Using the Psych Package for Factor Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to Psychometric Theory with Applications in R
What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD An introduction to Psychometric Theory with applications in R William Revelle Department of Psychology Northwestern University Evanston, Illinois USA February, 2013 1 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD Overview 1 Overview Psychometrics and R What is Psychometrics What is R 2 Part I: an introduction to R What is R A brief example Basic steps and graphics 3 Day 1: Theory of Data, Issues in Scaling 4 Day 2: More than you ever wanted to know about correlation 5 Day 3: Dimension reduction through factor analysis, principal components analyze and cluster analysis 6 Day 4: Classical Test Theory and Item Response Theory 7 Day 5: Structural Equation Modeling and applied scale construction 2 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD Outline of Day 1/part 1 1 What is psychometrics? Conceptual overview Theory: the organization of Observed and Latent variables A latent variable approach to measurement Data and scaling Structural Equation Models 2 What is R? Where did it come from, why use it? Installing R on your computer and adding packages Installing and using packages Implementations of R Basic R capabilities: Calculation, Statistical tables, Graphics Data sets 3 Basic statistics and graphics 4 steps: read, explore, test, graph Basic descriptive and inferential statistics 4 TOD 3 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD What is psychometrics? In physical science a first essential step in the direction of learning any subject is to find principles of numerical reckoning and methods for practicably measuring some quality connected with it. -
04 – Everything You Want to Know About Correlation but Were
EVERYTHING YOU WANT TO KNOW ABOUT CORRELATION BUT WERE AFRAID TO ASK F R E D K U O 1 MOTIVATION • Correlation as a source of confusion • Some of the confusion may arise from the literary use of the word to convey dependence as most people use “correlation” and “dependence” interchangeably • The word “correlation” is ubiquitous in cost/schedule risk analysis and yet there are a lot of misconception about it. • A better understanding of the meaning and derivation of correlation coefficient, and what it truly measures is beneficial for cost/schedule analysts. • Many times “true” correlation is not obtainable, as will be demonstrated in this presentation, what should the risk analyst do? • Is there any other measures of dependence other than correlation? • Concordance and Discordance • Co-monotonicity and Counter-monotonicity • Conditional Correlation etc. 2 CONTENTS • What is Correlation? • Correlation and dependence • Some examples • Defining and Estimating Correlation • How many data points for an accurate calculation? • The use and misuse of correlation • Some example • Correlation and Cost Estimate • How does correlation affect cost estimates? • Portfolio effect? • Correlation and Schedule Risk • How correlation affect schedule risks? • How Shall We Go From Here? • Some ideas for risk analysis 3 POPULARITY AND SHORTCOMINGS OF CORRELATION • Why Correlation Is Popular? • Correlation is a natural measure of dependence for a Multivariate Normal Distribution (MVN) and the so-called elliptical family of distributions • It is easy to calculate analytically; we only need to calculate covariance and variance to get correlation • Correlation and covariance are easy to manipulate under linear operations • Correlation Shortcomings • Variances of R.V. -
11. Correlation and Linear Regression
11. Correlation and linear regression The goal in this chapter is to introduce correlation and linear regression. These are the standard tools that statisticians rely on when analysing the relationship between continuous predictors and continuous outcomes. 11.1 Correlations In this section we’ll talk about how to describe the relationships between variables in the data. To do that, we want to talk mostly about the correlation between variables. But first, we need some data. 11.1.1 The data Table 11.1: Descriptive statistics for the parenthood data. variable min max mean median std. dev IQR Dan’s grumpiness 41 91 63.71 62 10.05 14 Dan’s hours slept 4.84 9.00 6.97 7.03 1.02 1.45 Dan’s son’s hours slept 3.25 12.07 8.05 7.95 2.07 3.21 ............................................................................................ Let’s turn to a topic close to every parent’s heart: sleep. The data set we’ll use is fictitious, but based on real events. Suppose I’m curious to find out how much my infant son’s sleeping habits affect my mood. Let’s say that I can rate my grumpiness very precisely, on a scale from 0 (not at all grumpy) to 100 (grumpy as a very, very grumpy old man or woman). And lets also assume that I’ve been measuring my grumpiness, my sleeping patterns and my son’s sleeping patterns for - 251 - quite some time now. Let’s say, for 100 days. And, being a nerd, I’ve saved the data as a file called parenthood.csv. -
Construct Validity and Reliability of the Work Environment Assessment Instrument WE-10
