generating shapes that tile the plane. A plane tiling is a covering of the plane without holes or overlaps. Figure 1 shows a common tiling from a building in a small town in Mexico. Traditionally, mathematicians approach the tiling problem by starting with a known group of symme- tries that will generate a set of tiles that maintain with them. It turns out that all periodic 2D tilings must have a fundamental region determined by 2 translations as described by one of the 17 Crystallographic Symmetry Groups [1]. As shown in Figure 2, to generate a set of tiles, one merely needs to choose which of the 17 groups is needed and create the desired tiles using the symmetries in that group. On the other hand, there are aperiodic tilings, such as Penrose Tiles [2], that use different sets of generation rules, and a completely different approach that relies on heavy math like optimization theory and probability theory. We are interested in the inverse problem: given a set of shapes, we would like to see what kinds of tilings can we create. This problem is akin to what a layperson might encounter when tiling his bathroom — the set of tiles is fixed, but the ways in which the tiles can be combined is unconstrained. In general, this is an impossible problem: Robert Berger proved that the problem of deciding whether or not an arbitrary finite set of simply connected tiles admits a tiling of the plane is undecidable [3].
    [Show full text]
  • Simple Rules for Incorporating Design Art Into Penrose and Fractal Tiles
    Bridges 2012: Mathematics, Music, Art, Architecture, Culture Simple Rules for Incorporating Design Art into Penrose and Fractal Tiles San Le SLFFEA.com [email protected] Abstract Incorporating designs into the tiles that form tessellations presents an interesting challenge for artists. Creating a viable M.C. Escher-like image that works esthetically as well as functionally requires resolving incongruencies at a tile’s edge while constrained by its shape. Escher was the most well known practitioner in this style of mathematical visualization, but there are significant mathematical objects to which he never applied his artistry including Penrose Tilings and fractals. In this paper, we show that the rules of creating a traditional tile extend to these objects as well. To illustrate the versatility of tiling art, images were created with multiple figures and negative space leading to patterns distinct from the work of others. 1 1 Introduction M.C. Escher was the most prominent artist working with tessellations and space filling. Forty years after his death, his creations are still foremost in people’s minds in the field of tiling art. One of the reasons Escher continues to hold such a monopoly in this specialty are the unique challenges that come with creating Escher type designs inside a tessellation[15]. When an image is drawn into a tile and extends to the tile’s edge, it introduces incongruencies which are resolved by continuously aligning and refining the image. This is particularly true when the image consists of the lizards, fish, angels, etc. which populated Escher’s tilings because they do not have the 4-fold rotational symmetry that would make it possible to arbitrarily rotate the image ± 90, 180 degrees and have all the pieces fit[9].
    [Show full text]
  • Robotic Fabrication of Modular Formwork for Non-Standard Concrete Structures
    Robotic Fabrication of Modular Formwork for Non-Standard Concrete Structures Milena Stavric1, Martin Kaftan2 1,2TU Graz, Austria, 2CTU, Czech Republic 1www. iam2.tugraz.at, 2www. iam2.tugraz.at [email protected], [email protected] Abstract. In this work we address the fast and economical realization of complex formwork for concrete with the advantage of industrial robot arm. Under economical realization we mean reduction of production time and material efficiency. The complex form of individual formwork parts can be in our case double curved surface of complex mesh geometry. We propose the fabrication of the formwork by straight or shaped hot wire. We illustrate on several projects different approaches to mould production, where the proposed process demonstrates itself effective. In our approach we deal with the special kinds of modularity and specific symmetry of the formwork Keywords. Robotic fabrication; formwork; non-standard structures. INTRODUCTION Figure 1 Designing free-form has been more possible for Robot ABB I140. architects with the help of rapidly advancing CAD programs. However, the skin, the facade of these building in most cases needs to be produced by us- ing costly formwork techniques whether it’s made from glass, concrete or other material. The problem of these techniques is that for every part of the fa- cade must be created an unique mould. The most common type of formwork is the polystyrene (EPS or XPS) mould which is 3D formed using a CNC mill- ing machine. This technique is very accurate, but it requires time and produces a lot of waste material. On the other hand, the polystyrene can be cut fast and with minimum waste by heated wire, especially systems still pertinent in the production of archi- when both sides of the cut foam can be used.
