Goals of the Landscape Astrophotography Workshop 1. An

Total Page:16

File Type:pdf, Size:1020Kb

Goals of the Landscape Astrophotography Workshop 1. An Goals of the Landscape Astrophotography Workshop 1. An understanding of the night sky as it relates to the earth (celestial movement, Earth’s Orbit, movement of the Milky Way, Moon Cycles…) 2. Planning the shot, understanding the relationship of the setting to the night sky (google earth and stellarium) 3. Basic camera exposure (Shutter speed, aperture, ISO, lenses) 4. The importance of ISO in night photography, ISO invariance 5. Night time camera focusing 6. Using your camera at night (Milky Way photography, composites, star trails, night panoramas, constellations) 7. Lighting the foreground via light painting and long exposure 8. Reducing noise (in camera, image stacking, tracking) 9. Photoshop skills, using curves and layer masks. Things to Bring 1. A mirrorless or DSLR camera. A full frame camera (35mm sensor) is preferred for it’s high ISO abilities, but a cropped mirrorless or DSLR will suffice. Also bring extra batteries. 2. A wide-angle lens (24mm or less is preferred, however 35mm will work also) with a 2.8 or wider aperture. Camera lenses can be rented if needed. I’ve used the Samyang 14mm 2.8 frequently and it is very affordable, it’s available in Canon and Nikon and Sony. If only your kit lens is available we can make that work. 3. Intervalometer. We will use these for capturing star trails. Many times these are built into cameras. If one is not built into your camera a Nikon example can be found here. 4. A decent tripod. Heavy is good but it is not necessary to go overboard. I currently use a Vanguard ALTA PRO 263AT. This is plenty sturdy and cheap. 5. Headlamp and fully charged batteries! 6. Light painting tools. These are not completely necessary to bring. I will have some and we can share, but you may want to invest. I like the Goal Zero Lighthouse Micro USB Rechargeable Lantern and I use this spotlight but it may not be available any more, something like this should be suitable. I’ve also heard good things about the Lume Cube, which I plan on trying soon. It can be controlled via smartphone and reduced to 1 lumen, link. 7. If you have a laptop for post-processing that will be very useful. If you do not have a copy of Adobe Photoshop a free trial version can be downloaded here. I am currently using Adobe Photoshop CS6, off of which workshop power point presentations will be based. 8. Last but not least a good thermos, snacks and warm clothes! a. Clothing specifics: Down jacket, hat, double gloves, long underwear, hand warmers, heavy socks, too much is better than not enough! Fitness All participants should have a modest amount of fitness. No extreme fitness is necessary, but the ability to hike 1-2 miles in some heat with some very easy scrambling while carrying all of your gear, food and water. All of the intended sites are accessible but will require some hiking and mild scrambling with no dangerous exposure. Weather Weather may be an issue but it is generally reliable in the southern Utah desert. In the even of inclement weather we will try to work as long as it is safe for our equipment and ourselves. Sometimes clouds can produce interesting effects. In the event of complete overcast there are other aspects of night photography we can experiment with such as light trails, and example of one I did on a cloudy evening can be seen here..
Recommended publications
  • Improve Your Night Photography
    IMPROVE YOUR NIGHT PHOTOGRAPHY By Jim Harmer SMASHWORDS EDITION * * * * * Improve Your Night Photography Copyright © 2010 Jim Harmer. All rights reserved THE SALES FROM THIS BOOK HELP TO SUPPORT THE AUTHOR AND HIS FAMILY. PLEASE CONSIDER GIVING THIS BOOK A 5-STAR REVIEW ON THE EBOOK STORE FROM WHICH IT WAS PURCHASED. * * * * * All rights reserved. Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of both the copyright owner and the above publisher of this book. This is a work of non-fiction, but all examples of persons contained herein are fictional. Persons, places, brands, media, and incidents are either the product of the author's imagination or are used fictitiously. The trademarked and/or copyrighted status and trademark and/or copyright owners of various products referenced in this work of fiction, which have been used without permission, is acknowledged. The publication/use of these trademarks and/or copyrights isn’t authorized, associated, or sponsored by the owners. The copyright notice and legal disclaimer at the end of this work is fully incorporated herein. Smashwords Edition License Notes This ebook is licensed for your personal enjoyment only. This ebook may not be re-sold or given away to other people. If you would like to share this book with another person, please purchase an additional copy for each person you share it with. If you're reading this book and did not purchase it, or it was not purchased for your use only, then you should return to Smashwords.com and purchase your own copy.