International Journal of Environmental Research and Public Health Article Construct Validity and Reliability of the Work Environment Assessment Instrument WE-10 Rudy de Barros Ahrens 1,*, Luciana da Silva Lirani 2 and Antonio Carlos de Francisco 3 1 Department of Business, Faculty Sagrada Família (FASF), Ponta Grossa, PR 84010-760, Brazil 2 Department of Health Sciences Center, State University Northern of Paraná (UENP), Jacarezinho, PR 86400-000, Brazil; [email protected] 3 Department of Industrial Engineering and Post-Graduation in Production Engineering, Federal University of Technology—Paraná (UTFPR), Ponta Grossa, PR 84017-220, Brazil; [email protected] * Correspondence: [email protected] Received: 1 September 2020; Accepted: 29 September 2020; Published: 9 October 2020 Abstract: The purpose of this study was to validate the construct and reliability of an instrument to assess the work environment as a single tool based on quality of life (QL), quality of work life (QWL), and organizational climate (OC). The methodology tested the construct validity through Exploratory Factor Analysis (EFA) and reliability through Cronbach’s alpha. The EFA returned a Kaiser–Meyer–Olkin (KMO) value of 0.917; which demonstrated that the data were adequate for the factor analysis; and a significant Bartlett’s test of sphericity (χ2 = 7465.349; Df = 1225; p 0.000). ≤ After the EFA; the varimax rotation method was employed for a factor through commonality analysis; reducing the 14 initial factors to 10. Only question 30 presented commonality lower than 0.5; and the other questions returned values higher than 0.5 in the commonality analysis. Regarding the reliability of the instrument; all of the questions presented reliability as the values varied between 0.953 and 0.956. -
14: Correlation
14: Correlation Introduction | Scatter Plot | The Correlational Coefficient | Hypothesis Test | Assumptions | An Additional Example Introduction Correlation quantifies the extent to which two quantitative variables, X and Y, “go together.” When high values of X are associated with high values of Y, a positive correlation exists. When high values of X are associated with low values of Y, a negative correlation exists. Illustrative data set. We use the data set bicycle.sav to illustrate correlational methods. In this cross-sectional data set, each observation represents a neighborhood. The X variable is socioeconomic status measured as the percentage of children in a neighborhood receiving free or reduced-fee lunches at school. The Y variable is bicycle helmet use measured as the percentage of bicycle riders in the neighborhood wearing helmets. Twelve neighborhoods are considered: X Y Neighborhood (% receiving reduced-fee lunch) (% wearing bicycle helmets) Fair Oaks 50 22.1 Strandwood 11 35.9 Walnut Acres 2 57.9 Discov. Bay 19 22.2 Belshaw 26 42.4 Kennedy 73 5.8 Cassell 81 3.6 Miner 51 21.4 Sedgewick 11 55.2 Sakamoto 2 33.3 Toyon 19 32.4 Lietz 25 38.4 Three are twelve observations (n = 12). Overall, = 30.83 and = 30.883. We want to explore the relation between socioeconomic status and the use of bicycle helmets. It should be noted that an outlier (84, 46.6) has been removed from this data set so that we may quantify the linear relation between X and Y. Page 14.1 (C:\data\StatPrimer\correlation.wpd) Scatter Plot The first step is create a scatter plot of the data. -
Arxiv:1908.07390V1 [Stat.AP] 19 Aug 2019
An Overview of Statistical Data Analysis Rui Portocarrero Sarmento Vera Costa LIAAD-INESC TEC FEUP, University of Porto PRODEI - FEUP, University of Porto [email protected] [email protected] August 21, 2019 Abstract The use of statistical software in academia and enterprises has been evolving over the last years. More often than not, students, professors, workers and users in general have all had, at some point, exposure to statistical software. Sometimes, difficulties are felt when dealing with such type of software. Very few persons have theoretical knowledge to clearly understand software configurations or settings, and sometimes even the presented results. Very often, the users are required by academies or enterprises to present reports, without the time to explore or understand the results or tasks required to do a optimal prepara- tion of data or software settings. In this work, we present a statistical overview of some theoretical concepts, to provide a fast access to some concepts. Keywords Reporting Mathematics Statistics and Applications · · 1 Introduction Statistics is a set of methods used to analyze data. The statistic is present in all areas of science involving the collection, handling and sorting of data, given the insight of a particular phenomenon and the possibility that, from that knowledge, inferring possible new results. One of the goals with statistics is to extract information from data to get a better understanding of the situations they represent. Thus, the statistics can be thought of as the science of learning from data. Currently, the high competitiveness in search technologies and markets has caused a constant race for the information. -
Fatigue and Psychological Distress in the Working Population Psychometrics, Prevalence, and Correlates