    [Show full text]
  • Pentaplexity: Comparing Fractal Tilings and Penrose Tilings
    Introducing Fractal Penrose Tilings Introducing Penrose’s Original Pentaplexity Tiling Comparing Fractal Tiling and Pentaplexity Tiling Pentaplexity: Comparing fractal tilings and Penrose tilings Adam Brunell and Daniel Sherwood Vassar College [email protected] [email protected] | April 6, 2013 Adam Brunell and Daniel Sherwood Penrose Fractal Tilings Introducing Fractal Penrose Tilings Introducing Penrose’s Original Pentaplexity Tiling Comparing Fractal Tiling and Pentaplexity Tiling Overview 1 Introducing Fractal Penrose Tilings 2 Introducing Penrose’s Original Pentaplexity Tiling 3 Comparing Fractal Tiling and Pentaplexity Tiling Adam Brunell and Daniel Sherwood Penrose Fractal Tilings Introducing Fractal Penrose Tilings Introducing Penrose’s Original Pentaplexity Tiling Comparing Fractal Tiling and Pentaplexity Tiling Penrose’s Kites and Darts Adam Brunell and Daniel Sherwood Penrose Fractal Tilings Introducing Fractal Penrose Tilings Introducing Penrose’s Original Pentaplexity Tiling Comparing Fractal Tiling and Pentaplexity Tiling Drawing the Aorta in Kites and Darts Adam Brunell and Daniel Sherwood Penrose Fractal Tilings Introducing Fractal Penrose Tilings Introducing Penrose’s Original Pentaplexity Tiling Comparing Fractal Tiling and Pentaplexity Tiling Fractal Penrose Tiling Adam Brunell and Daniel Sherwood Penrose Fractal Tilings Introducing Fractal Penrose Tilings Introducing Penrose’s Original Pentaplexity Tiling Comparing Fractal Tiling and Pentaplexity Tiling Fractal Tile Set Adam Brunell and Daniel Sherwood Penrose
    [Show full text]
  • How to Make a Penrose Tiling
    How to make a Penrose tiling A tiling is a way to cover a flat surface using a fixed collection of shapes. In the left-hand picture the tiles are rectangles, while in the right- hand picture they are octagons and squares. You have probably seen many different tilings around your home or in the streets! In each of these examples, you could draw the tiling pattern on tracing paper and then shift the paper so that the lines once again match up with the tiles. Mathematicians wondered whether it was possible to make a tiling which didn’t have this property: a tiling where the tracing paper would never match the pattern again, no matter how far you moved it or in which direction. Such a tiling is called aperiodic and there are actually many examples of them. The most famous example of an aperiodic tiling is called a Penrose tiling, named after the mathematician and physicist Roger Penrose. A Penrose tiling uses only two shapes, with rules on how they are allowed to go together. These shapes are called kites and darts, and in the version given here the red dots have to line up when the shapes are placed next to each other. This means, for example, that the dart cannot sit on top of the kite. Three possible ways Kite Dart to start a Penrose tiling are given below: they are called the ‘star’, ‘sun’ and ‘ace’ respectively. There are 4 other ways to arrange the tiles around a point: can you find them all? (Answer on the other side!) Visit mathscraftnz.org | Tweet to #mathscraftnz | Email [email protected] Here are the 7 ways to fit the tiles around a point.
    [Show full text]
  • Geometry in Design Geometrical Construction in 3D Forms by Prof
    D’source 1 Digital Learning Environment for Design - www.dsource.in Design Course Geometry in Design Geometrical Construction in 3D Forms by Prof. Ravi Mokashi Punekar and Prof. Avinash Shide DoD, IIT Guwahati Source: http://www.dsource.in/course/geometry-design 1. Introduction 2. Golden Ratio 3. Polygon - Classification - 2D 4. Concepts - 3 Dimensional 5. Family of 3 Dimensional 6. References 7. Contact Details D’source 2 Digital Learning Environment for Design - www.dsource.in Design Course Introduction Geometry in Design Geometrical Construction in 3D Forms Geometry is a science that deals with the study of inherent properties of form and space through examining and by understanding relationships of lines, surfaces and solids. These relationships are of several kinds and are seen in Prof. Ravi Mokashi Punekar and forms both natural and man-made. The relationships amongst pure geometric forms possess special properties Prof. Avinash Shide or a certain geometric order by virtue of the inherent configuration of elements that results in various forms DoD, IIT Guwahati of symmetry, proportional systems etc. These configurations have properties that hold irrespective of scale or medium used to express them and can also be arranged in a hierarchy from the totally regular to the amorphous where formal characteristics are lost. The objectives of this course are to study these inherent properties of form and space through understanding relationships of lines, surfaces and solids. This course will enable understanding basic geometric relationships, Source: both 2D and 3D, through a process of exploration and analysis. Concepts are supported with 3Dim visualization http://www.dsource.in/course/geometry-design/in- of models to understand the construction of the family of geometric forms and space interrelationships.