    [Show full text]
  • Noise and ISO CS 178, Spring 2014
    Noise and ISO CS 178, Spring 2014 Marc Levoy Computer Science Department Stanford University Outline ✦ examples of camera sensor noise • don’t confuse it with JPEG compression artifacts ✦ probability, mean, variance, signal-to-noise ratio (SNR) ✦ laundry list of noise sources • photon shot noise, dark current, hot pixels, fixed pattern noise, read noise ✦ SNR (again), dynamic range (DR), bits per pixel ✦ ISO ✦ denoising • by aligning and averaging multiple shots • by image processing will be covered in a later lecture 2 © Marc Levoy Nokia N95 cell phone at dusk • 8×8 blocks are JPEG compression • unwanted sinusoidal patterns within each block are JPEG’s attempt to compress noisy pixels 3 © Marc Levoy Canon 5D II at dusk • ISO 6400 • f/4.0 • 1/13 sec • RAW w/o denoising 4 © Marc Levoy Canon 5D II at dusk • ISO 6400 • f/4.0 • 1/13 sec • RAW w/o denoising 5 © Marc Levoy Canon 5D II at dusk • ISO 6400 • f/4.0 • 1/13 sec 6 © Marc Levoy Photon shot noise ✦ the number of photons arriving during an exposure varies from exposure to exposure and from pixel to pixel, even if the scene is completely uniform ✦ this number is governed by the Poisson distribution 7 © Marc Levoy Poisson distribution ✦ expresses the probability that a certain number of events will occur during an interval of time ✦ applicable to events that occur • with a known average rate, and • independently of the time since the last event ✦ if on average λ events occur in an interval of time, the probability p that k events occur instead is λ ke−λ p(k;λ) = probability k! density function 8 © Marc Levoy Mean and variance ✦ the mean of a probability density function p(x) is µ = ∫ x p(x)dx ✦ the variance of a probability density function p(x) is σ 2 = ∫ (x − µ)2 p(x)dx ✦ the mean and variance of the Poisson distribution are µ = λ σ 2 = λ ✦ the standard deviation is σ = λ Deviation grows slower than the average.
    [Show full text]
  • Photography and Photomontage in Landscape and Visual Impact Assessment
    Photography and Photomontage in Landscape and Visual Impact Assessment Landscape Institute Technical Guidance Note Public ConsuDRAFTltation Draft 2018-06-01 To the recipient of this draft guidance The Landscape Institute is keen to hear the views of LI members and non-members alike. We are happy to receive your comments in any form (eg annotated PDF, email with paragraph references ) via email to [email protected] which will be forwarded to the Chair of the working group. Alternatively, members may make comments on Talking Landscape: Topic “Photography and Photomontage Update”. You may provide any comments you consider would be useful, but may wish to use the following as a guide. 1) Do you expect to be able to use this guidance? If not, why not? 2) Please identify anything you consider to be unclear, or needing further explanation or justification. 3) Please identify anything you disagree with and state why. 4) Could the information be better-organised? If so, how? 5) Are there any important points that should be added? 6) Is there anything in the guidance which is not required? 7) Is there any unnecessary duplication? 8) Any other suggeDRAFTstions? Responses to be returned by 29 June 2018. Incidentally, the ##’s are to aid a final check of cross-references before publication. Contents 1 Introduction Appendices 2 Background Methodology App 01 Site equipment 3 Photography App 02 Camera settings - equipment and approaches needed to capture App 03 Dealing with panoramas suitable images App 04 Technical methodology template
    [Show full text]
  • Depth of Field PDF Only
    Depth of Field for Digital Images Robin D. Myers Better Light, Inc. In the days before digital images, before the advent of roll film, photography was accomplished with photosensitive emulsions spread on glass plates. After processing and drying the glass negative, it was contact printed onto photosensitive paper to produce the final print. The size of the final print was the same size as the negative. During this period some of the foundational work into the science of photography was performed. One of the concepts developed was the circle of confusion. Contact prints are usually small enough that they are normally viewed at a distance of approximately 250 millimeters (about 10 inches). At this distance the human eye can resolve a detail that occupies an angle of about 1 arc minute. The eye cannot see a difference between a blurred circle and a sharp edged circle that just fills this small angle at this viewing distance. The diameter of this circle is called the circle of confusion. Converting the diameter of this circle into a size measurement, we get about 0.1 millimeters. If we assume a standard print size of 8 by 10 inches (about 200 mm by 250 mm) and divide this by the circle of confusion then an 8x10 print would represent about 2000x2500 smallest discernible points. If these points are equated to their equivalence in digital pixels, then the resolution of a 8x10 print would be about 2000x2500 pixels or about 250 pixels per inch (100 pixels per centimeter). The circle of confusion used for 4x5 film has traditionally been that of a contact print viewed at the standard 250 mm viewing distance.