Journal of Psychosomatic Research 52 (2002) 445–452 Fatigue and psychological distress in the working population Psychometrics, prevalence, and correlates Ute Bu¨ltmanna,*, Ijmert Kanta, Stanislav V. Kaslb, Anna J.H.M. Beurskensa, Piet A. van den Brandta aDepartment of Epidemiology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands bDepartment of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA Received 11 October 2000 Abstract Objective: The purposes of this study were: (1) to explore the distinct pattern of associations was found for fatigue vs. relationship between fatigue and psychological distress in the psychological distress with respect to demographic factors. The working population; (2) to examine associations with demographic prevalence was 22% for fatigue and 23% for psychological and health factors; and (3) to determine the prevalence of fatigue distress. Of the employees reporting fatigue, 43% had fatigue only, and psychological distress. Methods: Data were taken from whereas 57% had fatigue and psychological distress. Conclusions: 12,095 employees. Fatigue was measured with the Checklist The results indicate that fatigue and psychological distress are Individual Strength, and the General Health Questionnaire (GHQ) common in the working population. Although closely associated, was used to measure psychological distress. Results: Fatigue was there is some evidence suggesting that fatigue and psychological fairly well associated with psychological distress. A separation -
Discriminant Function Analysis
Discriminant Function Analysis Discriminant Function Analysis ● General Purpose ● Computational Approach ● Stepwise Discriminant Analysis ● Interpreting a Two-Group Discriminant Function ● Discriminant Functions for Multiple Groups ● Assumptions ● Classification General Purpose Discriminant function analysis is used to determine which variables discriminate between two or more naturally occurring groups. For example, an educational researcher may want to investigate which variables discriminate between high school graduates who decide (1) to go to college, (2) to attend a trade or professional school, or (3) to seek no further training or education. For that purpose the researcher could collect data on numerous variables prior to students' graduation. After graduation, most students will naturally fall into one of the three categories. Discriminant Analysis could then be used to determine which variable(s) are the best predictors of students' subsequent educational choice. A medical researcher may record different variables relating to patients' backgrounds in order to learn which variables best predict whether a patient is likely to recover completely (group 1), partially (group 2), or not at all (group 3). A biologist could record different characteristics of similar types (groups) of flowers, and then perform a discriminant function analysis to determine the set of characteristics that allows for the best discrimination between the types. To index Computational Approach Computationally, discriminant function analysis is very similar to analysis of variance (ANOVA ). Let us consider a simple example. Suppose we measure height in a random sample of 50 males and 50 females. Females are, on the average, not as tall as http://www.statsoft.com/textbook/stdiscan.html (1 of 11) [2/11/2008 8:56:30 AM] Discriminant Function Analysis males, and this difference will be reflected in the difference in means (for the variable Height ). -
Factor Analysis
Factor Analysis Qian-Li Xue Biostatistics Program Harvard Catalyst | The Harvard Clinical & Translational Science Center Short course, October 27, 2016 1 Well-used latent variable models Latent Observed variable scale variable scale Continuous Discrete Continuous Factor Discrete FA analysis IRT (item response) LISREL Discrete Latent profile Latent class Growth mixture analysis, regression General software: MPlus, Latent Gold, WinBugs (Bayesian), NLMIXED (SAS) Objectives § What is factor analysis? § What do we need factor analysis for? § What are the modeling assumptions? § How to specify, fit, and interpret factor models? § What is the difference between exploratory and confirmatory factor analysis? § What is and how to assess model identifiability? 3 What is factor analysis § Factor analysis is a theory driven statistical data reduction technique used to explain covariance among observed random variables in terms of fewer unobserved random variables named factors 4 An Example: General Intelligence (Charles Spearman, 1904) Y1 δ1 δ Y2 2 δ General Y3 3 Intelligence Y4 δ4 F Y5 δ5 5 Why Factor Analysis? 1. Testing of theory § Explain covariation among multiple observed variables by § Mapping variables to latent constructs (called “factors”) 2. Understanding the structure underlying a set of measures § Gain insight to dimensions § Construct validation (e.g., convergent validity) 3. Scale development § Exploit redundancy to improve scale’s validity and reliability 6 Part I. Exploratory Factor Analysis (EFA) 7 One Common Factor Model: Model Specification Y δ1 λ1 1 Y1 = λ1F +δ1 λ2 Y δ F 2 2 Y2 = λ2 F +δ 2 λ3 Y δ 3 3 Y3 = λ3F +δ3 § The factor F is not observed; only Y1, Y2, Y3 are observed § δi represent variability in the Yi NOT explained by F § Yi is a linear function of F and δi 8 One Common Factor Model: Model Assumptions λ Y δ1 1 1 Y1 = λ1F +δ1 λ2 Y δ F 2 2 Y2 = λ2 F +δ 2 λ3 Y δ 3 3 Y3 = λ3F +δ3 § Factorial causation § F is independent of δj, i.e. -