    [Show full text]
  • A Game of Life on Penrose Tilings
    A Game of Life on Penrose Tilings Kathryn Lindsey Department of Mathematics Cornell University Olivetti Club, Sept. 1, 2009 Outline 1 Introduction Tiling definitions 2 Conway’s Game of Life 3 The Projection Method Wikipedia: “...Almost all metal exists in a polycristalline state.” “A crystal or crystalline solid is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions.” Is there a way to encode/process information in a nonperiodic environment? Our technology for dealing with information is restricted to materials with periodic structures. “A crystal or crystalline solid is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions.” Is there a way to encode/process information in a nonperiodic environment? Our technology for dealing with information is restricted to materials with periodic structures. Wikipedia: “...Almost all metal exists in a polycristalline state.” Is there a way to encode/process information in a nonperiodic environment? Our technology for dealing with information is restricted to materials with periodic structures. Wikipedia: “...Almost all metal exists in a polycristalline state.” “A crystal or crystalline solid is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions.” Our technology for dealing with information is restricted to materials with periodic structures. Wikipedia: “...Almost all metal exists in a polycristalline state.” “A crystal or crystalline solid is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions.” Is there a way to encode/process information in a nonperiodic environment? A tiling of the plane is a partition of the plane into sets (called tiles) that are topological disks.
    [Show full text]
  • Collection Volume I
    Collection volume I PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 29 Jul 2010 21:47:23 UTC Contents Articles Abstraction 1 Analogy 6 Bricolage 15 Categorization 19 Computational creativity 21 Data mining 30 Deskilling 41 Digital morphogenesis 42 Heuristic 44 Hidden curriculum 49 Information continuum 53 Knowhow 53 Knowledge representation and reasoning 55 Lateral thinking 60 Linnaean taxonomy 62 List of uniform tilings 67 Machine learning 71 Mathematical morphology 76 Mental model 83 Montessori sensorial materials 88 Packing problem 93 Prior knowledge for pattern recognition 100 Quasi-empirical method 102 Semantic similarity 103 Serendipity 104 Similarity (geometry) 113 Simulacrum 117 Squaring the square 120 Structural information theory 123 Task analysis 126 Techne 128 Tessellation 129 Totem 137 Trial and error 140 Unknown unknown 143 References Article Sources and Contributors 146 Image Sources, Licenses and Contributors 149 Article Licenses License 151 Abstraction 1 Abstraction Abstraction is a conceptual process by which higher, more abstract concepts are derived from the usage and classification of literal, "real," or "concrete" concepts. An "abstraction" (noun) is a concept that acts as super-categorical noun for all subordinate concepts, and connects any related concepts as a group, field, or category. Abstractions may be formed by reducing the information content of a concept or an observable phenomenon, typically to retain only information which is relevant for a particular purpose. For example, abstracting a leather soccer ball to the more general idea of a ball retains only the information on general ball attributes and behavior, eliminating the characteristics of that particular ball.