    [Show full text]
  • Making Your Own Astronomical Camera by Susan Kern and Don Mccarthy
    www.astrosociety.org/uitc No. 50 - Spring 2000 © 2000, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Making Your Own Astronomical Camera by Susan Kern and Don McCarthy An Education in Optics Dissect & Modify the Camera Loading the Film Turning the Camera Skyward Tracking the Sky Astronomy Camp for All Ages For More Information People are fascinated by the night sky. By patiently watching, one can observe many astronomical and atmospheric phenomena, yet the permanent recording of such phenomena usually belongs to serious amateur astronomers using moderately expensive, 35-mm cameras and to scientists using modern telescopic equipment. At the University of Arizona's Astronomy Camps, we dissect, modify, and reload disposed "One- Time Use" cameras to allow students to study engineering principles and to photograph the night sky. Elementary school students from Silverwood School in Washington state work with their modified One-Time Use cameras during Astronomy Camp. Photo courtesy of the authors. Today's disposable cameras are a marvel of technology, wonderfully suited to a variety of educational activities. Discarded plastic cameras are free from camera stores. Students from junior high through graduate school can benefit from analyzing the cameras' optics, mechanisms, electronics, light sources, manufacturing techniques, and economics. Some of these educational features were recently described by Gene Byrd and Mark Graham in their article in the Physics Teacher, "Camera and Telescope Free-for-All!" (1999, vol. 37, p. 547). Here we elaborate on the cameras' optical properties and show how to modify and reload one for astrophotography. An Education in Optics The "One-Time Use" cameras contain at least six interesting optical components.
    [Show full text]
  • Depth of Focus (DOF)
    Erect Image Depth of Focus (DOF) unit: mm Also known as ‘depth of field’, this is the distance (measured in the An image in which the orientations of left, right, top, bottom and direction of the optical axis) between the two planes which define the moving directions are the same as those of a workpiece on the limits of acceptable image sharpness when the microscope is focused workstage. PG on an object. As the numerical aperture (NA) increases, the depth of 46 focus becomes shallower, as shown by the expression below: λ DOF = λ = 0.55µm is often used as the reference wavelength 2·(NA)2 Field number (FN), real field of view, and monitor display magnification unit: mm Example: For an M Plan Apo 100X lens (NA = 0.7) The depth of focus of this objective is The observation range of the sample surface is determined by the diameter of the eyepiece’s field stop. The value of this diameter in 0.55µm = 0.6µm 2 x 0.72 millimeters is called the field number (FN). In contrast, the real field of view is the range on the workpiece surface when actually magnified and observed with the objective lens. Bright-field Illumination and Dark-field Illumination The real field of view can be calculated with the following formula: In brightfield illumination a full cone of light is focused by the objective on the specimen surface. This is the normal mode of viewing with an (1) The range of the workpiece that can be observed with the optical microscope. With darkfield illumination, the inner area of the microscope (diameter) light cone is blocked so that the surface is only illuminated by light FN of eyepiece Real field of view = from an oblique angle.