When Psychometrics Meets Epidemiology and the Studies V1.Pdf
When psychometrics meets epidemiology, and the studies which result! Tom Booth [email protected] Lecturer in Quantitative Research Methods, Department of Psychology, University of Edinburgh Who am I? • MSc and PhD in Organisational Psychology – ESRC AQM Scholarship • Manchester Business School, University of Manchester • Topic: Personality psychometrics • Post-doctoral Researcher • Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh. • Primary Research Topic: Cognitive ageing, brain imaging. • Lecturer Quantitative Research Methods • Department of Psychology, University of Edinburgh • Primary Research Topics: Individual differences and health; cognitive ability and brain imaging; Psychometric methods and assessment. Journey of a talk…. • Psychometrics: • Performance of likert-type response scales for personality data. • Murray, Booth & Molenaar (2015) • Epidemiology: • Allostatic load • Measurement: Booth, Starr & Deary (2013); (Unpublished) • Applications: Early life adversity (Unpublished) • Further applications Journey of a talk…. • Methodological interlude: • The issue of optimal time scales. • Individual differences and health: • Personality and Physical Health (review: Murray & Booth, 2015) • Personality, health behaviours and brain integrity (Booth, Mottus et al., 2014) • Looking forward Psychometrics My spiritual home… Middle response options Strongly Agree Agree Neither Agree nor Disagree Strong Disagree Disagree 1 2 3 4 5 Strongly Agree Agree Unsure Disagree Strong Disagree -
CORRELATION COEFFICIENTS Ice Cream and Crimedistribute Difficulty Scale ☺ ☺ (Moderately Hard)Or
5 COMPUTING CORRELATION COEFFICIENTS Ice Cream and Crimedistribute Difficulty Scale ☺ ☺ (moderately hard)or WHAT YOU WILLpost, LEARN IN THIS CHAPTER • Understanding what correlations are and how they work • Computing a simple correlation coefficient • Interpretingcopy, the value of the correlation coefficient • Understanding what other types of correlations exist and when they notshould be used Do WHAT ARE CORRELATIONS ALL ABOUT? Measures of central tendency and measures of variability are not the only descrip- tive statistics that we are interested in using to get a picture of what a set of scores 76 Copyright ©2020 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. Chapter 5 ■ Computing Correlation Coefficients 77 looks like. You have already learned that knowing the values of the one most repre- sentative score (central tendency) and a measure of spread or dispersion (variability) is critical for describing the characteristics of a distribution. However, sometimes we are as interested in the relationship between variables—or, to be more precise, how the value of one variable changes when the value of another variable changes. The way we express this interest is through the computation of a simple correlation coefficient. For example, what’s the relationship between age and strength? Income and years of education? Memory skills and amount of drug use? Your political attitudes and the attitudes of your parents? A correlation coefficient is a numerical index that reflects the relationship or asso- ciation between two variables. The value of this descriptive statistic ranges between −1.00 and +1.00. -
Covid-19 Epidemiological Factor Analysis: Identifying Principal Factors with Machine Learning
medRxiv preprint doi: https://doi.org/10.1101/2020.06.01.20119560; this version posted June 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Covid-19 Epidemiological Factor Analysis: Identifying Principal Factors with Machine Learning Serge Dolgikh1[0000-0001-5929-8954] Abstract. Based on a subset of Covid-19 Wave 1 cases at a time point near TZ+3m (April, 2020), we perform an analysis of the influencing factors for the epidemics impacts with several different statistical methods. The consistent con- clusion of the analysis with the available data is that apart from the policy and management quality, being the dominant factor, the most influential factors among the considered were current or recent universal BCG immunization and the prevalence of smoking. Keywords: Infectious epidemiology, Covid-19 1 Introduction A possible link between the effects of Covid-19 pandemics such as the rate of spread and the severity of cases; and a universal immunization program against tuberculosis with BCG vaccine (UIP, hereinafter) was suggested in [1] and further investigated in [2]. Here we provide a factor analysis based on the available data for the first group of countries that encountered the epidemics (Wave 1) by applying several commonly used factor-ranking methods. The intent of the work is to repeat similar analysis at several different points in the time series of cases that would allow to make a confident conclusion about the epide- miological and social factors with strong influence on the course of the epidemics.