    [Show full text]
  • A Class of Spherical Penrose-Like Tilings with Connections to Virus Protein Patterns and Modular Sculpture
    Bridges 2018 Conference Proceedings A Class of Spherical Penrose-Like Tilings with Connections to Virus Protein Patterns and Modular Sculpture Hamish Todd Center for Synthetic and Systems Biology, University of Edinburgh, UK; [email protected] Abstract The focus of this paper is a class of symmetrically patterned spherical polyhedra we call “Twarock-Konevtsova” (T-K) tilings, which were first applied to the study of viruses. We start by defining the more general concept of a “wrapping paper pattern,” and T-K tilings (along with one other virus tiling) are outlined as a subset of them. T-K tilings are then considered as “spherical Penrose tilings” and a pair of algorithms for generating them is described. We believe they present good source material for mathematical sculpture, especially modular origami, having intriguing features such as consistent edge lengths and a limited selection of angles in their constituent faces. We conclude by looking at existing examples of T-K tilings in mathematical sculpture and consider different directions they could be taken in. Introduction Symmetrically patterned spherical polyhedra, discovered by geometers, have inspired artists across many cultures [4]. This may well be because, in addition to their aesthetic appeal, they have “structural” benefits: spheres are very stable, and objects with patterns on them, being made of a limited set of repeated pieces, are generally “simple” to construct. For example, the origamist who made the object in Figure 9d only needed to make copies of one simple module and then slot them together. If that same origamist were to make a sculpture of equal size and intricacy but without following a pattern, it would have to involve coordination of different things.
    [Show full text]
  • Arxiv:1205.5118V2 [Math.MG] 12 Nov 2013 Berger [4] Proved That the Problem to Know Whether Or Not ΩP Is Empty (I.E
    TILINGS OF THE PLANE AND THURSTON SEMI-NORM JEAN-RENE´ CHAZOTTES, JEAN-MARC GAMBAUDO, AND FRANC¸OIS GAUTERO Abstract. We show that the problem of tiling the Euclidean plane with a finite set of polygons (up to translation) boils down to prove the existence of zeros of a non-negative convex function defined on a finite-dimensional simplex. This function is a generalisation, in the framework of branched surfaces, of the Thurston semi-norm originally defined for compact 3-manifolds. 1. Introduction Consider a finite collection P “ tp1; : : : ; pnu, where for j “ 1; : : : ; n, pj is a polygon in the Euclidean plane R2, indexed by j and with colored edges. These decorated polygons are called prototiles. In the sequel a rational prototile (resp. integral prototile) is a prototile whose vertices have rational (resp. integer) coordi- 2 nates. A tiling of R made with P is a collection ptiqi¥0 of polygons called tiles indexed by a symbol kpiq in t1; : : : ; nu, such that: 2 ‚ the tiles cover the plane: Yi¥0ti “ R ; ‚ the tiles have disjoint interiors: intptiq X intptjq “ H whenever i ‰ j; ‚ whenever two distinct tiles intersect, they do it along a common edge and the colors match; ‚ for each i ¥ 0, ti is a translated copy of pkpiq. We denote by ΩP the set of all tilings made with P. Clearly this set may be empty. When ΩP ‰H the group of translation acts on ΩP as follows: 2 ΩP ˆ R Q pT; uq ÞÑ T ` u P ΩP where T `u “ pti `uqi¥0 whenever T “ ptiqi¥0.
    [Show full text]
  • Quasicrystals—The Impact of NG De Bruijn
    Quasicrystals|The impact of N.G. de Bruijn Helen Au-Yang and Jacques H.H. Perk Department of Physics, Oklahoma State University, 145 Physical Sciences, Stillwater, OK 74078-3072, USA Abstract In this paper we put the work of Professor N.G. de Bruijn on quasicrystals in historical context. After briefly discussing what went before, we shall review de Bruijn's work together with recent related theoretical and experimental developments. We conclude with a discussion of Yang{Baxter integrable models on Penrose tilings, for which essential use of de Bruijn's work has been made. 1 Introduction 1.1 Dedication This article is devoted to the memory of one of the great mathematicians of the twentieth century, Prof. dr. N.G. de Bruijn. For this purpose, we shall describe here the important and unique contributions of de Bruijn to the development of the theory of quasicrystals together with their historical context. We shall review several theoretical developments related to de Bruijn's work. We shall also briefly discuss Shechtman's experimental findings for which he was awarded the 2011 Nobel Prize in Chemistry and mention some recent technological applications that resulted from his discovery. Finally, we shall discuss some of our own results, explaining explicitly how de Bruijn's work has been used, but without going into the full mathematical details. arXiv:1306.6698v3 [math-ph] 22 Aug 2013 1.2 Pentagrid and Cut-and-project Two of de Bruijn's papers [1, 2] give deep new insight into the nature of Penrose tilings [3, 4, 5] introduced by Penrose in 1974 as a mathematical curiosity and game.
    [Show full text]