    [Show full text]
  • Low-Cost Computational Astrophotography
    Low-cost Computational Astrophotography Joseph Yen Peter Bryan Electrical Engineering Electrical Engineering Stanford University Stanford University [email protected] [email protected] Abstract 2. Related Work When taking photographs of the night sky, long ex- Currently, most astrophotographers compensate for posure times help photographers observe many stars, the rotation of the earth by physically moving the cam- but the rotation of the earth results in long star streak era along with the earth. However, some attempts arcs about the celestial pole. An algorithm for re- have been made to remove this requirement. To accu- moving these star streaks and substituting accurately rately localize stars in streaked images, one researcher placed point-like stars is designed and implemented. has re-mapped the star streak to polar coordinates, so Images containing star streaks are transformed into that all stars will have the same point-spread function. ones with un-streaked starry skies while retaining This technique was designed for locating specific stars color and brightness information. The procedure is for the purpose of identifying specific stars, but will shown to work consistently on a 35-image dataset. be applicable for our purposes when removing star streaks [4]. Other factors besides streaking can cause quality degradation in star images, and attempts have 1. Introduction been made to correct this. These have used such tech- niques as Richardson-Lucy deblurring [2] and maxi- Astrophotography is a widespread pastime in which mally sparse optimization [1]. DSLR cameras are used to take images of objects in space. Certain factors make this a very expen- sive hobby.
    [Show full text]
  • The Definitive Guide to Shooting Hypnotic Star Trails
    The Definitive Guide to Shooting Hypnotic Star Trails www.photopills.com Mark Gee proves everyone can take contagious images 1 Feel free to share this eBook © PhotoPills December 2016 Never Stop Learning A Guide to the Best Meteor Showers in 2016: When, Where and How to Shoot Them How To Shoot Truly Contagious Milky Way Pictures Understanding Golden Hour, Blue Hour and Twilights 7 Tips to Make the Next Supermoon Shine in Your Photos MORE TUTORIALS AT PHOTOPILLS.COM/ACADEMY Understanding How To Plan the Azimuth and Milky Way Using Elevation The Augmented Reality How to find How To Plan The moonrises and Next Full Moon moonsets PhotoPills Awards Get your photos featured and win $6,600 in cash prizes Learn more+ Join PhotoPillers from around the world for a 7 fun-filled days of learning and adventure in the island of light! Learn More Index introduction 1 Quick answers to key Star Trails questions 2 The 21 Star Trails images you must shoot before you die 3 The principles behind your idea generation (or diverge before you converge) 4 The 6 key Star Trails tips you should know before start brainstorming 5 The foreground makes the difference, go to an award-winning location 6 How to plan your Star Trails photo ideas for success 7 The best equipment for Star Trails photography (beginner, advanced and pro) 8 How to shoot single long exposure Star Trails 9 How to shoot multiple long exposure Star Trails (image stacking) 10 The best star stacking software for Mac and PC (and how to use it step-by-step) 11 How to create a Star Trails vortex (or
    [Show full text]
  • Milky Way Photography: the Definitive Guide (2021)
    Milky Way Photography: The Definitive Guide (2021) www.photopills.com Feel free to share this eBook © PhotoPills December 2020 2 Never Stop Learning The Definitive Guide to Shoo- ting Hypnotic Star Trails How To Shoot Truly Conta- gious Milky Way Pictures Understanding Golden Hour, Blue Hour and Twilights 7 Tips to Make the Next Su- permoon Shine in Your Pho- tos MORE TUTORIALS AT PHOTOPILLS.COM/ACADEMY Understanding How To Plan the Azimuth and Milky Way Using Elevation The Augmented Reality How to find moon- How To Plan The rises and moon- Next Full Moon sets PhotoPills Awards Get your photos featured and win $6,600 in cash prizes Learn more+ Join PhotoPillers from around the world for a 7 fun-filled days of learning and adventure in the island of light! Learn More What if I told you that you're more than capable of imagining, planning and shooting Milky Way pictures that will put people into what I call a sharing trance? Would you believe it? Nowadays, almost everyone can take photos of the night Sky, even very good ones. Night sky photography in general, and MIlky Way photography in particular, have become very popular. You see it every day, social networks are filled up with multiple great Milky Way photos, published by great photographers hoping that their work will be massively shared. Unfortunately, the truth is that just a few achieve to go viral. Why? One possible answer is: inner remarkability. Social transmission expert, Jonah Berger, in his New York Times Bestseller book 'Conta- gious: why things catch on', maintains that: "Remarkable things provide social currency because they make the people who talk about them seem, well, more remarkable [...] Sharing extraordinary, novel, 6 or entertaining stories or ads makes people seem more extraordinary, novel, and entertaining [...] Not surprisingly then, remarkable things get brought up more of- ten." Therefore, how can you make photos so that people will share and talk about? The same inner remarkability principle applies.
    [Show full text]
  • DSLR Astrophotography They Say… Start with a Joke
    DSLR Astrophotography They say… start with a joke. DLSR Wide-field Astrophotography The Advantages It’s Relatively Inexpensive All you need is a DLSR camera …and a tripod You Don’t Need This! Nikon v.s. Canon Most DSLR astrophotographers use Canon cameras. Canon releases the details of the camera’s software. This allows the development of third party software, designed specifically for astrophotography. Nikon does not create a truly raw image A simple median blurring filter is always applied... removing many stars, as they are seen as noise. This prohibits precise image calibration. Some Nikons allow the “Mode 3” work around. Using Nikon’s Mode 3 Simply start the bulb time exposure and terminate it by turning off the camera. The camera sees this as a low-power warning and immediately saves the image without running the median blurring filter Testing For Mode 3 Availability Take a one-minute dark exposure in Mode 1. This is a raw image with “no noise reduction” selected. Take a one-minute Mode 3 dark exposure. If Mode 3 is available, that exposure will have noticeably more hot pixels and noise. For Starters… Keep It Simple Set the focus to infinity... before it’s dark Mount the camera on a sturdy tripod Use a wide angle lens (18mm is nice) Set the lens to its lowest f-stop Use the RAW image format, at the highest ISO setting Shoot 20-30 second exposures Take about five dark exposures (more on this later) …and you can get an image like this! Nikon D40X 18mm @ f/4 ISO 1600 Mode 1 4 30-Sec exposures 4 30-Sec darks After taking several Milky Way shots it may be time to get more adventurous.
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • Samyang T-S 24Mm F/3.5 ED AS
    GEAR GEAR ON TEST: Samyang T-S 24mm f/3.5 ED AS UMC As the appeal of tilt-shift lenses continues to broaden, Samyang has unveiled a 24mm perspective-control optic in a range of popular fittings – and at a price that’s considerably lower than rivals from Nikon and Canon WORDS TERRY HOPE raditionally, tilt-shift lenses have been seen as specialist products, aimed at architectural T photographers wanting to correct converging verticals and product photographers seeking to maximise depth-of-field. The high price of such lenses reflects the low numbers sold, as well as the precision nature of their design and construction. But despite this, the tilt-shift lens seems to be undergoing something of a resurgence in popularity. This increasing appeal isn’t because photographers are shooting more architecture or box shots. It’s more down to the popularity of miniaturisation effects in landscapes, where such a tiny part of the frame is in focus that it appears as though you are looking at a scale model, rather than the real thing. It’s an effect that many hobbyist DSLRs, CSCs and compacts can generate digitally, and it’s straightforward to create in Photoshop too, but these digital recreations are just approximations. To get the real thing you’ll need to shoot with a tilt-shift lens. Up until now that would cost you over £1500, and when you consider the number of assignments you might shoot in a year using a tilt-shift lens, that’s not great value for money. Things are set to change, though, because there’s The optical quality of the lens is very good, and is a new kid on the block in the shape of the Samyang T-S testament to the reputation that Samyang is rapidly 24mm f/3.5 ED AS UMC, which has a street price of less gaining in the optics market.
    [Show full text]